
 

 

  
Abstract— This paper presents dynamic modelling of a two-link 

planar manipulator with flexible links, using a high order Finite 
Element (FE) model. First, using sufficiently high number of Euler-
Bernoulli beam elements a high order model is derived for the 
multibody flexible system. The sufficiency of the number of elements 
is determined based on convergence of the FE model. The global 
vibration modes of the manipulator are derived from the global mass 
and stiffness matrices of the system. The gap between the complexity 
of high order FE models capable of predicting dynamic behavior of a 
flexible manipulator, and suitability of the FE model for controller 
design is bridged by a reduced order control scheme based on modal 
truncation/H∞ techniques.  
 

Keywords— Large scale systems, Elastic manipulators, Finite 
element modeling, Modal order reduction.  

I. INTRODUCTION 
LEXIBLE Manipulators (FMs) are known as the robotic 

arms designed with long and slender links in order to 
reduce their weight. As a more technical definition, the FM 
addresses a manipulator that its first structural natural 
frequencies are close to the operating speeds. This can happen 
due to either high acceleration motions, or low stiffness of the 
structure of the robot. Examples are the shuttle remote 
manipulator CANADARM [1], and high-speed industrial 
manipulators. The structural flexibility can happen due to 
elastic deflections of the links and/or joints. When the elastic 
deflections of the links of a manipulator are considered, the 
robot is known as “flexible link manipulator”. In the theory of 
elasticity, a flexible link is an infinite dimensional continuous 
system. For controller design and simulation, generally, a 
discrete finite dimensional model of such systems is required.  

A widely used method of discretization of the governing 
equations of the FMs is the Assumed Mode Method (AMM). 
In AMM, [2],[3], vibration of each link is assumed to be 
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similar to the first vibration mode(s) of the link as a separate 
beam under some assumed Boundary Conditions (BC). The 
problem with the AMM, in particular in the case of multi-link 
manipulators, is that the vibration modes of a beam are very 
sensitive to the changes in the BCs, and so, describing the BCs 
of a moving link by classic BCs such as clamped, free, or 
carrying a mass/inertia can be a source of error. An alternative 
method that can provide a finite dimension model of a flexible 
multibody system is the method of Finite Elements (FE). The 
FE analysis has been used for open-loop or closed-loop 
simulation of the FMs by some researchers. Linear FE 
modelling and simulation of two-link FM is presented in [4], 
and [5]. Theoretical and experimental comparison of some 
modeling methods for FMs including AMM and FE model are 
presented in [6]. The potential advantage of FE is that the 
mode presumptions of AMM can be alleviated by using FE 
method. However, for good accuracy of dynamic analysis 
problems, FE normally requires the mechanical part be 
divided into high numbers of elements. It is a well-known fact 
in the field of FE analysis that a model meshed by n elements 
(e.g. divided into n elements) cannot predict “all” the n natural 
frequencies precisely. On the other hand, the high order 
models resulted from fine FE meshes can be too big for 
controller design algorithms. Therefore the researchers who 
used FE for a model based control design have had a tendency 
to use just one or two elements to model each link, ignoring 
any analysis addressing sufficiency of the low number of 
elements for modeling the FMs. The potential of multi-
element FE models for model-based controller design has 
been shown in [7] and [8]. 

In this work, an FE model is established using the Euler-
Bernoulli beam elements and lumped mass model with 
arbitrary number of elements. The governing equations of 
motion are derived using the Lagrange’s equations. Then an 
analysis of the linearized FE model is presented to show 
incapability of the FE models having low number of elements 
in modeling the system in terms of repeatability, on one hand, 
as well as the independency of the model to the number of 
elements when the number of elements is chosen sufficiently 
high (here around 50 elements for each link). The high order 
FE model satisfying the convergence is then verified by some 
measures including the FE software “Abaqus CAE”. In order 
to prepare the model for a model based control algorithm, the 
FE model is approximated to a low order system by 
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employing modal decomposition and model reduction. In this 
manner the resultant dynamic equations preserve the precision 
of a finely meshed FE model in low frequencies of interest or 
bandwidth of the system, while the order of the system is not 
too big for control algorithms.  
  One importance of the proposed model is that it is free of the 
assumptions of Component Modes Analysis and the Floating 
Frame of References that are used in the field of Flexible 
Multibody Dynamics; and so, predicts the global vibration 
modes of the system. Another advantage is that the real power 
of FE is employed when sufficiently high numbers of elements 
are used. 

