
 

 

  
Abstract—In this study, a problem arising in advanced 

engineering mechanics governed by a singular differential equation is 
solved using an improved Adomian decomposition method. The 
technique was previously used in literature for the solution of two-
point singular boundary value problems in applied mathematics. 
Authors extend the use of the mathematical technique to presented 
problem and the results show that improved Adomian decomposition 
method can be successfully used in the axisymmetric deformation 
and stress analysis of thick-walled cylinders and rotating disks. 
 

Keywords—Adomian decomposition method, thick-walled 
cylinder, rotating disk, axisymmetric deformation.  

I. INTRODUCTION 
ANY problems in applied mathematics, physics and 
engineering governed by a singular differential equation 

of the form 
 

( )( ) ( ) ( ) ( ) ( ) ( )u x p x u x q x f u x r x′′ + + =      (1) 

 
Subject to boundary conditions 
 

( )    and   ( )u a u bα β= =            (2) 
  
where at least one of the functions p(x), q(x) and r(x) has a 
singular point and x ϵ (a,b).  

Ebaid[1] proposed a solution technique to solve singular 
two-point boundary value problems (BVPs) for which a 
general form of governing equation is given in Eq.(1). In this 
study, the operator proposed by Ebaid [1] is used for the 
axisymmetric deformation analysis of thick-walled cylinders 
and rotating-disks. To this aim, first the physical problem is 
reviewed and then the proposed method is explained. Obtained 
results and exact solutions are compared through a number of 
figures to show the efficiency of the method.  
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II. PROBLEM 

A. Thick-Walled Cylinder 
Thick-walled cylinders are extensively used in industry as 

pipes, heat exchanger tubes, pressure vessels, etc. In most of 
the cases, the cylinder has a constant wall thickness and 
subjected to a uniform internal and/or external pressure. The 
isotropy assumption leads to axisymmetrical deformation of 
the cylinder. 

Consider a thick-walled cylinder with open and 
unconstrained edges. Then, the cylinder may be assumed to be 
under plane stress conditions (σz = 0). Such a cylinder 
subjected to internal pressure and stress components are 
shown in Fig. 1.  

 

 
 

Fig. 1 cylinder under internal pressure and stress components 
 
According to Hooke’s law the strains are  

( )1
r r

du
dr E θε σ νσ= = −             (3) 

( )1
r

u
r Eθ θε σ νσ= = −              (4) 

 
From Eqs.(3-4) stress components can be obtained as follows: 
 

21r
E du u

dr r
σ ν

ν
 = + −  

             (5) 

21
E u du

r drθσ ν
ν

 = + −  
             (6) 

 
In the absence of radial body forces, polar equation of 
equilibrium reduces to 
 

Axisymmetric deformation analysis of  
thick-walled cylinders and rotating-disks using 
an improved Adomian decomposition method 

Safa Bozkurt Coşkun and Zuhal Elif Kara 

M 

INTERNATIONAL JOURNAL OF MECHANICS Volume 12, 2018

ISSN: 1998-4448 14



 

 

0rrd
dr r

θσ σσ −
+ =               (7) 

 
Substituting Eqs.(5-6) into (7) results in the following 
equation. 
 

2

2 2

1 0d u du u
dr r dr r

+ − =               (8) 

 
Eq.(8) has a solution of the form [2], 
 

2
1

cu c r
r

= +                   (9) 

Consider the cylinder is subjected to internal and external 
pressures pi and po respectively.  Then the boundary 
conditions becomes 
 

( )r ir a
pσ

=
= −                  (10) 

( )r or b
pσ

=
= −                  (11) 

 
 Introducing Eq.(9) into Eqs.(10-11) constants c1 and c2 can be 
obtained  The exact solution for the problem is then produced 
as follows [2]: 
 

2 2 2 2

2 2 2 2 2

( )
( )

i o i o
r

a p b p p p a b
b a b a r

σ − −
= −

− −
        (12) 

2 2 2 2

2 2 2 2 2

( )
( )

i o i oa p b p p p a b
b a b a rθσ − −

= +
− −

        (13) 

2 2 2 2

2 2 2 2

( ) ( )1 1
( )

i o i oa p b p r p p a bu
E b a E b a r
ν ν− −− +

= +
− −

  (14) 

 
Eqs.(12-14) simplify for internal pressure only as follows: 
 

2 2

2 2 21i
r

a p b
b a r

σ
 

= − −  
             (15) 

2 2

2 2 21ia p b
b a rθσ

 
= + −  

             (16) 

2 2

2 2 2(1 ) (1 )
( )

ia p r bu
E b a r

ν ν
 

= − + + −  
       (17) 

 
Eqs.(12-14) reduce to following equations for external 
pressure only. 
 

