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Buckling and free vibration analysis of
sandwich plate

E. Kormanikova and K. Kotrasova

Abstract—The paper presents buckling and free vibration
analysis of sandwich plate with laminate facings. The sandwich plate
is subjected to the Tsai-Wu criterion. Then buckling analysis of the
sandwich plate is performed in two steps. First, a finite element
method is used to determine the overall buckling load of the
sandwich plate. The second part of the analysis is free vibration
analysis. The investigated sandwich plate is simply supported at all
boundaries and loaded by an uniaxial uniform load.
Vibration
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Analysis,

HE typical sandwich structure consists of three layers.

The outer layers are made of high strength material such
as steel, fibre reinforced laminates etc., which can transfer
axial forces and bending moments, while the core is made of
lightweight materials such as foam, alder wood etc. The
material used in sandwich core must be resistant to
compression and capable of transmitting shear [1, 2].

A fibre reinforced laminates consist of stack of composite
layers. A composite material of laminate layer can be defined
as a heterogeneous mixture of two or more homogeneous
phases, with their different physical properties, which have
been bonded together. Properties of composite material are
clearly distinct from the properties of its components [3]. The
most important aspect of composite materials, in which the
reinforcement are fibres, is the anisotropy caused by the fibre
orientation. It is necessary to give special attention to this
fundamental characteristic of fibre reinforced composites and
the possibility to influence the anisotropy by material design
for a desired quality [4]. The sandwich panels are one of the
types of composite materials that are used in civil structures.

The finite element method (FEM) is the effective method for
the numerical solution of problem formulated in partial
differential equations [5-8]. Using FEM formulation, buckling
and free vibration analysis can be solved numerically [9-11].
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A sensitivity of a composite plate is important analysis for
design of structures. In the sensitivity analysis the design
variables are changes between their lower and upper bounds in
a specified number of steps [12-16].

A sandwich can be defined as a special laminate with three
layers. The thin cover sheets, i.e. the layers 1 and 3, have the
thicknesses h; for the lower skin and h; for the upper skin (Fig.
1). The thickness of the core is h,. In a general case h; does
not have to be equal to hs, but in the most important practical
case of symmetric sandwiches h; = h;.

To formulate the governing differential equations for
sandwich plates we draw the conclusion from the similarity of
the elastic behaviour between laminates and sandwiches in the
first order shear deformation theory and all results derived for
laminates can be applied to sandwich plates. We restrict our
considerations to symmetric sandwich plates with thin cover
sheets. There are differences in the expressions for the flexural
stiffness, coupling stiffness and the transverse shear stiffness
of laminates and sandwiches. Furthermore there are essential
differences in the stress distributions.
The assumptions about deformation are:
a) For the sandwich thin cover sheets gilt Kirchhoff's
assumptions about deformation. In-plane stress-strain state is
accrued in the sandwich thin cover sheets.
b) The sandwich core with the thickness h, transfers only shear
stresses perpendicular to the mid-plane of the cover sheets.
The material characteristics is the shear modulus G,.
c) All points in the normal line have the equal deflections
W1 =Wy =W3=W.
d) All layers are perfectly bonded.

We can write the shear deformations
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Most sandwich structures can be modelled and analyzed
using the shear deformation theory for laminate plates. The



INTERNATIONAL JOURNAL OF MECHANICS

components of vector of internal forces N, M, V at the
sandwich element in the (x, z) plane are shown in the Figure 2.
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Fig. 2 internal forces at the sandwich element in the (x, z) plane

There are the normal forces in cover sheetsi=1, 3
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where

Dy = EfIA-v?)- ®)

The bending moments and the shear forces in cover sheets we
can write as
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where
D,, = Ef; 112(1-v7). (8)

The shear stresses in the core are written
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The equilibrium equations for internal forces are following
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The solving of unknown functions ui(x,y), us(X,y), vi(X,y),
va(X,y), w(x,y) have to perform the boundary conditions for
each boundary.

I1l. FREE VIBRATION AND BUCKLING ANALYSIS OF SANDWICH
PLATE

The equations to determine the natural frequencies of
symmetric sandwich panel are following
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where

k* is the transverse shear deformation factor given by value
5/6,

pr is the mass density of the k™ layer.

For the simply supported plate let
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@y =33 A cof T jsm( gy) (18)
B y.t)= iiansm( jcos( b”yje“”m"‘, (19)

where

m, n — are integers only,

a, b — are the panel dimensions in x, y
respectively,

wmn— IS Natural angular velocity.

A set of homogeneous equations is used to solve the natural
frequencies of vibration

axis direction
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Matrix elements are given by the formulas
mh3 ; mh3
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If the rotatory inertia  terms  are  neglected
then L11 L,, L, =L, and we get
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In a similar way the governing equations for buckling
problems can be derived. In the matrix equations (20) only the

differential operator L., is substituted by
0? 0?

L3’3 =Ly _(Nl g @ (26)
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IV. TsAI-WuU CRITERION

We can distinguish the failure between fiber failure (FF)
and inter fiber failure (IFF). In the case of plane stress, the IFF
criteria discriminates three different modes. The IFF mode A
is when perpendicular transversal cracks appear in the lamina
under transverse tensile stress with or without in-plane shear
stress. The IFF mode B denotes perpendicular transversal
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cracks, but in this case they appear under in-plane shear stress
with small transverse compression stress. The IFF mode C
indicates the onset of oblique cracks when the material is
under significant transversal compression.

