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Numerical Solution of a Delay-Advanced Equation
from Acoustics

M. Filomena Teodoro, Member, CEMAT/CINAV

Abstract—It is introduced a numerical scheme which approximates
the solution of a particular non-linear mixed type functional differen-
tial equation from physiology, the mucosal wave model of the vocal
oscillation during phonation. The mathematical equation models a
superficial wave propagating through the tissues. The numerical
scheme is adapted from the work developed previously by the author
and collaborators.

Keywords—Mixed-type functional differential equations, non lin-
ear equations, vibration of elastics tissues, numerical approximation,
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I. INTRODUCTION

IN applied sciences, many mathematical models show up
functional differential equations with delayed and advanced

arguments, the mixed type functional differential equations
(MTFDEs).

Functional differential equations of mixed type appear in
numerous and distinct areas of knowledge such as optimal
control [1, 2], economic dynamics [3], nerve conduction [4,
5, 6, 7] and traveling waves in a spatial lattice [8, 9], quantum
photonic physics [10].

We are particularly interested in the numerical approxima-
tion of the multi-delay-advance differential equation

x′(t) = F(t,x(t),x(t− τ1), . . . ,x(t− τn)), (1)

where the shifts τi may take negative or positive values.
Some recent numerical methods to approximate the solution

of a particular case of (1), a linear MTFDE with symmetric
shifts (2), were introduced in [11, 12] and improved in [13,
14, 15].

x′(t) = F(t,x(t),x(t− τ),x(t + τ)), τ > 0. (2)

More recently, these algorithms were adapted and used to
solve numerically a nonlinear MTFDE [7, 16], the FitzHugh-
Nagumo equation that models the nervous conduction in an
myelinated axon.

Presently, we pretend to calculate the numerical solution
of a particular case of a nonlinear MTFDE which describes
the dynamical behavior (vibration) of some elastics tissues, by
the interaction of a flowing fluid (air, blood,...) with an elastic
structure tissue, the aero-elastic oscillatory phenomena (AOP).
The AOP occurs frequently in physiology. Particularly, the
considered model characterizes the oscillation of a superficial
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wave propagating through the tissues in the direction of the
flow. This model was initially introduced at the late eighties
of 20th century by the author of [17, 18]. He proposed the
mucosal wave model where a surface wave represents the
motion of vocal tissues. Later, some variants of the this model
where introduced in several studies in phonation dynamics
(e.g. see [19]).

In [20], a preliminary approach to the mucosal wave
model was introduced where a numerical scheme was adapted
from algorithms resulting from the earlier work described in
[7, 16, 21]. In [22], this work was extended using a non-
uniform mesh. Using some ideas presented in [23, 24], where
homotopic analytical method (HAM) is used to solve linear
and non linear delay differential equations, the authors of [25]
presented a preliminary approach where HAM was applied to
get the solution of the mixed type differential equation under
study. In this article, we extend the previous results using a
collocation method (COL), a finite element method (FEM),
method of steps (MS) and Newton method (NM) to obtain
the approximate solution of the mucosal wave model.

The outline of this work consists in six sections and two
appendixes. Section 2 describes the problem and analyzes the
equation to solve. The numerical approach is described in
Section 3. Section 4 displays some details about NM. In fifth
Section, we obtain some numerical results. By last we get
some conclusions.

II. THE PROBLEM

We intend to compute the numerical solution of an equation
from acoustics which is associated to mucosal wave model of
the vocal oscillation during phonation.

We consider the mechanical behavior of tissues focused at
mid point of glottis. The mathematical model that describes
the displacement of tissue x(t) at the midpoint of the glottis
is obtained imposing the following assumptions:

(i) The pressure at exit of glottis (Pg) equals the atmospheric
pressure;

(ii) The sub-glottal pressure equals the lung pressure (PL);
(iii) The air flow is incompressible, frictionless and station-

ary;
(iv) The glottis is open (a1 > 0).