II. THE PHYSICAL MODEL ELEMENTS 
An isometric drawing of a typical two-link manipulator is 

depicted in Figure 1. The first link has a rotational degree of 
freedom (DOF) around the axis of joint “1” with respect to the 
ground and is driven by DC motor “1”. On the axis of joint 
“2”, the links are connected (hinged) to each other through the 
shaft of DC motor “2”. The manipulator is supposed to 
maneuver in a horizontal plane. Additionally, due to the thin 
rectangular cross-sections, the links have small in-plane elastic 
bending.  

 
Fig. 1  A Typical Two-Link Flexible Manipulator. 

 
Table 1 shows the system parameters used for simulation. 

The inputs of the system are the torques applied by the motors 
on the joints. The measured parameters or the outputs of the 
system are the angular position of the links described by the 
joint angles, and position of the tip or the end effector of the 
robotic arm.  

To derive the dynamic equations of the system, an FE 
discretization is used for the two-link FM. Each link is 
modeled with a finite number of Euler-Bernoulli beam 
elements, incorporating the mass of each element as two 
lumped masses at the tips of the element.  Figure 2(a) shows a 

prototype beam element of the system with two nodes A and 
B. The straight line AB shows the neutral axis of the 
undeformed element. Each node “i” has two DOF that is 
described by two independent variables ui the linear 
displacement, and iϕ the rotation of the node. The lumped 
mass assumption will result in a “diagonal” mass matrix for 
the FE model of the system; which simplifies numerical 
measurements. A meshed model under exaggerated 
deformations is shown in Figure 2(b). The unknowns of the 
dynamic equation consist of a vector of “n” independent 
coordinates including jijiu ,, ,ϕ , the linear and angular 

displacements of each node i of link j=1,2 as 
 

  == T
nqqqqq },...,,,{ 321



                 

),...,,,( 2,1,231,121,11 Nnquqquq ϕϕ ====
   

        (1)  
where N is the number of nodes used for meshing each link; 
and n=4N is the (minimum) number of generalized 
coordinates. The superscript T stands for “Transpose” in this 
paper. The partitioning line in (1) separates the nodal 
coordinates of the first and the second links. 

 
(a) 

 
(b) 

Fig.2  FE discretization: (a) a two-node Euler-Bernoulli beam 
element; (b) The meshed FE model 

III. DYNAMIC EQUATIONS 

A. Formulation of the governing equations 
For any structural system, the equations of motion can be 

obtained from the energy functions of the system. Hamilton’s 
principle that has a root in the principle of virtual 
displacements along with d’Alembert’s principle presents the 
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integral form of the governing equations of motion. For the 
holonomic n DOF discrete system, Hamilton’s principle takes 
a more convenient form known as Lagrange’s equations.  As 
the manipulator moves in a horizontal plane, the effects of 
gravity is ignored, and so, the only type of potential energy 
present here is the elastic potential energy or strain energy U. 
The Lagrangian L is derived from the overall kinetic energy T 
and the strain energy U by  

 
L=T-U                                     (2) 

  
The Lagrange’s equations represent the relation between 

k=1,2,3,…,n generalized coordinates qk and the generalized 
forces Qk. 
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  The energy dissipation function due to damping shown by 

D in (3) is ignored at this stage; but damping effects will be 
taken into account by adding a modal damping coefficient ζ  
in the modal coordinates.  The generalized forces Qk are 
related to the virtual work done by non-conservative forces 
which in turn can be related to the torques applied by the first 
and the second motors ( 21,ττ ) with the “n by 2” matrix F 
known as the input matrix given by 
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The energy of the system can be represented in a matrix 

form by defining “n by n” symmetric matrices M and K 
respectively known as the inertia and stiffness matrices as the 
following relations. 

