
 

 

Abstract — In the paper the resonance theory was used for an 

explanation of generation reasons of the longitudinal structures in the 

compressible boundary layer by external vorticities. Researches are 

conducted as in case of subsonic Mach numbers, and in case of a 

supersonic flow. As a result of researches Eigen values of a uniform 

boundary problem have been obtained and the corresponding Eigen 

functions are constructed. By researches of other authors it has been 

established that two-dimensional stationary disturbances in a 

subsonic boundary layer on a flat plate are damped on the 

longitudinal coordinate by a power law, the exponent is Eigen value 

of a boundary problem. The present results coincide with their data 

completely. The researches of three-dimensional disturbances which 

were conducted for the first time have shown that their fading rate 

down a stream depends on wave numbers in the lateral direction 

poorly.  However, there are the optimal values of the wave number in 

the lateral direction, in which perturbations are damped down a 

stream the most poorly. If in case of subsonic speeds decrements of 

perturbations of the first mode doesn't depend neither on a Reynolds 

number, nor on value of a lateral wave number, then in case of M=2 

the nature of a perturbations reduction on longitudinal coordinate 

depends both on a wave number, and on a Reynolds number.  

Intensive generation of longitudinal structures takes place under a 

condition when parameters of external waves are close to parameters 

of Eigen stationary perturbations of a boundary layer. Data of the 

resonant theory are coordinated with direct calculations of an 

interaction of external disturbances with a boundary layer 

satisfactorily.  

 

Keywords — boundary-layer, longitudinal structures, vorticities, 

supersonic flow, laminar-turbulent transition 

I. INTRODUCTION 

HIS paper is an extended version of a theoretical 

investigation originally presented at the 13th International 

Conference on Applied and Theoretical Mechanics (Venice, 

Italy, April 26-28, 2017) and published in [1].  

Present studies are concerned with the transition of a 

laminar flow into turbulence one in the flat plate boundary 

layer. The transition of an attached boundary layer from a 

laminar to a turbulent state is usually classified as either being 

through a natural mode 1) or a bypass mode 2).  

1) Natural transition is the dominant mode for flows, where 

the freestream turbulence level is low enough. In this case 
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scenario of transition is following. Interaction of external 

disturbances with a boundary layer or small perturbations 

imposed directly inside the boundary layer generate 

characteristic nonstationary fluctuations which amplify at 

rather long distances from a leading edge of a plate. At an 

achievement of larger amplitudes the nonlinear interaction 

takes place, which ends by the boundary layer transition in a 

turbulent state.  

2) Bypass transition takes place at high levels of freestream 

disturbances and is characterized by the formation of 

stationary longitudinal structures.  Longitudinal structures can 

be observed both in a result of non-linear interaction of 

oblique waves, usually in an unstable region [2], and in a 

stable area because of the linear interaction of an external 

turbulence with a boundary layer.  

The first study [3] of the flow in the boundary layer in the 

presence of an external turbulence showed that in the 

boundary layer near the front edge of the plate the low-

frequency oscillations take place. Similar studies were 

continued about two decades later in [4], where the streaky 

structures were observed. The later these structures were 

called as the Klebanoff’s modes. These structures is clearly 

visible in Fig. 1, which are taken from [5]. 

 

 
 

The first theoretical works on the development of small 

two-dimensional stationary disturbances in the incompressible 

boundary layer on a flat plate were [6-8]. In them it was 

shown that perturbations of flow parameters in the boundary 

layer fade down on a flow under the degree law. They had 

shown that the parameters disturbances of the flow qi in the 

boundary layer damped down the flow of power law. 

Exponents   were Eigen numbers of the formulated problem 
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Fig.1 Flow visualization of streaky structures in boundary layers 

affected by free-stream turbulence [5] 
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on Eigen values. Interest in a study of longitudinal structures 

in many respects was defined by [2] where they were found 

experimentally. As it was mentioned above, their nature could 

be associated both with a nonlinear interaction of 

perturbations, and linear interaction of an external turbulence 

with boundary layer. An interaction of an external turbulence 

with a subsonic boundary layer on a flat plate was researched 

experimentally in [4, 5, 9, 10] and in some other papers which 

review can be found in [5]. It was noted in all these works that 

in the interaction result of an external turbulence with 

boundary layer in stable region relatively small perturbations 

in the subsonic boundary layer longitudinal structures were 

observed. Longitudinal velocity profile of stationary 

disturbances excited by an external turbulence, at least in the 

low frequency range, has a bell-shaped type, Fig.2, maximum 

which is located at a distance from the wall y/δ ≈2.5, where

/x u   , x ─ the distance from the leading edge 

plate, ,u  
- speed and kinematical viscosity of a ram 

airflow.  
 