We can get the equation of motion, a nonlinear MTFDE
with deviating arguments, given by

Mx′′(t)+Bx′(t)+Kx(t) = Pg (3)

with Pg, the average glottal pressure. In Appendix A can
be found some details about the mucosa wave model. For
complete description of this model, please consult [18, 17].
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Equation (3) can be rewritten in form

Mx′′(t)+Bx′(t)+Kx(t) =
PL

kt

x(t− τ)− x(t + τ)

x0 + x(t + τ)
, (4)

where x0 +x(t +τ)> 0 (glottis is open) and τ is the time that
the wave travels to the edges of vocal fold at z =±T/2 (upper
and lower edges respectively), is given by τ = T/2c, where c
is the velocity of the wave and T the vocal fold thickness.

The parameters M, B, K and kt are, respectively, the
effective mass, damping and stiffness per area unit of vocal
fold medial surface and the transglottal pressure coefficient.
The model (4) is also applied in other physiological systems
such as avian syrinx, snore, or a flow passing a constricted
channel (artery, lips, soft palate, nostrils).

Equation (4) can be transformed in a non-dimensional
model after an adequate change of variable introduced in [19],
u = x/x0,

u′′(t)+αu′(t)+ω
2u(t) = p

u(t− τ)−u(t + τ)

1+u(t + τ)
, (5)

where 1+u(t+τ)> 0, p = PL
kt x0M , α = B/M and ω =

√
K/M.

The model (5) can also be represented as a bidimensional
form {

u′(t) = v(t),
v′(t) =−αv(t)−ω2u(t)+ p u(t−τ)−u(t+τ)

1+u(t+τ) ,
(6)

where 1+u(t + τ)> 0.
As a brief note, an advantage of the rectangular glottis con-

figuration is that it can clarify the importance of prephonatory
glottal width x0 for oscillation threshold through the following
relation

PL =
kt

T
Bcx0. (7)

The closer the vocal folds are brought together, the easier
is to begin of small amplitude oscillation.

Another detail is that Titze [18] assumes small values
of τ , making possible to consider the first order (linear)
approximation of the expansion of solution (14) in a Taylor
series around glottis midpoint z = 0 (see 22 in appendix A).

When we consider that mucosal wave has a small time
delay [18], equation (5) becomes an autonomous ordinary
differential equation, analytically solvable for some values of
parameters. This model is similar to the one introduced in
[26]. The author of [19, 27] considered a more realistic issue:
an arbitrary time delay for mucosal wave.

III. NUMERICAL METHODS

Some of the work introduced previously by the author and
collaborators in [14, 15, 28], presenting different algorithms
to solve numerically some autonomous and non-autonomous
linear MTFDEs (1) with symmetric delay and advance, using
collocation (COLL), least squares and finite element method
(FEM) was considered. In [7, 16, 21], it was taken into account
the numerical solution of a nonlinear MTFDE with deviating

arguments arising from nerve conduction theory, taking the
form (2).

In particular, to solve numerically (5), it is developed a
numerical scheme based on work presented in [14, 28, 21].
Before proceed, we notice that (5) is a second order equation,
so we can use the bi-dimensional formulation (6), and adapt
the method of steps presented in [14] to system (6), similarly
to the approach introduced in[21].

For the bi-dimensional case, the formula (7) presented in
Section 2 of [14] and recently verified in [29], is presented
is the appendix B, where are exposed the details of teorem B
(method of steps theorem). It is based on Bellman’s method
of steps for differential equations. In the linear case [14],
one solves the equation over successive intervals of unitary
length. In the case of [21], the equation is solved for successive
intervals of length τ . Doing some algebraic manipulation and
simplification, we get the formula

u(t + τ) =−pn(t)(u′′(t)+αu′)+u(t− τ)+g(u(t)), t ∈ R
(8)

where g(u(t)) =−pn(t)ω2u(t) and pn(t) polinomial function
with order n ∈ N .

