
 

 

  
Abstract—The paper presents buckling and free vibration 

analysis of sandwich plate with laminate facings. The sandwich plate 
is subjected to the Tsai-Wu criterion. Then buckling analysis of the 
sandwich plate is performed in two steps. First, a finite element 
method is used to determine the overall buckling load of the 
sandwich plate. The second part of the analysis is free vibration 
analysis. The investigated sandwich plate is simply supported at all 
boundaries and loaded by an uniaxial uniform load. 
 

Keywords—Buckling Analysis, Free Vibration Analysis, 
Sandwich Plate, Tsai-Wu Criterion.  

I. INTRODUCTION 
HE typical sandwich structure consists of three layers.  
The outer layers are made of high strength material such 

as steel, fibre reinforced laminates etc., which can transfer 
axial forces and bending moments, while the core is made of 
lightweight materials such as foam, alder wood etc. The 
material used in sandwich core must be resistant to 
compression and capable of transmitting shear [1, 2].   

A fibre reinforced laminates consist of stack of composite 
layers. A composite material of laminate layer can be defined 
as a heterogeneous mixture of two or more homogeneous 
phases, with their different physical properties, which have 
been bonded together. Properties of composite material are 
clearly distinct from the properties of its components [3]. The 
most important aspect of composite materials, in which the 
reinforcement are fibres, is the anisotropy caused by the fibre 
orientation. It is necessary to give special attention to this 
fundamental characteristic of fibre reinforced composites and 
the possibility to influence the anisotropy by material design 
for a desired quality [4]. The sandwich panels are one of the 
types of composite materials that are used in civil structures. 

The finite element method (FEM) is the effective method for 
the numerical solution of problem formulated in partial 
differential equations [5-8]. Using FEM formulation, buckling 
and free vibration analysis can be solved numerically [9-11].  
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A sensitivity of a composite plate is important analysis for 
design of structures. In the sensitivity analysis the design 
variables are changes between their lower and upper bounds in 
a specified number of steps [12-16].  

II. STATIC ANALYSIS OF SANDWICH PLATES 
A sandwich can be defined as a special laminate with three 

layers. The thin cover sheets, i.e. the layers 1 and 3, have the  
thicknesses h1 for the lower skin and h3 for the upper skin (Fig. 
1). The thickness of the core is h2. In a general case h1 does 
not have to be equal to h3, but in the most important practical 
case of symmetric sandwiches h1 = h3. 

To formulate the governing differential equations for 
sandwich plates we draw the conclusion from the similarity of 
the elastic behaviour between laminates and sandwiches in the 
first order shear deformation theory and all results derived for 
laminates can be applied to sandwich plates. We restrict our 
considerations to symmetric sandwich plates with thin cover 
sheets. There are differences in the expressions for the flexural 
stiffness, coupling stiffness and the transverse shear stiffness 
of laminates and sandwiches. Furthermore there are essential 
differences in the stress distributions.  
The assumptions about deformation are: 
a) For the sandwich thin cover sheets gilt Kirchhoff´s 
assumptions about deformation. In-plane stress-strain state is 
accrued in the sandwich thin cover sheets.  
b) The sandwich core with the thickness h2 transfers only shear 
stresses perpendicular to the mid-plane of the cover sheets. 
The material characteristics is the shear modulus G2. 
c) All points in the normal line have the equal deflections 
w1 = w2 = w3 = w. 
d) All layers are perfectly bonded. 

We can write the shear deformations  









∂
∂

+
−

=







∂
∂

+
−

=
x
w

h
d

h
uu

x
w

h
uu

xz
22

31

2

3212
2γ                    (1)   









∂
∂

+
−

=







∂
∂

+
−

=
y
w

h
d

h
vv

y
w

h
vv

yz
22

31

2

3212
2γ                            (2) 

where d is the distance of sheets mid-planes.  

2
31

2
hhhd +

+= .                                                              (3) 

Most sandwich structures can be modelled and analyzed 
using the shear deformation theory for laminate plates. The 
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components of vector of internal forces N, M, V  at the 
sandwich element in the (x, z) plane are shown in the Figure 2.  
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Fig. 1 geometry of deformation 
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Fig. 2 internal forces at the sandwich element in the (x, z) plane 

 
There are the normal forces in cover sheets i = 1, 3  
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where                                                  

)1/( 2
iiiNi hED ν−= .                                                              (5) 

The bending moments and the shear forces in cover sheets we 
can write as 
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where 

)1(12/ 23
iiiMi hED ν−= .                                                        (8) 

The shear stresses in the core are written 
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The equilibrium equations for internal forces are following  
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The solving of unknown functions u1(x,y), u3(x,y), v1(x,y), 
v3(x,y), w(x,y) have to perform the boundary conditions for 
each boundary.  

III. FREE VIBRATION AND BUCKLING ANALYSIS OF SANDWICH 
PLATE 

The equations to determine the natural frequencies of 
symmetric sandwich panel are following 
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where 
ks is the transverse shear deformation factor given by value 
5/6,  
ρk is the mass density of the kth layer. 
For the simply supported plate let 
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where 
m, n – are integers only, 
a, b – are the panel dimensions in x, y  axis direction 
respectively, 
ωmn– is natural angular velocity. 
A set of homogeneous equations is used to solve the natural 
frequencies of vibration 
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Matrix elements are given by the formulas 
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If the rotatory inertia terms are neglected 
then ´ ´
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In a similar way the governing equations for buckling 
problems can be derived. In the matrix equations (20) only the 
differential operator 33L′  is substituted by  
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IV. TSAI-WU CRITERION 
We can distinguish the failure between fiber failure (FF) 