 
 

For the first time theoretically an interaction of an external 

longitudinal vorticity with a subsonic boundary layer is 

explored in [11]. There it was set that under the influence of 

the periodic external vorticity in the lateral direction the 

amplitude of longitudinal structure increased linearly down a 

flow and was inversely proportional to its period.   

 It completely matched with the dependence of the 

perturbation amplitude on the boundary layer thickness given 

in [8].  At the same time the dependence of the perturbation 

amplitude of the longitudinal velocity on the normal 

coordinate was coincided with data [6,7] which were obtained 

for two-dimensional perturbations.   

It should be noted that the theory [11] is applicable only in 

case of enough large periods of an external vorticity. More 

exact results, using parabolized stability equations, were 

obtained in [12]. The calculations revealed that the form of 

longitudinal velocity perturbations profiles does not depend on 

the structure period practically. Its amplitude increased in 

proportion to the thickness of the boundary layer. 

In the subsequent theoretical and numerical study of the 

stationary disturbances generation in the supersonic boundary 

layer by external waves were continued in [13-23].     

To some extent the external turbulence interaction with a 

boundary layer can be described by means of a continuous 

spectrum of the stability task. For the first time a connection 

between the continuous spectrum and the task of an interaction 

of external disturbances (acoustic) with a parallel flow in the 

boundary layer was specified in [24]. Perhaps the most 

actively the possibility of the description of vortex 

perturbations interaction of an external flow with a boundary 

layer by means of a continuous spectrum began to be used 

after appearance of papers [25, 26].  

Another explanation for a generation of the intense 

perturbations in the boundary layer by external waves is a 

qusi-resonant interaction of external disturbances with their 

Eigen waves. Apparently in [27] for the first time an attention 

was paid to quasi-resonant generation of oscillations within 

the considered flow area under the influence of harmonic 

perturbations in the time. There the system of the differential 

equations of first order with harmonic in time the right part 

had been considered. Homogeneous system has set of Eigen 

frequency ωi. Therefore disturbance amplitude will 

significantly exceed values of the right part if its frequency ω 

differs a little from Eigen frequency ωi. 

The aim of this work was to study the development of 

internal stationary perturbations in the compressible boundary 

layer on a flat plate and to describe theirs on the basis of 

resonance theory. 

II. PROBLEM STATEMENT AND BASIC EQUATIONS  

The linear statement is considered. The flow of a 

compressible gas in a boundary layer on a flat plate is taken as 

an initial undisturbed flow. Disturbances in a boundary layer 

we shall consider in orthogonal coordinate system  , , z     

[19] connected with stream-surfaces of basic flow and look 

like    , expa i i z i t      . Here   - flow function; for 

a plate  2Rex O   ; Re u x   ; , ,x y z - longitudinal, 

normal to a wall and transversal co-ordinates of the Cartesian 

system with the beginning on an edge of a plate. Gas is perfect 

with a constant Prandtl number, Pr. Resulting a set of Navier-

Stokes equations to a linear view, using estimations on the 

whole degrees of a Reynolds number, Re, rejecting the 

members order 2Re   respect to the main ones, the properties 

of a critical layer [19] and neglecting by a deformation of a 

perturbations distribution with changing of coordinate x it is 

possible to receive the dimensionless equations: 

 

 
Fig.2 Distribution of the low-frequency longitudinal velocity 

on the boundary layer for different Reynolds numbers, Rex [10] 

Re /x xu    
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12 / ,x t ru i v u T       , 

 23 2 ,z c a z r wi p i w i u f w                            (1) 

23 / ,z rw i v      ,                                       

   

2 2

1 2 2 Pr ,

t

c c a

q i RT p H v f H r ui f uu

i u f H f u u f h i h

 



       

       

 12Pr Pr ,t Rh u u h T q u          

where the stroke means a derivative on Y; / RedY d u ;  

, , , ,p v u w h  - amplitudes of  pressure; normal to a surface of a  

plate, longitudinal and transversal speeds; enthalpy 

disturbances. The expressions for 
12 23

, ,q   can be found in 

[19].  