Supposing that all the derivatives of u exist in (a− 2τ,a],
in order to simplify the calculations, we can use the simpler
formula (8) to extend the solution for equation (5) on an
interval [a,a+kτ] (where k is an integer and a some adequate
value), starting from its initial values on [a− 2τ,a]; these
starting values are calculated using the solution of equation (5)
or (6) taking into account the small amplitude approximation,
which can be found in formula (25) of [18]. After some
computation, we may obtain explicitly the expressions for the
solution successively in intervals (a,a+τ], (a+τ,a+2τ), . . ..
starting with

u(t + τ) =−pn(t)(u′′(t)+αu′(t))+u(t− τ)+g(u(t)),
t ∈ (a,a+ τ].

(9)
Using this process, we can extend the solution to any

interval, provided that the initial functions in the first two
intervals with length τ are smooth enough functions and satisfy
some simple relationships.

IV. NEWTON’S METHOD

The problem is reduced to a BVP on a limited interval, using
the solution of equation (5) under the approximation proposed
by Titze (small amplitude delay) in formula (25) of [18] as a
boundary function. A numerical solution of the problem (5)
subject to some natural constrains is computed.

The nonlinear problem can be reduced to a sequence of
linear problems by means of the NM. Can be found in [21] a
detailed description about the NM iterative process. In order
to enable the convergence of the Newton iteration process,
we consider different values of a set of parameters. We also
impose regularity conditions and boundary conditions. The
system and all parameters can be updated for each iterate of
the NM. The values of u in this system are computed, using
the MS, and assuming that u satisfies the boundary conditions.
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Then we can define u on a specific limited interval and extend
it to the closest intervals using a recurrence formula (9).

The numerical schemes described here are generalizations
from the algorithm presented in [7, 21], using a uniform mesh.
They can be summarized in three steps:
• 1st - The knowledge of initial boundary functions is essen-

tial to proceed and implement the numerical scheme. The
initial step consists in the determination of the boundary
conditions using the Titze approximation [18]:{

u(t) = φ0(t), t ∈ [−R− τ,−R];
u(t) = φ1(t), t ∈ [R,R+ τ],

(10)

where φ0(t) and φ1(t) are the boundary functions, the
solution of (5) using the small amplitude delay approx-
imation (formula (25) in [18]), R is some positive real
multiple of τ . Once the boundary functions are defined,
we are able to apply the more recent approaches and
techniques using the adapted method of steps (MS) for the
nonlinear case (5). Using MS, we can extend the solution
to any interval, provided that the initial functions in the
first two intervals with a specific length (τ) are smooth
enough functions and satisfy some simple relationships.

• 2nd - Reduction the nonlinear Equation (5) to a sequence
of linear equations using NM;

• 3rd - The COLL and FEM were applied separately to
linearized equation obtained by NM application.

V. NUMERICAL RESULTS

The parameters of model were chosen accordingly with
[18], page 1548. In table I are presented the absolute error
εN (2-norm) and the estimated order of convergence p =
log2ε2N/log2εN of approximate solution of (5) by COLL,
when it is considered an uniform mesh, x0 = 0.04 cm and
x0 = 0.16 cm.

N ε(1) p(1) ε(2) p(2)

16 1.26e−2 1.00e−2
32 3.15e−3 1.98 2.50e−3 1.99
64 7.86e−4 1.99 6.06e−4 1.99
128 1.96e−4 2.00 1.50e−4 2.01

TABLE I
ABSOLUTE ERROR ε AND ESTIMATED ORDER OF CONVERGENCE p FOR
ESTIMATE SOLUTION OF (5) BY COL, USING TITZE APPROXIMATION.
PARAMETERS DEFINED IN [18], PAGE 1548; (1) x0 = 0.04 cm AND(2)

x0 = 0.16 cm. PARTITION SIZE: N SUBINTERVALS.

In table II are also computed the absolute error and the
estimated order of convergence of approximate solution of (5),
but using FEM, with x0 = 0.04 cm and x0 = 0.16 cm. At each
table, the results are accurate.

When the COL method is applied, the absolute error is of
order 2×10−4 for both set of parameters, with a partition of
128 sub-intervals. The estimated order of convergence p is
compatible with the expected one, p≈ 2.

