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Abstract—The purpose of this paper is to show that the equations 

for relative motions derived from the two systems of post-Newtonian 

equations presented here, allow to increase the acquisition, pointing 

and tracking accuracy when compared to the Newtonian equations 

aimed to describe free-space laser communications between Low 

Earth Orbit (LEO) satellites, so as between LEO and Medium Earth 

Orbit (MEO), and Geostationary Earth Orbit (GEO) satellites. The 

equations discussed in this work are similar, but not equivalent to 

those proposed for space debris removal, i. e. in the context of space-

based systems to throw middle size LEO debris objects into the 

atmosphere via laser ablation. In fact, the present equations are 

computationally much more affordable because the aim is now less 

demanding, and so they result from subtractions within each post-

Newtonian system here provided. 

 

Keywords—Free-space communications, laser inter-satellite 

links, p-N orbital equations.  

I. INTRODUCTION 

ASER communications in space are, together with space 

debris laser ablation, one of the most promising activities 

in future space missions, which give raise to some subtle issues 

not solved yet (see e.g. [1], [2]). In particular, accurate space- 

acquisition, pointing and tracking (APT) laser terminals merit 

nowadays special attention, since they are to play a prominent 

role due to the narrow beam widths involved. In fact, these 

terminals must constitute high precision systems, since it will 

be essential to keep the sat-to- sat line-of-sight (LOS) and 

pointing directions as steady as possible, so as to accurately 

implement the point-ahead angles, especially for long 

distances [3]. 

Since the sat-to-sat laser communications, unlike the 

ground-sat, are free from absorption and other atmospheric 

phenomena, such as scattering and scintillations, then the main 

dynamical challenge in establishing reliable sat-to-sat links is 

to implement these directions and angles after adding the 

respective post-Newtonian corrections to the standard 

corrections, such as those due to the oblateness of the Earth, 

the Lunar-Solar gravities and the solar radiation pressure. In 

fact, these post-Newtonian corrections provide the accuracy 

required to yield the best possible actual alinement of 
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transmitters and receivers. 

This is the reason why, despite the post-Newtonian 

framework (of the Earth surrounding space) is more complex 

than the Newtonian, it has to be used, on this occasion to 

include these corrections, similarly to the way it is used in 

space geodesy, navigation, and geolocation (see e.g. [4] ̶ [12]). 

Consequently, in order to correctly implement the APT 

manoeuvres, the relative post-Newtonian orbital equations of 

the receivers with respect to the emitters have to be derived 

from the respective post-Newtonian Earth centered inertial 

(ECI) equations, i.e. from the geodesic equations for the post-

Newtonian approximation to the Earth Schwarzschild field. In 

fact, according to the Riemannian paradigm, these are the only 

equations which enable to describe the orbital motions for 

objects in the vicinity of the Earth, independently from the 

consideration of the standard effects mentioned above [13]. 

The paper is organized as follows: The post-Newtonian 

models for the Earth surrounding space considered in this 

work are introduced in Section II. Moreover, in this section, 

we derive the two families of ECI equations. The simulations 

for different satellite configurations can be found in Section 

III. In these simulations we aim at resembling actual scenarios 

for laser communication between LEO, MEO, and GEO 

satellites. The numerical method, differential equations and 

computational data used in the simulations are also described 

in this section. We complete the article with Section IV, where 

concluding remarks are provided.  

II. THE EQUATIONS OF THE RELATIVE MOTIONS 

In order to consider simple equations, and yet useful to 

upper - low bound the post-Newtonian corrections, we initially 

adopt as geometric model gab of the Earth surrounding space in 

ECI coordinates, x
i
 (x

α
, t), the first order post-Newtonian 

expansion of the Earth Schwarzschild field, which is given by  
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Here, m is the mass of the Earth measured in seconds, r
2
 = 
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xαx
α
, where r is also measured in seconds (G = c = 1), and ε ~  

O(m/r) ~ O(v
2
), where v is the characteristic speed of the Earth 

satellites, and therefore, dimensionless [14]. (Latin indices 

range from 1 to 4, and Greek, from 1 to 3). 

For the reasons discussed in the introduction, the ECI 

orbital equations for any satellite, say S, follow from the 

geodesic equations, 
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where s is the proper time of S and Γ
i
jk are the Christoffel 

symbols of the second kind for the metric (1). 

Thus, the space part of this metric, gαβ, is almost Euclidean, 

g44 is almost  ̶ 1, and the Christoffel symbols, Γ
i
jk, as for any 

other metric similar to (1) are 
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where γja,k = ∂γja/∂x
k
 etc., expanded up to O(ε) terms. 

Then, for the first three equations in (3) we have  
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and for the fourth 
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so that, by integrating (6) up to O(ε), we have 
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Then, after inserting (7) into (5), expanding (5), and using (6), 

the first system of equations (omitting the expression O(ε
2
)) 

reads: 
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where x
1
≡ x, x

2
≡ y, and x

3
≡ z. 