Additional members of the system are of the form: 

;  ;w x z t x r w au i u i w i i u u       

/ ;  Re Re( );m c cr g p T i u i u            

Re ;  Re ;  x zi i T i i T     

2 2

1 0 1( ) ;  Re ;a x z r hi i r h f u f T          

 2

1ln / ;  2Re ;  ReT d dT f u         

The system (1) was normalized with the help of following 

scales:  u 
 - length, 

2u   - time, 
 -  viscosity and 

flow function, u
 - velocity and its disturbances, T

 - 

temperature, 
 - density , 

2u  - enthalpy, 
2u   - pressure 

and disturbances of viscous stresses, 
3u   - value  q  , 

2u T   - specific heat (the index    corresponds to values in 

the incident airflow). In this case:
2Mmg   , 

  2

1 1 Mmg    , where p Vc c   - relation of heat 

capacities, M– Mach number.  

The system (1) can be represented in the form: 

( ,Re, , , , )A M    Z Z .                                                   (2) 

 12 23, , , , , , ,p v u w h q Z  , Aquadratic matrix of given 

functions of Re and Y.  

In the absence of external perturbations the system of 

equations (2) is solved with the following boundary 

conditions. The disturbances of speeds and a temperature on a 

surface and in infinity are equals to zero:                

2 3 4 5 5

2 3 4 5

(0) (0 (0) (0) 0,  ( (0) 0)

( ),  ( ),  ( ),  ( ) 0

z z z z z

z z z z

    

    
                      (3)  

Thereby the task on own values (the task of stability) is 

formulated. For example, at given values of Re, M, ω and β, 

the value of a wave number α is searched. In case of positive 

values of an imaginary part of a wave number αi the flow is 

stability and vice versa. 

In the presence of external perturbations of a type of 

   0 0, expa i i z i t        in a matrix of A it is necessary 

to replace α on α0. Boundary conditions take the form: 
'

0(0) (0 (0) (0) 0,  ( (0) (0);   ;)v u w T T      Z Z    (4)  

III. RESULTS  

A. Egen stationary disturbance 

In this paper the case of stationary perturbations is 

researched, which parameters differ from parameters of 

nonstationary perturbations negligible in case
2 62 / 10f u   

    , f ─ the frequency in Hertz. All 

distributions given below were normalized on maximum 

values of the longitudinal velocity which located in the range: 

2.5<Y<3.5. 

 

 

 
 

 
Fig. 3 Comparison of calculation results (M=0.2) of the 

longitudinal velocity distribution with data of [7] (M=0) 

 
Fig. 4 Dependence of a rate amplification αi (1) and  (2) on a 

Reynolds number, M=0.2 
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For the greater confidence in calculations, comparison of 

our results with data of [3], received at M=0 and β = 0, was 

carried out. There within of boundary layer equations, the 

stationary and nonstationary perturbations are researched.   

There it was shown, that longitudinal logarithmic derivative of    

on longitudinal coordinate has the form 

ln( )
( ) /k

r i k

u
i i x

x
  


   


 .  

k  - an infinite set of numbers. The first four of them with a 

precision of three digit are equal: 1.0, 1.89, 2.81, 3.76. 

 
 

The distribution of the longitudinal velocity perturbation in 

a boundary layer is given in Fig.3: present calculations at 

M=0.1, β=0, Re= 200, αi=2.50ˑ10
-5

 (symbol) and data of [7] at 

M=0,   (solid line). Dependence of a rate amplification αi and 
2

1 Rei    on a Reynolds number is given in Fig. 4.  Data 

show that 21/ Rei , and 1 1   (in the full accordance with 

the results of [7]). Eigen functions for different λi are shown in 

Fig.5, which agree completely with data of [6].  

Along with two-dimensional perturbations in subsonic 

boundary layer (M=0.1) calculations carried out for three 

dimensional stationary disturbance, 0,  in subsonic and 

supersonic boundary layer, unlike researches of [6, 7] (M=0,

0  ).  