 

qKqUqMqT TT 









2
1;

2
1

==             (5) 

   
Using these relations, the left hand side of (3) can be 

expressed as 
 

jkj
jji

ji
k

ij

ji
ji

i

kj
jkj

j

kk

qKqq
q
M

qq
q

M
qM

q
L

q
L

dt
d

∑∑∑∑ +
∂
∂

−
∂

∂
+

=
∂
∂

−







∂
∂

,, 2
1



   

 (6)    
 The terms that include jiqq   are the Coriolis and 

centripetal forces, and can be collected in a matrix C given by 
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Then substituting equations, (4), (6), and (7) into (3) results 
in  
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It is supposed that the non-linear term qqqC 





 ),(  is 

eliminated by a feed-forward input T
CC },{ 21 ττ  measured 

based on the dynamics of the equivalent rigid manipulator (see 

for example) so that qqqCF Rigid
T

CC






 ),(},{ 21 ≈ττ . Then 

using a change of 
variables TT

CC
T },{},{},{ 212121 ττττττ += , the matrix 

form of the equations of motion is given as follow 
 

TFqKqqM },{)( 21 ττ=+ 





             (8) 
 
 To determine the matrix coefficients M and K, known as 

the global mass and stiffness matrices of the system, the 
energy expressions are obtained in matrix form. The kinetic 
and potential energies of the multi-DOF system can be 
described by n=4N independent nodal displacements that is 
shown as the vector of generalized coordinates q  in (1) and 

generalized velocities q  as 

T
NNNN uuuuu

q
},,...,,,,...,,,,{ 2,2,2,12,11,1,1,21,21,11,1 ϕϕϕϕϕ 



 =
  

       (9) 
 The overall energy expressions are measured by a 

superposition of the energies stored in the elements. The 
kinetic and potential energies of elements are measured for 
each of the links to find the global mass and stiffness matrices, 
in the next sections. For an arbitrary node “j” located on the 
first link (Figure 2(b)), kinematic relations of the velocity 
vector states that, under small elastic deflections uj,1, the 
absolute value of velocity jv  is given as 

 
)( 1,1,1 jjj uxv 



+= ϕ
                            (10) 

 
where 1,1ϕ is the angular velocity of the first motor, and xj is 

the distance of point “j” from axis of joint “1”. The kinetic 
energy carried by a concentrated mass mj attached to point “j” 
then, can be given by 
 

2

2
1.

2
1
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==
                        (11) 

 
Thus the kinetic energy of the first link is achieved by a 

summation of the kinetic energies of all of the N nodes as 
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     (12)   
 
The kinetic energy of the second link is also measured by 

the summation of the kinetic energy of its lumped masses. For 
an arbitrary node “i” on the link 2, that is noted by point “A” 
on Figure 2(b), the velocity vector Av  can be represented by a 

vector summation of Bv  the velocity of point B (axis of joint 

2), and BAv /


 the relative velocity of point A with respect to B. 
The kinematic relativity rule is  

 
,/ BABA vvv 

+=                                  (13) 
 

Bv  and BAv /
  are respectively perpendicular to the first and 

the second link. The velocity vector of point B can be written 
as 
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                  (14) 
 
where 1,Nu represents the time derivative of the deflection 

of point B (the tip of the first link), and l is the distance of B 
from O (the axis of joint “1”). The relative velocity of A is 
given by 
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             (15) 
where 2,1ϕ is the angular velocity of the second link, xi is the 

distance of A from B, and 2,iu represents the time derivative 

of the deflection of point A. Then the global velocity of the 
arbitrary point A can be obtained as 
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The kinetic energy stored in a lumped mass on point A can 

be obtained then by 
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That can be expanded to 
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            (18) 
The summation of the kinetic energies of all the elements 

yields the total kinetic energy of the second link as 
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  The overall kinetic energy of the linkage now can be 

arranged and rewritten as 
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               (20) 
 
That is a general way of describing the kinetic energy in a 

matrix form. The matrix M known as the global mass matrix 
of the system can be obtained by using equations, (12), (19), 
and (20). 