2 2

2 2 21o
r

b p a
b a r

σ
 

= − − −  
            (18) 

2 2

2 2 21ob p a
b a rθσ

 
= − + −  

            (19) 

2 2

2 2 2(1 ) (1 )
( )

ob p r au
E b a r

ν ν
 

= − − + + −  
      (20) 

 

B. Rotating-Disk 
In the case of rotating-disk, equation of equilibrium 

includes centrifugal inertia force.  
 

2 0rrd r
dr r

θσ σσ ρω−
+ + =            (21) 

 
where ρ is the mass density, ω is the constant angular speed of 
the disk in rad/sec. Introducing Eqs.(5-6) into (21) leads to 
following singular differential equation. 
 

2 2
2

2 2

1 (1 )d u du u r
dr r dr r E

ρων+ − = − −        (22) 

 
The general solution of Eq.(22) is of the following form [2]. 

2 3 2
2

1
(1 )

8
cru c r

E r
ρω ν−

= − + +          (23) 

 
An annular rotating disk with no pressure at inner and outer 
boundaries is shown in Fig.2. 
 

 
Fig. 2 annular rotating disk 

 
The solution for stresses and displacement for annular disk 
shown in Fig.2 with no pressure can be obtained in the same 
way and the procedure leads to following exact solutions [2]. 
 

2 2
2 2 2 2

2

3
8r

a ba b r
r

νσ ρω
 +

= + − − 
 

      (24)

  
2 2

2 2 2 2
2

3 1 3
8 3

a ba b r
rθ

ν νσ ρω
ν

 + +
= + − + + 

   (25) 

2 2
2 2 2 2

2

(3 )(1 ) 1 1
8 3 1

a bu a b r
E r

ν ν ν ν ρω
ν ν

 + − + +
= + − + + − 

                       (26) 
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In the following sections improved Adomian decomposition 
method will be explained and applied to Eqs.(8) and (22) 
which are singular differential equations in terms of radial 
displacement. 
   

III. IMPROVED ADOMIAN DECOMPOSITION METHOD 
Adomian decomposition method (ADM) was developed by 

Adomian [3] and has been effectively used in the solution of 
linear/nonlinear ordinary/partial differential equations over the 
past three decades.  The reader may refer to [3] for the details 
of the technique. 

Ebaid[1] improved ADM for the solution of singular two-
point boundary value problems such as Bessel equation, 
Emden-Fowler equation, Thomas-Fermi equation, singular 
boundary value problem of Cauchy-Euler type.  

Ebaid [1] proposed the following operator to solve a 
singular two-point BVP based on the work by Lesnic [4]. 
 

( ) ( ) ( )1   
x x b x

xx a c a c

x aL dx dx dx dx
b a

′ ′− −′ ′′ ′ ′′⋅ = ⋅ − ⋅
−∫ ∫ ∫ ∫   (27) 

Applying Eq.(26) to (1) we obtain the solution as 

[ ] [ ]1( ) ( ) ( ) ( ) ( )xx
x au x u a u b u a L r x
b a

−−
= + − +

−
 

[ ] ( )1 1           ( ) ( ) ( ) ( )xx xxL p x u x L q x f u x− −′− −      (28) 

 
According to ADM the solution u(x) can be computed using 
the following recurrence relation 

[ ] [ ]1
0 ( ) ( ) ( ) ( ) ( )xx

x au x u a u b u a L r x
b a

−−
= + − +

−
  (29) 

[ ]1
1( ) ( ) ( ) ( ) ( ) ,    0n xx n nu x L p x u x q x A x n−

+ ′= − + ≥  (30) 

 where An’s are Adomian’s polynomials for the nonlinear term 
f(u(x)) and can be produced from 

0 0

1
!

n
i

n in
i

dA f u
n d

λ

λ
λ

∞

= =

  =   
  
∑          (31) 

If f(u(x)) is linear, the recurrence relation (29) becomes 

[ ]1
1( ) ( ) ( ) ( ) ( ) ,    0n xx n nu x L p x u x q x u x n−

+ ′= − + ≥   (32) 

Finally, the Nth order solution to the problem can be computed 
from 

0
( ) ( )

N

n
n

u x u x
=

= ∑                 (33) 

IV. CASE STUDIES 

A. Thick-walled Cylinder Subjected to Internal Pressure 
In the case of internal pressure, exact solutions are given 

between Eqs.(15-17). In the model equation (Eq.(1)) boundary 
conditions are given in terms of  dependent variable of the 
problem. However, in thick-walled cylinder and rotating-disk 
problems the boundary conditions are given in terms of radial 
stresses. Hence u(a) and u(b) appearing in initial 

approximation given in Eq.(29) are also unknowns and they 
are determined by inserting the approximate solution into 
Eq.(5) and by applying radial stress boundary conditions. 