Distributions of longitudinal, normal and lateral velocities 

perturbations (u, v, w) on a boundary layer are shown in Fig. 6 

and Fig. 7, when Re=200 and 10
3
 (M=0.2, β=0.7ˑ10

-4
). In 

addition distributions of phases, ph, of longitudinal velocities 

are shown in Fig.7. If in case of low Reynolds numbers 

(Re=200) there is no influence of a wave number β on the 

velocities perturbations distribution, then with increase in Re it 

not so. Especially it is visible on phase shift. If in case of 

Re=200 phase shift on a boundary layer is equal to zero, as 

well as in a case β =0, then in case of Re=10
3
 it reaches about 

one radian, (about 60°). At the same time the phase decreases 

with an increase of the coordinate Y. It is connected with the 

fact that a Reynolds number (coordinate x), boundary layer 

thickness and an effective wave number βRe increase. It 

carries to more strong influence of a lateral velocity on 

longitudinal velocity through a continuity equation. 

 
From presented data (Fig. 6) it is visible that normal and 

lateral velocities have an order 1/Re. 

 

 
In case of supersonic speeds along with velocities 

perturbations disturbances of the mass flow play an important 

role. Moreover, at hot-wire anemometer using in experiments 

the mass flow perturbations are measured as a rule. Therefore 

in Fig. 8 the mass flow perturbation m distribution in a 

boundary layer is shown in case of M=2 not only velocity 

perturbations. Symbols show the distribution of the velocity 

perturbation for M = 0.1. It is interesting to note that for the 

small Reynolds number (Re=200) velocity perturbation 

distribution does not depend on the Mach number. 

Fig. 7 and 8 show that deformation of a longitudinal 

velocity profile in a supersonic boundary layer in case of a 

Reynolds number change is similar to its change in a case of a 

subsonic boundary layer. However full phase shifts of velocity 

and mass flow perturbations on a boundary layer  in case of 

 
Fig.5 Eigenfunctions for λi=1.0(1), 1.89(2), 2.81(3), 3.76(4). 
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Fig. 6 Distributions of longitudinal, normal and lateral velocities 

perturbations and a phase shift on a boundary layer at Reynolds 

numbers 200(1)  и  103 (2), (M=0.2, β =7ˑ10-4) 
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Fig. 7 Distributions of maximum, /u/,  and actual, u, values of 

velocity perturbations and a phase shift on a boundary layer at Re 

=200(1) and 103(2) (M=0.2, β=7ˑ10-4) 
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M=2 are approximately equal π=3.14 and they are positive 

while in case of a subsonic boundary layer they are much less 

and negative (Fig. 6). At small Reynolds numbers the 

influence parameter β is insignificantly, the phase shift on 

boundary layer is absent.  

 

Dependences of decrements and their product on Re
2
 for 

two-dimensional ((01), (02)), and also three-dimensional 

((b1), (b2)) perturbations on the Reynolds number are shown 

in Fig. 9 (M=2). Here, for comparing, dependence αiRe
2
 on 

the Reynolds number is given for a case of subsonic speeds 

(M=0.2) at β=7ˑ10
-4

. These data show that the spatial 

decrements weakly dependent on the Mach number. However, 

it is possible to observe the small increase of the decrement 

with an increase of the Mach number at Re>450. . 

 
At Re<400 three-dimensional perturbations decrements 

(β=7ˑ10
-4

) are smaller than the two-dimensional perturbations 

decrements. At Re>400 on the contrary, decrements of three-

dimensional perturbations are greater than two-dimensional 

perturbations decrements. In case of Re=1000 they are about 

1.5 times more than decrements of two-dimensional 

perturbations.  

In Fig. 10 dependences of decrements on a wave number β 

are shown. It is possible to note that in the given dependences 

there are minima at β=β*. 

Calculations show that if M=2 then β*Re=0.1 at all 

Reynolds numbers. At subsonic speeds (M=0.2) value β*Re ≈ 

0.08. 

 

B. Resonance theory of the interaction of external 

perturbations with boundary layer  

In the presence of external perturbations, problem (2), (4) can 

be reduced to solving of inhomogeneous differential equations 

with zero boundary conditions similar to the conditions (3). 

Indeed, let's introduce a vector-function W= Z-φ(Y)Z0. The 

function φ(Y) must satisfy to conditions: φ(0)=0, φ(∞)=1. 