The overall potential energy of the system does not depend 
on the velocity components and can be achieved by the 
summation of the strain energy of all elements under a 
deflection described by q  vector. The strain energy Ue stored 
in an Euler-Bernoulli beam element under small deflection 
u=u(x), -L/2<x<L/2 (Figure 2(a)) is given by the integral of 
the product of axial stress xσ  and strain xε  over the volume 
of the element 
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where I is the second moment of area of the cross-section; E 

is the elasticity modulus, and L is the length of the element. 
An approximate method to measure this integral is achieved 
using interpolation of the transverse displacement function u 
with Hermite shape functions. Defining the elemental 
coordinates vector T

iiii
T
i uu },,,{ 11 ++=Χ ϕϕ


, the 
potential energy of element “i’’, can be described in the 
following form 
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where the elemental stiffness matrix Ke is given by   
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  Through a proper transformation matrix Γ  , the element 

coordinates vector Χ


 can be related to the system coordinate 
vector q  , by 

 
q



Γ=Χ                     (24) 
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Using (22) and (24) the overall potential energy can be 

obtained by a summation of the strain energies of all elements.  
 

qKqqKq

KUU

T
e

TT

ie
T
i

e
i





2
1)(

2
1

2
1

≡ΓΓ=

ΧΧ==

∑

∑∑

              (25) 
 
The global stiffness matrix K is given by an assemblage 

algorithm provided by combining (23) and (25).  

B. Model Validation 
The linearized form of the governing equation of motion 

represented in (8) is given by 
 

TFqKqM },{ 21 ττ=+ 





                      (26) 
 
Before applying the actual BCs, four measures were 

examined for checking the model; two numerical calculations, 
and two comparisons with commercial FE software Abaqus 
CAE. In the first two tests, the arm was supposed to be open 
(the links being in one line) and the generalized velocities 
were represented by imaginary vector fields so that a pure 
translational motion and a pure rotation are achieved. The 
conditions are shown in Figure 3. 

 
Fig.3 The assumptions for numerical tests: (a) velocity field for 

pure translation; (b) velocity field for rotation; (c) the open linkage. 
  
In the first case, shown by Figure 3 (a), 

1,...,1,1 1
1,1,21,1 === Nuuu  and other velocity 

components are zero. Under such condition, all nodes would 
move by a velocity of 1m/s in the same direction, and 
therefore, the total kinetic energy of the system should be 
equal to the kinetic energy of a particle having a mass equal to 
the overall mass of the system, and moving with velocity 1 
m/s. That was correct when numerically checked as follow 

  

(0.09450).
2
11*)(

2
1))(.(),(

2
1
2
1

2212
1

=+≡

=

∑ =
LinkLinkN

i

T

mmiviiM

qMq 







      

  
Note that this test cannot validate “all” the entries of M 

because rotational velocities are zero, and therefore the 
relevant components of M that are multiplied by the zero 
velocities will be vanished.  For this reason in the second case 
shown by Figure 3 (b), a field of velocity was supposed so that 
the links rotate around the first joint by a constant unit angular 
velocity. This is achieved by putting 
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In this case, the kinetic energy must be equal to a rotating 

object having the total inertia of the kinks respect to joint “1” 
that is shown by (Ilink1/j1+Ilink2/j1), rotating with unit angular 
velocity. This condition was also satisfied according to the 
following relation  
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Additionally, the elastic deflections under such rigid body 