By other hand, when we apply the FEM, the results are
more accurate. The absolute error is of order 4×10−6 for first

n ε(1) p(1) ε(2) p(2)

16 2.9e−4 2.00 8.55e−3 1.89
32 7.26e−5 2.02 2.18e−4 1.97
64 1.80e−5 2.02 5.48e−5 1.99
128 4.46e−6 2.09 1.37e−5 2.00

TABLE II
ABSOLUTE ERROR ε AND ESTIMATED ORDER OF CONVERGENCE p FOR
ESTIMATE SOLUTION OF (5) BY FEM, USING TITZE APPROXIMATION.
PARAMETERS DEFINED IN [18], PAGE 1548; (1) x0 = 0.04 cm AND(2)

x0 = 0.16 cm. PARTITION SIZE: N SUBINTERVALS.

set of parameters and 1×10−5 for the second set of parameter,
when we take a partition with 128 sub-intervals. The estimated
order of convergence p is lower than the expected one, p≈ 2
for the two set of parameters.

The figures 1 and 2 illustratethe absolute error for each case
(COL and FEM).

Fig. 1. Absolute error ε for estimate solution of (5) by COLL, using Titze
approximation. Parameters defined in [18], page 1548; (1) x0 = 0.04 cm and(2)
x0 = 0.16 cm. Partition size: N subintervals.

Fig. 2. Absolute error ε for estimate solution of (5) by FEM, using Titze
approximation. Parameters defined in [18], page 1548; (1) x0 = 0.04 cm and(2)
x0 = 0.16 cm. Partition size: N subintervals.

VI. CONCLUSION

Our initial proposal was to apply the more recent approaches
and techniques using an adapted method of steps for the
nonlinear case (5).
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The method introduced previously in [16] and extended
from [7], using a numerical scheme based on an adapted
method of steps, was rebuilt and re-adapted, using a uniform
mesh. Using MS, we could extend the solution to any interval,
and provided that the initial functions in the first two intervals
were smooth enough.

To solve numerically the equation on study, we consider
an issue about a symmetrical system. Two different sets of
parameters, the same that Titze used in [18], were tested
and, in general, the results obtained by COLL and by FEM
were accurate. The COLL method gave results consistent with
the expected order when the convergence is guaranteed. The
FEM conduced to order of convergence estimates lower than
expected. It is still necessary to test another set of parameter
values. As it happens when we consider the linear case, in
larger intervals, the numerical solution is less accurate. The
computation of numerical solution with a nonuniform mesh by
COLL, FEM and finite differences have already preliminaries
results which are under an evaluation and a validation process.

Based on the work in [30, 31], where radial basis functions
are used as a tool to solve some nonlinear functional differ-
ential equations, in [32] we have made a first approach using
such basis of functions but we still are in a very initial stage.

APPENDIX A
BASIC PRINCIPLES: MUCOSAL WAVE MODEL

A. Preliminaries

The first principle of vocal fold vibration is presented in
[17] where the vocal fold oscillation is seen as a flow induced
mechanical system. The glottal airstream and the yielding duct
wall, the vocal folds, form a mechanical system that can show
some instability under some flow conditions. In such case,
a transfer of energy from the glottal airstream to the tissue
will overcome frictional energy losses. The oscillation extent
depends on the combination of inertial and elastic properties
(mass and stiffness) and the geometry of vocal folds. When
the aerodynamic driving force has a component in phase with
tissue velocity, there is a positive flow of energy from the
airstream. If we take a system which consists in a mass-spring
oscillator

Mξ
′′+Bξ

′+Kξ = f (ξ ′,ξ , t) (11)

where t is the time, M, B and K are mass, damping and
stiffness, respectively, ξ , ξ ′ and ξ ′′ are the displacement,
velocity and acceleration, f the diving force. The situation
of most interest is when we get an autonomous differential
equation. It occurs when f is not time dependent, meaning
that the system oscillates by itself. We can notice that the
oscillation depends on the relation between f and ξ ′: If f and
ξ ′ have the save direction, as illustrated in figure (3), energy
is transmitted to the mass, in opposite situation the energy is
taken out the mass.