Then instead of the system (2) we have a non-uniform system 

of equations 

0 0 0 0( ,Re, , , , ) ( ) ( )A Y M L Y A Y        W W W Z Z (5) 

with boundary conditions similar to (3): 

2 3 4 5 5

2 3 4 5

(0) (0 (0) (0) 0,  ( (0) 0)

( ),  ( ),  ( ),  ( ) 0

w w w w w

w w w w

    

    
                  (6) 

 It is possible to show that in case of small values 0 

amplitudes any component of a vector W and components of a 

vector Z will be proportional to 01/   . For example 

normalized longitudinal speed perturbations can be taken as 
0 0

0 0( / ) /nu u u        

Results of calculations on interactions of external 

perturbations of the form  0 expa i z  with a subsonic 

boundary layer are given below. Similar investigations were 

done in papers [11, 12, 19, 20].  

Dependences of amplitude peaks of normalized 

longitudinal velocities on a Reynolds number in case of 

M=0.2 and different values of a wave number β are given in 

Fig. 11. Here u
0
 is the amplitude peak of a longitudinal 

velocity at Re=200.  From the presented data it is visible that 

in case of small wave numbers (bet =0; 1) amplitudes of 

stationary perturbations, grows proportionally to longitudinal 

coordinate x ~Rex = Re
2
 as it was predicted in [8, 11]. In case 

 
Fig. 8 Distributions u, m и ph on a boundary layer at M=2. 

Re=200 (1), 103 (2); β =7ˑ10-4 

 

 

 

 

 

 

 

 

 

0 1 2 3 4 5 6 7 8 9

-0.6

-0.4

-0.2

-0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

u       (2)

m      (2)

phu   (2)

phm  (2)

u       (1)

m      (1)

u(M=.1)

Y

 
Fig. 9 Decrements dependences, αi, and product αiRe2 for β=0 

((01),(02)) and β=7ˑ10-4 ((b1),(b2)) on Reynolds number at M=2 
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Fig. 10 Decrements dependences on a lateral wave number at 

M=2 (al = αiˑ105, bet =βˑ104). 
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of large wave numbers (bet=7) it grows proportionally to 

Re Rex .  

 
Dependences of the amplitude peaks of a normalized 

longitudinal velocity on wave number bet= βˑ10
--4 

at different 

Reynolds numbers are shown in Fig. 12. Here u
0
 is the 

amplitude peak of a longitudinal velocity at β=0. These results 

show that perturbations amplitude of a longitudinal velocity 

rises with β linearly in the area of small values of wave 

number that are also consistent with the findings of [8, 11]. 

 
From fig. 12 it is possible to conclude that  in case of the 

fixing Reynolds number the maximum of perturbations are 

achieved approximately at β
*
Re=0.1. Calculations of paper 

[12] showed that the amplitude of excited stationary 

perturbations, which were proportional to  exp ( / 3)i z y  , 

reached its maximum also when β
*
Re≈0.1. 

Due to the fact that for the data, presented on Fig. 12,  the 

value of un changes slightly in the range 1 < bet < 1.5, for 

dependences of the disturbances amplitude excited by external 

waves on the Reynolds number it is possible to use the curve 

of Fig. 11, corresponding to bet=1. In papers [19, 20] it was 

obtained that the maximum values of the excited velocities 

amplitudes are observed at β*Re≈0.5. With regard to the 

dependencies shown in Fig. 11 it is different from the 

amplitude dependencies of disturbances on  Reynolds number 

presented in [12,  19, 20], where there are peaks. One reason 

of such discrepancy is related to the exponential dependence 

of a amplitude of an external wave on β
2
х, exp(–β

2
Re

2
). 

Taking into account such attenuation dependences u=unexp(–

β
2
Re

2
) on a Reynolds number at M=0.2 for three values of a 

wave number β is shown in Fig. 13. Taking into account such 

correction it is possible to notice that β*Re≈0.8 what is 

coordinated with data [20]. 

 

 
Similar dependencies of normalized velocity perturbations 

amplitudes on the Reynolds number at M=2.0 are shown in 

Fig.14. From these data it is possible to see that the 

disturbance amplitude of longitudinal velocity under the 

influence of an external vorticity decreases in case of a 

supersonic boundary layer. 