and inter fiber failure (IFF). In the case of plane stress, the IFF 
criteria discriminates three different modes. The IFF mode A 
is when perpendicular transversal cracks appear in the lamina 
under transverse tensile stress with or without in-plane shear 
stress. The IFF mode B denotes perpendicular transversal 

cracks, but in this case they appear under in-plane shear stress 
with small transverse compression stress. The IFF mode C 
indicates the onset of oblique cracks when the material is 
under significant transversal compression. 
Strength of a composite layer in any other direction is 
evaluated based on various failure criteria. The basic premise 
in predicting the failure of fibre-reinforced layers using 
maximum stress and maximum strain criteria is the same as for 
isotropic material. Failure is predicted when the maximum 
stress along the fibre or transverse to the fibre directions 
exceed the strength of the tension or compression. 
Tsai-Wu criterion is the general form of the failure criterion 
for orthotropic materials under plane stress. The assumption is 
expressed as 
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The failure criterion for orthotropic material under strain 
assumption is expressed as                            
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When 
212 2
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= , the Tsai-Wu criterion is reduced to Tsai-

Hill criterion, and when 
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F
2
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is reduced to Hoffman criterion [3]. 
These failure criteria are used to calculate a failure index 

(F.I.) from the computed stresses and user-supplied material 
strengths. A failure index denotes the onset of failure, and a 
value less than 1 denotes no failure. The failure index 
according to this theory is computed using the following 
equation  

2
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Failure load factor is inverse value to the failure index.  

V. SOLUTION AND RESULTS 
The sandwich plate (Fig. 3) is made of a 6-layer Boron-

Epoxy laminate facings [ 60/60/ +− θθθ ]s and polystyrene 
core. The thickness h of the laminate is 0.001m. The material 
properties for laminate layers are given as: 
E1 = 194GPa,   E2 = 8.7GPa,   G12 = 3.2GPa,   ν12 = 0.33, 

2100=ρ kg/m3   
Xt = 1300MPa,   Xc = 2000MPa,   Yt = 140MPa,   Yc = 300MPa,   
S = 90MPa.  
The material properties for sandwich core are given as: 
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E = 42MPa, ν = 0.3, 1=uσ MPa, 150=ρ kg/m3. 
The plate is simply supported at all boundaries and loaded by 
an uniaxial uniform load (Fig. 3). Thickness h is for the 
facings and 8*h is for the core (Fig. 4). 
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Fig. 3. geometry of the sandwich plate 
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Fig. 4. cross-section of sandwich plate 
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Fig. 6. first natural mode shape in buckling analysis  

 
Fig. 7.  second natural mode shape in buckling analysis  

TABLE I 
FIRST 10 BUCKLING LOAD FACTORS 

Eigen 
Value Buckling Load Factor  

1 12.79965  
2 15.44049  

3 19.73424  
4 21.25276  
5 29.79095  
6 41.38276  
7 54.31924  
8 56.70496  
9 57.96148  

10 61.83806  
 

TABLE III 
FIRST 10 NATURAL FREQUENCIES 

IN FREE VIBRATION  ANALYSIS 

Frequency Frequency  
[Hz]  

1 47.9450  

2 77.1406  

3 126.157  
4 163.474  
5 176.255  
6 194.218  
7 195.647  
8 245.632  
9 286.601  
10 318.363  
   

 

TABLE II 
FIRST 10 FREQUENCIES  
IN BUCKLING ANALYSIS 

Frequency Frequency [Hz]  

1 60.1931  

2 72.1556   

3 93.6620  
4 98.7033  
5 137.297  
6 166.673  
7 245.163  
8 255.635   
9 163.688  
10 274.553  
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Fig. 8. third natural mode shape in buckling analysis  

 

 

 

Fig. 9. fourth natural mode shape in buckling analysis  

 

 
Fig. 10. first natural mode shape in free vibration analysis  

 

 
Fig. 11. second natural mode shape in free vibration analysis  

 
Fig. 12. third natural mode shape in free vibration analysis  

 

 
 

Fig. 13. fourth natural mode shape in free vibration analysis  

VI. DISCUSSION AND CONCLUSION 
The paper deals with a modeling of buckling and free 

vibration analysis of sandwich plates. To predict the inception 
of buckling, in-plane resultant forces must be included.  

From sensitivity analysis (Fig. 5) one can see, that angle 
orientation has minor influence on the maximum failure index. 
The reason is the quasi-isotropic character of the laminate 
facings. Tsai-Wu criterion is violated, than failure load factor 
is 289. The results for the buckling factors are shown in Table 
1. The first buckling load factor is 22.5 times less than 
maximum failure load factor.  

For the fibre angle 45=θ , the buckling and free vibration 
analysis was done. The first 10 frequencies in buckling and 
frequency optimization analysis can be seen in Table 2 and 3, 
respectively. The first ten frequencies in buckling analysis are 
higher than in free vibration analysis.  

For symmetric laminates the buckling modes for  θ  = 0o - 
30 o are nearly the same. For fibre angles θ  = 30 o, 45 o, 60 o, 
90 o the buckling modes have different shapes. The buckling 
mode shapes are symmetric to the symmetric axis in loading 
direction (Figs. 6-9). Natural mode shapes in buckling analysis 
are different than in free vibration analysis (Figs. 10-13).  

Buckling and free vibration analyses play very important 
role in the investigation of sandwich plates. Natural mode 
shapes in buckling analysis depend on fibre angle orientation 
and have different shapes then for isotropic homogeneous 
plates.  There are significant differences between behaviour of 
homogeneous and heterogeneous materials. 
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