Whether the system has self oscillation or driven oscillation
(whether if the hand in figure 3 is considered part of the
system) the dynamic of system its described by an autonomous
equation. In other case, we get a non-autonomous differential
equation.

Fig. 3. Mechanical oscillator. Velocity ξ ′ and driving force f in same
direction.

In [33], Libermann presents some of the pictures where the
glottal airstream can provide a driving force which depends on
velocity. In some way, the system needs to change the effective
driving force on alternate cycles. The same force sucks the
vocal folds together prior to closure works and invert direction
so it can cancel partially the impulse resulting from prior to
closure. In figure 3, the force applied by the hand needs to be
reduced or reversed on the return, when the velocity direction
invert.

This process of reverting the driving force direction is done
using different mechanisms which can be simultaneous, such
as deforming the glottal geometry so can exist different intra-
glottal pressure distributions or making use of the oppositely
phased the supraglottal and subglottal pressures.

B. The model

Returning to our objective, we intend to compute the numer-
ical solution of the equation which is associated to mucosal
wave model of the vocal oscillation during phonation.

This model was proposed by Titze in [18] and it can be
represented by the geometric scheme presented in Figure 4.

Fig. 4. Trapezoidal glottal configuration. Geometric scheme associated to
mucosal wave model of the vocal fold oscillation during phonation. (Adapted
from [18])

In figure 4 is represented the trapezoidal glottal configura-
tion, the geometric scheme associated to mucosal wave model
of the vocal fold oscillation during phonation, introduced in
[18].

A1 and A2 are the subglottal and supraglottal areas, a1,
ag and a2 are the glottal areas at entry, midglottis and exit,
respectively. A1 and A2 are constant, but glottal areas are space
and time dependent.

We can see easily that the cross section area along glottis
is given by

a(z, t) = 2L[ξ0(z)+ξ (z, t)], (12)
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where t is the time, z is the vertical distance from the midpoint
of the glottis in the direction of the airflow, ξ (z, t) is the time-
dependent displacement of tissue, ξ0 (prephonatory position)
is the half width at rest point (the vocal fold displacement
at rest), and L is the vocal fold length (normal to the plane
defined by the sheet of paper).

It is assumed left-right symmetry and the motion of tissues
is done in the horizontal direction. In [34, 35] was shown
that the wave propagates through the superficial tissues, in
the upward direction of the airflow. In the simplest case,
these waves can be represented using an one-dimensional wave
equation with wave velocity c:

∂ 2ξ

∂ t2 = c2 ∂ 2ξ

∂ z2 . (13)

The solution of (13) is given by the general d’Alembert
solution. The expression of tissue displacement is

ξ (z, t) = x(t− z
c
), (14)

where x(t) = ξ (0, t) is the tissue displacement at midpoint
of glottis. We can notice from (14) that the propagation of
mucosal wave causes a time delay from bottom to top of vocal
fold. Titze verifies in [18] that this delay helps to get some
necessary instabilities for the oscillation of vocal fold.

If the prephonatory glottis has a linear (trapezoidal) depen-
dence, see the grey line of scheme represented in figure 4, we
get

ξ0(z) =
(ξ01 +ξ02)

2
− (ξ01−ξ02)

z
T
, (15)

where ξ01 and ξ02 are the inferior and superior glottal half
widths; T is the vocal fold thickness.

The time delay τ so the wave travels to the edges of vocal
fold at z =±T/2, upper and lower edges respectively, is given
by τ = T/2c, which conduces to glottal upper and lower areas

a1 = 2L[ξ01 + x(t + τ)],
a2 = 2L[ξ02 + x(t− τ)].

(16)

Hence the equations (16) are defined at glottis midpoint,
the bio-mechanical properties of the tissues are lumped at
midpoint of the glottis.