 

 
 

 
Fig. 11. Dependences of normalized velocity perturbations 

amplitudes on the Reynolds number at M=0.2 and different 

values bet=βˑ104 
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Fig. 13 Dependences of normalized velocity perturbations 

amplitudes, u, on the Reynolds number at M=0.2 and different 

values bet 
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Fig. 14 Dependences of velocity perturbations amplitudes, u, on 

the Reynolds number at M=2 and different values bet=βˑ104 
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The effect of the Mach number on amplitude perturbations 

of normalized longitudinal velocity is shown in Fig. 15. As the 

basic velocity, u0, was accepted velocity at the Mach number 

M=0. Despite distinction data the resonant theory, 2, and 

results of [17], 1, the tendency of an influence of the Mach 

number on the amplitude of excited disturbances in a 

boundary by an external vorticity in the both cases is identical.  

Distinction of these dependences is caused by influence by a 

flow nonparallelism on distributions of disturbances 

parameters in a boundary layer which was considered in [17] 

and couldn't be considered in the resonant theory, in the 

principle.  

IV. CONCLUSIONS 

As a result of the conducted researches it was received: 

1. Calculations results of Eigen two-dimensional stationary 

disturbances under the classical theory completely coincide 

with data [6, 7]. Longitudinal velocity profile of stationary 

disturbances excited by an external turbulence has a bell-

shaped type, maximum which is located inside of the 

boundary layer. For the exponential dependence of the 

maximum amplitude on Rex, umax= Rex
-n

, the maximum 

position drifts to the wall with increase of n.  

 2. The direct connection of an excitation of internal 

perturbations of the boundary layer by external waves with 

resonant theory of their interaction with the boundary layer is 

established. Obtained on its basis amplitude dependences of 

internal perturbations excited by an external vorticity, on a 

wave number and a Reynolds number are coordinated with 

direct calculations which are available in the known literature. 

3. The first time data on the eigenvalue problem of three-

dimensional stationary disturbances as for subsonic and 

supersonic boundary layers are received. In case of low 

Reynolds numbers there is no influence of a wave number β 

on the velocities perturbations distribution. With increasing of 

Reynolds number the longitudinal velocity phase shift on the 

boundary layer appears. Decrements of three-dimensional 

perturbations decrease in inverse proportion to longitudinal 

coordinate at small Reynolds numbers and in inverse 

proportion to thickness of a boundary layer at large numbers 

of Reynolds. It was established that amplitudes of excited 

disturbances in a boundary decrease with Mach number. There 

is a characteristic wavenumber β*Re, at which the amplitude 

of streamwise velocity perturbations inside the boundary layer 

attains its maximum. This result explains the experimentally 

observed emergence of laterally periodic streaky structures. 

REFERENCES 

[1] S.A.Gaponov, Resonance theory of stationary longitudinal structures in 
the boundary layer, WSEAS Transactions on Fluid Mechanics, vol. 12, 

pp. 58-64, 2017 . 

[2] P. S. Klebanoff,  K. D. Tidstrom, Evolution of amplified waves leading 
to transition in a boundary layer with zero pressure gradient, Nat. Aero. 

and  Space  Adm., Tech. Note D-195, 1959. 

[3] H. L. Dryden, Air flow in the boundary layer near a plate. NACA Tech. 
Rep. 562, 1937. 

[4] P. S. Klebanoff, Effect of free stream turbulence on a laminar boundary 

layer. Bull. Am. Phys.Soc., vol. 16, 203–216, 1971. 
[5] M. Matsubara, P. H. Alfredsson, Disturbance growth in boundary layers 

subjected to free-stream turbulence, J. Fluid Mech., vol. 430, pp. 149-

168, Mar. 2001. 
[6] P.A Libby, H. Fox, Some perturbation solutions in  laminar boundary-

layer theory. Part  1. The  momentum equation, J. Fluid Mech., vol. 17, 

no. 3, pp. 433-449, Nov. 1963. 
[7] С.E. Grosch, T.L Jackson., A.K.  Kapila, Non-separable eigenmodes the 

incompressible boundary layer, In Instability, Transition and 

Turbulence, Springer-Veriag, 1992, pp. 127-136. 
[8] P. Bradshaw The effect of wind-tunnel screens  on nominally two- 

dimensional boundary  layers, J. Fluid Mech., vol. 22, no. 4,  pp.  679-

687, Aug. 1965. 
[9]  J. M. Kendall, Boundary-layer receptivity to freestream turbulence, 

AIAA Paper 90-1504, 1990. 
[10] V. S. Kosorygin, N. F. Polyakov, T. T. Suprun, and E. Ya. Epik, 

Development of disturbances in the laminar boundary layer on a plate at 

high levels of external flow turbulence, in: Instability of Subsonic and 
Supersonic Flows, ITAM, SB USSR AS, Novosibirsk 1982, pp. 85-92 

(in Russian). 