Strength of a composite layer in any other direction is
evaluated based on various failure criteria. The basic premise
in predicting the failure of fibre-reinforced layers using
maximum stress and maximum strain criteria is the same as for
isotropic material. Failure is predicted when the maximum
stress along the fibre or transverse to the fibre directions
exceed the strength of the tension or compression.

Tsai-Wu criterion is the general form of the failure criterion
for orthotropic materials under plane stress. The assumption is
expressed as

F.o,+F,0°+2F,0,0,+F,0,+F,0; +F,r, <1, (27)
where
1 1 1 1 1
F = —— y F = y e |
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YY, 2 /X XchYc S
The failure criterion for orthotropic material under strain
assumption is expressed as
G01‘91 + Gllglz + G128182 + GOZgZ + (';22822 + G447J.22 < 1’ (29)
where
Go1=FnE11t+ FooE12, Goo=F2E2t FoiE12,
G = Fn E121 + Fzz Elzz + F12 E11 E12’
GZZ—FZZE2 +F,E’+F,ELE,
G,=2E,(F,E,+F,E,)+ 2F - (EL+ELE,,).
G44 = F44 E424 : (30)
When F, :2__12, the Tsai-Wu criterion is reduced to Tsai-
Xt
Hill criterion, and when g — ~1  the Tsai-Wu criterion
22X X,

is reduced to Hoffman criterion [3].

These failure criteria are used to calculate a failure index
(F.1.) from the computed stresses and user-supplied material
strengths. A failure index denotes the onset of failure, and a
value less than 1 denotes no failure. The failure index
according to this theory is computed using the following
equation
Il =F,0 + FllO'l2 +2F,0,0, + F,0, + F22°'22 + F447122 .(31)
Failure load factor is inverse value to the failure index.

V. SOLUTION AND RESULTS

The sandwich plate (Fig. 3) is made of a 6-layer Boron-
Epoxy laminate facings [9/0-60/0+60]s and polystyrene
core. The thickness h of the laminate is 0.001m. The material
properties for laminate layers are given as:
E;=194GPa, E,=8.7GPa, Gi,=3.2GPa,
p = 2100kg/m’

X¢=1300MPa, X.=2000MPa, Y,=
S = 90MPa.
The material properties for sandwich core are given as:

Vip = 033,

140MPa, Y.=300MPa,
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E=42MPa, v=0.3, g, =1MPa, p =150kg/m">.

The plate is simply supported at all boundaries and loaded by
an uniaxial uniform load (Fig. 3). Thickness h is for the
facings and 8*h is for the core (Fig. 4).
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Fig. 3. geometry of the sandwich plate
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Fig. 4. cross-section of sandwich plate

-0.00337 -

-0.00338
-0.00339
-0.0034

-0.00341
-0.00342
-0.00344

-0.00345 -

-0.00346 -

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Fig. 5. maximum F.1 for changed angle orientation ¢ _g¢°

TABLE |
FIRST 10 BUCKLING LOAD FACTORS
5'{332 Buckling Load Factor
1 12.79965
2 15.44049
3 19.73424
4 21.25276
5 29.79095
6 41.38276
7 54.31924
8 56.70496
9 57.96148
10 61.83806
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TABLE Il
FIRST 10 FREQUENCIES
IN BUCKLING ANALYSIS

Frequency Frequency [Hz]

60.1931
72.1556
93.6620
98.7033
137.297
166.673
245.163
255.635
163.688
0 274.553

P O0O~NOO O WNE

TABLE I
FIRST 10 NATURAL FREQUENCIES
IN FREE VIBRATION ANALYSIS

Frequency
[Hz]
47.9450
77.1406
126.157
163.474
176.255
194.218
195.647
245.632
286.601
318.363

Frequency

P OoOo~NO O WNPR

o

Fig. 6. first natural mode shape in buckling analysis

Fig. 7. second natural mode shape in buckling analysis
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Fig. 8. third natural mode shape in buckling analysis

Fig. 9. fourth natural mode shape in buckling analysis

Fig. 10. first natural mode shape in free vibration analysis

Fig. 11. second natural mode shape in free vibration analysis
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Fig. 12. third natural mode shape in free vibration analysis

Fig. 13. fourth natural mode shape in free vibration analysis

V1. DISCUSSION AND CONCLUSION

The paper deals with a modeling of buckling and free
vibration analysis of sandwich plates. To predict the inception
of buckling, in-plane resultant forces must be included.

From sensitivity analysis (Fig. 5) one can see, that angle
orientation has minor influence on the maximum failure index.
The reason is the quasi-isotropic character of the laminate
facings. Tsai-Wu criterion is violated, than failure load factor
is 289. The results for the buckling factors are shown in Table
1. The first buckling load factor is 22.5 times less than
maximum failure load factor.

For the fibre angle 6 =45°, the buckling and free vibration
analysis was done. The first 10 frequencies in buckling and
frequency optimization analysis can be seen in Table 2 and 3,
respectively. The first ten frequencies in buckling analysis are
higher than in free vibration analysis.

For symmetric laminates the buckling modes for @ = 0°-
30 ° are nearly the same. For fibre angles 8 =30°, 45°, 60 °,
90 ° the buckling modes have different shapes. The buckling
mode shapes are symmetric to the symmetric axis in loading
direction (Figs. 6-9). Natural mode shapes in buckling analysis
are different than in free vibration analysis (Figs. 10-13).

Buckling and free vibration analyses play very important
role in the investigation of sandwich plates. Natural mode
shapes in buckling analysis depend on fibre angle orientation
and have different shapes then for isotropic homogeneous
plates. There are significant differences between behaviour of
homogeneous and heterogeneous materials.
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