In figure 5 is represented the rectangular glottal configura-
tion, a geometric scheme associated to mucosal wave model
of the vocal fold oscillation during phonation, introduced in
[18, 19]. It is a particular case of figure 4, where a general
trapezoidal glottal configuration is replaced by a particular
case, the rectangular one.

This fact implies that the prephonatory glottis has no linear
dependence on z, being constant in any point of glottis. So
ξ01 = ξ02 = x0

Geometrically, it is assumed a very simple case, where the
vocal fold width is constant along glottis when in rest position,
with cross sectional area given by a = 2L(x0 +ξ ).

When it is considered the rectangular glottal configuration,
the equations (16) are rewritten such as (17). The time delay
τ , so the wave travels to the edges of vocal fold at z =±T/2

Fig. 5. Rectangular glottal configuration. Geometric scheme associated
to mucosal wave model of the vocal fold oscillation during phonation. A-
Pharynx; B-Glottis; C-Trachea; ξ -tissue displacement. (Adapted from[18, 19])

(upper and lower edges respectively), is given by τ = T/2c,
which conduces to glottal upper and lower areas

a1 = 2L[x0 + x(t + τ],
a2 = 2L[x0 + x(t− τ].

(17)

The mathematical model which describes the displacement
of tissue is obtained imposing the following assumptions:

(i) The pressure at exit of glottis (Pg) equals the atmospheric
pressure;

(ii) The sub-glottal pressure equals the lung pressure (Pl);
(iii) The air flow is incompressible, frictionless and station-

ary;
(iv) The glottis is open (a1 > 0).

Remembering that equations (16) and (17) are defined in
the mid point of glottis, we consider mechanical behavior of
tissues focused at mid point of glottis.

x(t) is the displacement of tissues at the midpoint of the
glottis, so we can get the equation of motion, a nonlinear
MTFDE with deviating arguments, with the form (3)

Mx′′(t)+Bx′(t)+Kx(t) = Pg (18)

where Pg, the average glottal pressure, is given by

Pg =
1
T

∫ T
2

− T
2

P(z)dz, (19)

if an intraglottal pressure P(z) is known.
Under the conditions enumerate above, we can establish that

the average glottal pressure (Pg) is given by

Pg =
Pl

kt

(
1− a2

a1

)
, (20)

where kt is a transglottal pressure coefficient.
Consequentely, (3) can be rewritten in form (4)

Mx′′(t)+Bx′(t)+Kx(t) =
PL

kt

x(t− τ)− x(t + τ)

x0 + x(t + τ)
, (21)

where x0 + x(t + τ)> 0.
The parameters M, B, K, are, respectively, the effective

mass, damping and stiffness per area unit of vocal fold medial
surface. The model (4) is also applied in other physiological
systems such as avian syrinx, snore, or a flow passing a
constricted channel (artery, lips, soft palate, nostrils).

INTERNATIONAL JOURNAL OF MECHANICS Volume 11, 2017

ISSN: 1998-4448 111



6

Another detail is that Titze [18] assumes small values
of tau, making possible to consider the first order (linear)
approximation of the expansion of solution (14) in a Taylor
series around glottis midpoint (z = 0):

x(t± τ)≈ x(t)± τx′(t) (22)

where x(t) and x′(t) are the midpoint displacement and veloc-
ity of the fold.

With approximation (22), equations (16) and (17) are given
by (23)

a1 = 2L[ξ01 + x(t + τ)] = 2L[ξ01 + x(t)+ τx(τ)],
a2 = 2L[ξ02 + x(t− τ)] = 2L[ξ02 + x(t)− τx(τ)]. (23)

and (24)
a1 = 2L[x0 + x(t)+ τx(τ)],
a2 = 2L[x0 + x(t)− τx(τ)]. (24)

respectively. When we consider that mucosal wave has a small
time delay [18], equation (5) becomes an autonomous ordinary
differential equation, analytically solvable for some values of
parameters. This model is similar to the one introduced in
[26]. The author of [19, 27] considered a more realistic issue:
an arbitrary time delay for mucosal wave.