[11] S. C. Crow, The spanwise perturbation of two-dimensional boundary 
layers, J. Fluid Mech, vol. 24, no. 1, pp. 153-104, Jan. 1966. 

[12] F.P. Bertolotti, Response of the Blasius boundary layer to free-stream 

vorticity. Physics of fluids, Vol.9, No 8, 1997, pp. 2286-2299. 
[13] A. N. Gulyaev, V. E. Kozlov, V. P. Kuznetsov, B. I. Mineev, and A. N. 

Sekundov, “Interaction of a laminar boundary layer with outer 

turbulence, Fluid Dynamics,  vol. 24, no. 5, pp. 700-710, Sep.–Oct. 
1989. 

[14] M. V. Ustinov, Receptivity of the flat-plate boundary layer to free-

stream turbulence. Fluid Dynamics, vol. 38, no. 3, pp. 397–408, Sep. 
2003. 

[15] T. A. Zaki, P. A. Durbin, Mode interaction and the bypass route to 

transition, J. Fluid Mech., vol. 531, pp. 85–111, May 2005.  
[16] P. Ricco, The pre-transitional Klebanoff modes and other boundary-

layer disturbances induced by small-wavelength free-stream vorticity, J. 

Fluid Mech., vol. 638, pp. 267–303, Nov. 2009.  
[17] M. W. Johnson, Bypass transition receptivity modes, International 

Journal of Heat and Fluid Flow, Vol. 32, no. 2,  pp. 392–401, Apr. 

2011.  
[18] M. E. Goldstein, Effect of free-stream turbulence on boundary layer 

transition, Phil. Trans. R. Soc. A, vol. 372, no. 2020, June 2014, DOI: 

10.1098/rsta.2013.0354. 
[19] S. A. Gaponov, A. V. Yudin, Interaction of hydrodynamic external 

disturbances with the boundary layer, Journal of Applied Mechanics and 

Technical Physics, vol. 43, no. 1, pp. 83–89, Jan. 2002. 

[20] S. A. Gaponov, Interaction of external vortical and thermal disturbances 

with boundary layer, International journal of mechanics, vol.1, no.1, pp. 

15-20, 2007. 
[21] J. Joo, P. A. Durbin, Continuous Mode Transition, in High-speed 

Boundary layers, Flow Turbulence Combust, vol. 88, no.3, pp. 407–430, 

Apr. 2012.  

[22] F. Qin, X. Wu, Response and receptivity of the hypersonic boundary 

layer past a wedge to free-stream acoustic, vortical and entropy 

disturbances,  J. Fluid Mech., vol. 797, pp. 874-915, June 2016.  

 
Fig. 15 Dependences of velocity perturbations amplitudes, u, 

on the Reynolds number at M=2 and different values bet. 

 

 

0 1 2 3 4 5
M

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

un



2

INTERNATIONAL JOURNAL OF MECHANICS Volume 11, 2017 

ISSN: 1998-4448 126



 

[23] X. Wu, M. Dong, Entrainment of short-wavelength free-stream vortical 

disturbances in compressible and incompressible boundary layers, J. 
Fluid Mech., vol. 797, pp 683- 728, June 2016.  

[24] S. A. Gaponov, Interaction between a supersonic boundary layer and 

acoustic disturbances, Fluid Dynamics, vol.12, no 6, pp. 858-862, Nov.–
Dec. 1977. 

[25] C. E. Grosch, H. Salwen, The  continuous  spectrum  of the  Orr-

Sommerfeld  equation, Part  1, The  spectrum and  the eigenfunctions, J. 
Fluid Mech., vol. 87, no. 1, pp.  33-54, Jul 1978. 

[26] C. E. Grosch, H. Salwen, The continuous  spectrum of the  Orr-

Sommerfeld  equation, Part 2, Eigenfunction expansions, J. Fluid Mech., 
Vol. 104, pp. 445-465, Mar. 1981. 

[27] A. E. Trefethen, S. C. Reddy, T.A. Driscoll, Hydrodynamic stability 

without eigenvalues, Science, vol. 261, no. 5121, pp. 578-584, July 
1983. 

INTERNATIONAL JOURNAL OF MECHANICS Volume 11, 2017 

ISSN: 1998-4448 127