motions described by the two above mentioned cases will be 
zero and so it is expected that the overall potential energy be 
zero. For both of the motions the following test also was 
passed. 
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In the next two tests, the system is supposed to be supported 

to the ground so that the arm has not any rigid body motion. 
This is done by applying supporting BCs to (26). Two BCs, 
clamped-clamped-clamped (CCC) and clamped-clamped-free 
(CCF) were examined. In CCC, both joints as well as the tip 
of the arm are supposed to be clamped or welded to the 
ground, while in CCF the tip is free. The natural frequencies 
of the system given by the generalized eigenvalue problem is 
measured with “MATLAB”, and is compared to results of 
frequency analysis of the system using the Subspace 
Eigensolver of  “Abaqus CAE”. The agreement between the 
results is shown in Table 2. 

C. The Transfer Matrix 
The next stage to complete the FE modeling procedure is 

exerting the BCs at the joints of the manipulator where the 
links are hinged to the ground and to each other. Applying the 
hinged BC means that for the first node of each link just 
rotational DOF are possible; that is  
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Applying (27) on (26) eliminates the 1st  and (2N+1)st rows 

and columns from M, K, and F to give the linearized equation 
of motion of the system as 
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Then, a displacement/velocity state space representation of 

the linearized system can be represented as  
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where O and I represent zero and identity matrices 

respectively. A Transfer Matrix (TM) of the system is 
achieved by selecting the proper output vector that includes 
the joint angles and displacement of the tip. The TM is 
represented by G as 
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The dashed line in (30) partitions G into six SISO systems 

Gij representing the transfer function (TF) from input j to 
output i. The SISO system G31 (the TF from the first Input 

torque 1τ  to the third output 2,Nu  that is the displacement of 

the node at the tip of the manipulator) is expected to include 
all natural frequencies of the system. This is because when a 
force is applied at one physical end of a mechanical structure 
and measurement is performed at the other end, there would 
be no part outside these two ends that could cause hidden 
modes.  

D. Convergence Analysis  
The order of the system, which is determined by the size of 

the matrices in (28), depends on the number of elements that 
are used to discretize the links. By increasing the number of 
elements used in modeling a mechanical part, one may expect 
a more accurate model. However control engineers are more 
interested in low order systems, and so, have a tendency to 
discretize each link with low number of elements. For a high 
order system, not only designing a controller is difficult, but 
also numerical measurements for modeling and simulation 
such as matrix inversion and eigenvalue measurement tend to 
give more errors. On the other hand it is known that too low 
number of elements often cause loss of accuracy in FE 
Analysis.  In the previous literature there is no analysis on 
choosing the necessary number of elements. In this study, the 

number of elements is evaluated based on convergence of the 
time and frequency response of the FE model. The input 
output relation of the final FE model is required to be almost 
independent of the number of elements. In the following, it is 
shown that an FE model with low number of elements may not 
model dynamic behavior of a two-link FM precisely. 
Simulation of (28) can be performed using the Newmark 
integration method. A time simulation of the system with 
different number of elements is shown in Figure 4.  
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Fig.4  Time domain simulation of the FE model with 4,6,10,40,50, 