We consider a thick-walled cylinder with internal diameter 
of 0.3 m, external diameter of 1.2 m, Poisson’s ratio of 0.3 and 
Young modulus of 200 GPa. Then the initial approximation 
for the solution according to Eq.(29) becomes 
 

[ ]0
10 3( ) (0.3) (1.2) (0.3)

9
ru r u u u−

= + −      (34) 

 
Recurrence relation for the problem is given in Eq.(32) and 
based on governing equation (8) it takes the following form. 
 

1
1 2

1 1( ) ( ) ( ) ,    0n rr n nu r L u r u r n
r r

−
+

 ′= − − ≥  
   

 (35) 
where the inverse operator is 

( ) ( ) ( )
1.21

0.3 0.3

10 3  
9

r r r

rr c c

rL dr dr dr dr
′ ′− −′ ′′ ′ ′′⋅ = ⋅ − ⋅∫ ∫ ∫ ∫  

                        
                       (36)  
According to Eq.(35) u1(r) is computed as 
 

( )1( ) 2.22143 2.05377 1.33333ln (0.3)u r r r u= − + −  

( )0.555357 0.513442 0.333333ln (1.2)r r u+ − +  

(37) 
Second-order, fourth-order and sixth-order approximations are 
obtained and these approximations are compared including 
exact solutions in following figures.  
 

 
Fig. 3 comparison of radial stresses for inner pressure case 
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Fig. 4 comparison of tangential stresses for inner pressure case 

 

 
Fig. 5 comparison of radial displacements for inner pressure case 

 
Figs.3-5 show that, even the 2-term approximation may be 
assumed as a good approximation. 4-term approximation 
shows very good agreement and 6-term approximation shows 
excellent agreement with the exact solution. 
 

B. Thick-walled Cylinder Subjected to External Pressure 
We consider the thick-walled cylinder with the same 

properties used in previous internal pressure case. Then the 
initial approximation for the solution according to Eq.(29) 
becomes the same as in previous case as follows: 

[ ]0
10 3( ) (0.3) (1.2) (0.3)

9
ru r u u u−

= + −      (38) 

Below, comparison for radial and tangential stresses and radial 
displacements for external pressure case are given. 
 

 
Fig. 6 comparison of radial stresses for external pressure case 

 

 
Fig. 7 comparison of tangential stresses for external pressure case 

 

 
 
Fig. 8 comparison of radial displacements for external pressure case 

 
As in previous case, 2-term approximation is still a good 
approximation for the problem. Figs.6-8 show that, 4-term 
approximation has very good agreement and 6-term 
approximation has an excellent agreement with the exact 
solution. 
 

C. Rotating Disk with Constant Thickness 
In this case an annular rotating disk with constant thickness 

is assumed. For the sake of simplicity no pressure is assumed 
around the inner and outer surfaces. 

A rotating annular disk with internal diameter of 0.3 m, 
external diameter of 1.2 m is considered. Poisson’s ratio of 0.3 
and Young modulus of 200 GPa as in thick-walled cylinder 
problem. 
 

 
Fig. 9 comparison of radial stresses for rotating disk case 
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Fig. 10 comparison of tangential stresses for rotating disk case 

 
 

 
Fig. 11 comparison of radial displacements for rotating disk case 

 
From Figs.9-11 it can be observed that 2-term approximation 
is in good agreement with the exact solution for tangential 
stress and radial displacement. For radial stress 2-term 
approximation is also a good approximation to the problem. 4-
term approximation is in very good agreement and 6-term 
solution is in excellent agreement with the exact solution. 

V. CONCLUSION 
In this study, axisymmetric deformation analysis of thick-

walled cylinders and rotating disks is conducted using an 
improved Adomian decomposition technique. The method is 
very effective for handling singular differential equations and 
may be applied for the problems governed by these types of 
equations. 

As case studies, thick-walled cylinder with internal 
pressure,  thick-walled cylinder with external pressure and a 
rotating annular disk with constant thickness are considered. 
Solutions to the problem, produced by the presented 
technique, are  second, fourth and sixth order approximations. 
These approximations are compared with the available 
analytical solutions. 

In all three cases, 2-term approximations become a good 
approximation for the problem at hand even it is a low-order 
approximation. 4-term approximations are in very good 
agreement with the exact solutions and 6-term approximations 
show excellent agreement with the exact solutions. 

Presented technique is very effective and easy-to-apply 
technique in the solution of the problem handled in this study. 
Another advantage is that the method can also treat the simple 

modifications in the governing equation for which an exact 
solution may not be easily obtained.  
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