APPENDIX B
METHOD OF STEPS THEOREM

In present section, we revisit the method of steps for a linear
non-autonomous MTFDE with the form (25),

x′(t) = α(t)x(t)+β (t)x(t−1)+ γ(t)x(t +1), (25)

where x is the unknown function, α , β and γ are known
functions. In order to analyze and solve this BVP of (25) which
satisfies the boundary conditions (26)

x(t) =
{

ϕ1(t), if t ∈ [−1,0],
f (t), if t ∈ (k−1,k], (26)

where ϕ1 and f are smooth real-valued functions, defined on
[−1,0] and (k−1,k], respectively (1 < k ∈N), one solves the
equation over successive intervals of unitary length. We need
to assume the non-degeneracy condition that γ(t) 6= 0, for t ≥
0, so that equation (25) can be rewritten in the form (27)

x(t +1) = a(t)x′(t)+b(t)x(t−1)+ c(t)x(t), t ≥ 0 (27)

where a(t) = 1
γ(t) , b(t) =−β (t)

γ(t) and c(t) =−α(t)
γ(t) .

MS is used usually in delay differential equations (DDEs)
which extend a known solution of equation in an interval to a
larger interval. Its a way to increase our knowledge about the
solutions of (25) as well as it provides us sufficient conditions
for the existence of solution for this kind of MTFDE. We have
looked for a differentiable solution x on an interval [−1,k],
k ∈ N, given its values on the intervals [−1,0] and (k−1,k].
In next theorem is formulated this result in more precise terms.
However, the solution of the non-autonomous IVP (27) subject
to (29), the main idea of the theorem B is to get a particular
solution of equation (25).

x(t) = ϕ(t), t ∈ [−1,1], (28)

where the function ϕ is defined by

ϕ(t) =
{

ϕ1(t), if t ∈ [−1,0],
ϕ2(t), if t ∈ (0,1]. (29)

constructed using the method of steps, becomes less smooth as
time increases. The conclusions on smoothness for the solution
of the constructed using the method of steps is summarized in
the Theorem B.

Theorem B (Method of Steps): Let x be the solution of
problem (27),(29), where

α(t), β (t), γ(t) ∈C2L([−1,2L+1]), γ(t) 6= 0,
t ∈ [−1,2L+1],

ϕ1(t) ∈C2L+1([−1,0]), ϕ2(t) ∈C2L+1([0,1])
f or some L ∈ N.

(30)

Moreover, suppose that

ϕ
(`)
1 (0−) = ϕ

(`)
2 (0+),

ϕ2(1) = a(0)ϕ ′1(0
−)+b(0)ϕ1(−1)+ c(0)ϕ1(0);

ϕ
(`)
2 (1−) = d`

dt` (a(t)ϕ
′
1(t)+b(t)ϕ1(t−1)+ c(t)ϕ1(t))|t=0− ,

`= 0,1,2, . . . ,2L+1.
(31)

Then there exist functions δi,l , εi,l , δ̄i,l , ε̄i,l ∈C([−1,2L+1]),
l = 1, . . . ,L,
i = 0,1, . . . ,2l, such that the following formulae are valid:

x(t) = ∑
2l−1
i=0 δi,l(t)ϕ

(i)
1 (t−2l)+∑

2l−1
i=0 εi,l(t)ϕ

(i)
2 (t−2l +1),
t ∈ [2l−1,2l];

x(t) = ∑
2l
i=0 ε̄i,l(t)ϕ

(i)
2 (t−2l)+∑

2l−1
i=0 δ̄i,l(t)ϕ

(i)
1 (t−2l−1),

t ∈ [2l,2l +1] l = 1,2, . . . .

(32)
Moreover, the solution x, constructed according to the

formulae (32), belongs to the class

C2L+1([−1,1))
⋂

C2L([−1,2))
⋂
· · ·
⋂

C1([−1,2L+1)).
(33)

A detailed proof by induction was provided in [29].
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