and 100 elements 
 
A uniform pulse of magnitude 0.01 Nm and duration of 0.1 

sec was applied on the G31 derived from the FE model in 
which each link is discretized to 4, 6, 10, 40, 50, and 100 
elements. It can be seen that the output (the displacement of 
the tip) follows different trajectories depending on the number 
of elements. This dependence is more severe for lower number 
of elements. Figure 4 suggests that although both the gross 
motion and vibration behavior predicted by the FE model 
depends on the meshing resolution, but a convergence of the 
response is achieved with fine meshes. To investigate this fact, 
a frequency domain analysis is presented. The Frequency 
Response Function (FRF) of the FE model can be shown by 
Bode plots. Note that all of the FRF graphs in this paper show 
the “Receptance” that is the TF from force to displacement. 
Figure 5 shows the Bode magnitude plot of the G31 system 
with increasing the element number in a range between 2 to 10 
elements for each link. It is observed in the graph that in this 
range the TF depends on the number of elements used for 
meshing the links. The predicted resonant frequencies of the 
system, that are represented by the frequencies of the peaks of 
the graph varies by increasing the elements. Even there is 
contradiction in prediction of the first natural frequencies that 
are crucial for controller design. A solution to resolve this 
problem can be given by using a finer mesh. The Bode plot of 
the models meshed with 20 to 70 elements is shown in Figure 
6. The convergence of the curves implies that with a sufficient 
number of elements (around 50 elements), the FE model will 
not change severely with the number of elements. In other 
words, accurate input output characteristics of the system can 
be obtained by a FE model having any numbers of elements in 
the approximate range of 40 to 70. A finer mesh (more than 50 
elements) does not influence the TF noticeably, but just 
increases the complexity of the system. 
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Fig.5  Inconsistency of the Bode plot of the FE model made up of 

low number of beam elements 
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Fig.6  Convergence of the Bode plot of the FE model made up of 

20 to 70 beam elements 
 
On the other hand, by N-1 elements (N nodes on each link), 

the mass and stiffness matrices M and K will be of order 4N-2; 
and so, increasing the elements may result in bigger errors in 
numerical calculations such as matrix inversion and 
eigenvalue measurement. Therefore it is decided that 50 
elements are sufficient to model each link. 

IV. THE MODAL MODEL OF THE SYSTEM 
The state space model of the system with totally 100 

elements has 202 states. However, generally, controller design 
algorithms have been developed for small to moderate size 
systems. Additionally, the high frequency vibrations that the 
high order FE model predicts, are not so important in practice, 
and are damped by the environment. To handle this problem, a 
model order reduction procedure is used to approximate the 
system to a lower order system, preserving low frequency 
characteristics of the system. For this reason, the system is 
broken into a set of second order systems using the modal 
decomposition technique. Then the reduced order model is 
recomposed of the most important components which in this 
work are considered to be the four-first vibration modes 
(modes within the bandwidth of 50 Hz) as well as two rigid 
body modes. The generalized eigenvalue problem is given by 

 

 , n=1,2,3,…,4N-2                  
 

(31) 

Solving (31) yields n eigenvalues 2
nω , and n eigenvectors 

Zn. Numerical measurements using MATLAB/LAPACK 
reveals n real natural frequencies shown here as 

24321 ... −≤≤≤≤ Nωωωω . The first natural frequencies of 
the system are given in Table 3.  The system has two zero 
natural frequencies 021 == ωω  that represent the rigid body 
motion of the two-link manipulator. The matrix of 
eigenvectors is defined as the matrix containing the 
eigenvectors as its columns. For Modal Decomposition, a 
proper multiplication of the eigenvectors in (28) yields,  

 
                      

(32) 
 
With a transformation represented by the eigenvector 

matrix, the mass and stiffness matrices are similar to block-
diagonal matrices shown by KM



, As  
 

ΛΛ= MM T ~

ΛΛ= KK T ~

 
 
The parameters mp and kp do not have, necessarily, a 

physical meaning, and just show nonzero elements of the 
modal mass and stiffness matrices. With a change of variables, 
by defining modal coordinates, and modal input 
matrix ][~

, ji
T fFf =Λ=



 , (32) can be rewritten as 
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The first-two rows of (33) represent the “rigid body modes” 

of the system by 
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                            (34a) 
 
For p=3,4,…,4N-2 , each row p of (33) is a decoupled 

equation representing one “vibration mode” of the system by  
 

,22,11, ττ pppppp ffzkzm +=+                   (34b) 
 
Each vibration mode number “p” has a resonant 

frequency ppp mk /=ω that is identical to one of the 

natural frequencies of the original FE model. Beside showing 
the advantage of FE (over AMM which presumes the mode 
shapes), measuring the mode shapes helps to get better insight 
into the behavior of the system. Recalling qz  1−Λ= , the 
generalized coordinates are related to the modal coordinates 
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Where the portion of rigid body modes given in (34a) is 

shown by Gi,j
Rigid . The FRF of G31 and the first modes of the 

FE model are shown in Figure 7.  Near each natural frequency 
the system can be approximated by a single mode, while 
below the first natural frequency the system obeys a rigid 
body motion. This fact suggests that in replace for “all” the n 
modes in (35), the TF may be approximated by summation of 
“some” of the modes that have more important influence on 
the system (the modes that are within the bandwidth of interest 
are considered to be important). The solitary modes shown in 
Figure 8(a) are recomposed to form a reduced order system 
Gi,j

Reduced  as 
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,

 
At this stage, to take into account the energy dissipation 

effects, a modal damping term skm ppζ2  is added to the 

vibration modes to achieve 
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                          (36) 

High frequencies (here higher than 50 Hz) are not of 
interest, and so the fifth and higher vibration modes can be 
truncated from (36). By choosing NumMod=6 the 
superposition is done up to 6 modes including the two rigid 
body modes as well as the four vibration modes in the 
bandwidth. Figure 8 shows the FRF plots of the original FE 
model and the reduced order system.  
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Fig.7 The FE model and the first modes. 
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Fig.8 The FE model and the reduced system. 
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Fig.9  Comparison of the high order system (HighOrdSys) with the reduced order models (LowOrdSys) having: (a) one, (b) two, (c) three, 

and (d) four vibration modes 
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Fig.10  Displacement of the tip of the manipulator measured with the FE model and the Reduced Systems 

 
 

   At low frequencies the plots agree perfectly. At resonances 
the amplitudes of the FE model becomes theoretically very 
high, but it cannot be realistic because even when all viscous 
effects are zero, the material of the links has a structural 
damping that can be modeled by a smallζ , that here is 
supposed to be 002.0=ζ   

The procedure to select the required order of reduction is 

shown in Figure 9 in which the Bode plot of the high order 
system is compared with the reduced systems having one 
(Figure 9 (a)), two (Figure 9 (b)), three (Figure 9 (c)), and four 
vibration modes (Figure 9 (d)). As more vibration modes are 
included, the model becomes more precise and predicts more 
resonances. It is inferred that considering four vibration modes 
is necessary and sufficient to include four resonant frequencies 
and approximate the model in the control bandwidth. However 
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Figure 9 (b) suggests that the model with two vibration modes 
may be sufficient to model the dynamics of the system for 
controller design, though it cannot predict two higher 
resonances that are yet in the bandwidth of interest.  In fact the 
amplitude or the H∞ norm of the third and the fourth vibration 
modes are very small compared with the first and the second 
modes, and according to H∞ model reduction technique, can 
be eliminated from the model. 

In order to observe the ability of the reduced models in 
modeling the behavior of the FE model in time domain, an 
input torque of amplitude 0.01 Nm and duration of 0.1 sec was 
applied on the FE model and the reduced systems. The result 
of the simulation is shown in Figure 10 which shows the 
response of the FE model and the reduced systems having two 
and four vibration modes. It can be seen that the output of the 
reduced models matches with that of the original FE model. 
Recalling that the reduced system includes modal damping, 
the decay in the amplitude as proceed in time is expectable. 
The straight line in Figure 10 shows the rigid body motion of 
the tip. The presented comparisons, in time and frequency 
domains, show that the reduced order systems are able to 
model the input-output behavior of the FE model. 

V. CONCLUSION 
A high resolution FE model was developed for modeling a 

two-link flexible manipulator that can reveal the global 
vibration modes of the system. It was shown that modeling the 
system with low number of elements may not satisfy 
convergence conditions of the dynamic problem. In order to 
use the model in controller design algorithms, in contrast with 
the previous custom in literature that is constructing the FE 
model with low number of elements, the high order model was 
approximated to a low order system using modal 
truncation/H∞ technique.  
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