The geometry adopted to derive the second system of ECI 

equations includes the second order terms that correspond to 

the rigorous expansion of the Earth Schwarzschild field up to 

O(ε
3
) terms. The metric deviations, γab, now are 
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so that we obtain 
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from which we have 
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Then, with O(ε
3
) omitted, we finally arrive at the following 

equations: 
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III. NUMERICAL SIMULATIONS 

To derive representative corrections, we have taken into 

account that the LEO zones of 200 km, 400 km, and 800 km 

are the most frequently used for research, meteorological 

monitoring and distant probing, respectively [15]. Hence we 

considered different satellites at these altitudes, T1, T2, T3, 

aimed to engage with laser beams, and be engaged from, one 

LEO satellite at high altitude, S ̶ LEO (Table I), one MEO 

satellite, S ̶ MEO, with altitude and eccentricity similar to 

those of the GPS satellites (Table II), and one GEO satellite, S ̶ 

GEO (Table III). 

 

S-LEO T1 T2 T3 

Alt. at perigee (km) 200 400 800 

Eccentricity 0.003 0.002 0 

P-N corr. from (14) (m) 5.3 6.1 5.9 

P-N corr. from (15) (m) 4.7 4.4 3.4 

Shuan diameter (m) 2.7 2.4 1.8 

Phipps diameter (m) 0.8 0.7 0.5 

 

Table I. Post-Newtonian corrections in one day for S ̶ LEO 

 

To facilitate the comparison between the corrections, 

computed by subtracting the equations for two satellites within 

each system (equations (8) and (13)) to compare them with the 

diameters of the beam spots estimated from [16] and [17], all 

the satellites were assumed to be equatorial. Moreover, the 

differences between the LOS and pointing directions were 

neglected. Hence the differential equations used to estimate the 

post-Newtonian corrections for the relative motions of the T ̶ 

Satellites with respect to each S were 
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and 
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 (15) 

respectively, where (xT,yT), (xS,yS) are the ECI coordinates of 
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the T ̶ Satellites and of each S, respectively, rT
2
= xT

2
+yT

2
, rS

2
= 

xS
2
+yS

2
, and (X,Y) are the coordinates of the T ̶ Satellites with 

respect to the S’s considered. 

The eccentricities and altitudes at perigee of the S ̶ LEO and 

S ̶ MEO considered in Tables I and II were 0:001, 2000 km, 

and 0:003, 20189:16 km respectively. Table III collects the 

information for S ̶ GEO. The data of T1, T2 and T3 are 

specified in the respective tables. The diameters of the beam 

spots correspond to the distances between perigees and are 

also specified in the tables. Finally, to allow for estimations at 

the different time intervals usually considered to update the 

ephemeris, the post-Newtonian corrections derived from (14) 

and (15) are listed in meters for a simulation time of one day. 

 

S-MEO T1 T2 T3 

Alt. at perigee (km) 200 400 800 

Eccentricity 0.002 0.001 0 

P-N corr. from (14) (m) 7.1 6.9 5.7 

P-N corr. from (15) (m) 5.5 4.9 4.2 

Shuan diameter (m) 30 29.7 29.1 

Phipps diameter (m) 8.8 8.7 8.5 

 

Table II. Post-Newtonian corrections in one day for S ̶ MEO 

 

S-GEO T1 T2 T3 

Alt. at perigee (km) 200 400 800 

Eccentricity 0.002 0.001 0 

P-N corr. from (14) (m) 7.1 6.8 5.8 

P-N corr. from (15) (m) 5.4 4.9 4.2 

Shuan diameter (m) 52.8 52.5 51.9 

Phipps diameter (m) 15.5 15.4 15.2 

 

Table III. Post-Newtonian corrections in one day for S ̶ GEO 

 

 
Fig. 1 radial distance from ECI Newtonian to post-Newtonian 

positions of S ̶ LEO from (15) 

 

Figs. 1 to 8 present results of the simulations involving S ̶ 

LEO, and Figs 9 to 16 some others corresponding to S ̶ GEO. 

Fig. 1 shows the radial distance from the ECI center 

between the ECI Newtonian and post-Newtonian positions of 

S ̶ LEO, computed using (15). 

Analogously, Fig. 2 shows the radial distance between the 

ECI Newtonian and post-Newtonian positions of T2, cf. Table 

I, computed from (15). In Fig. 3, the Newtonian and the two 

post-Newtonian orbits of T2 (see Table I) with respect to S ̶ 

LEO are shown, calculated from (14) and (15). Here, the 

reference equations were the Newtonian equations for a 

spherical Earth. Fig. 4 shows the zoomed in end portion of 

these orbits. 

 

 
Fig. 2 radial distance from ECI Newtonian to post-Newtonian 

positions of T2, Table I (from (15) 

 

 
 

Fig. 3 Newtonian and post-Newtonian orbits of T2, Table I, w.r.t. 

S ̶ LEO (from Newtonian equations and (14), (15)) 

 

In Fig. 5 the post-Newtonian corrections to the Newtonian 

position of T2, again cf. Table I, with respect to S ̶ LEO versus 

time are depicted. They were computed from (14). In Fig. 6, 

we can see the post-Newtonian corrections, also for one day of 

simulation, to the Newtonian position of T2, see Table I, with 

respect to S ̶ LEO versus time, computed from (15). 
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Fig. 4 end (zoomed) of Newtonian and post-Newtonian orbits of 

T2, Table I, w.r.t. S ̶ LEO (from Newtonian equations and (14), (15)) 

 

 
Fig. 5 Newtonian to post-Newtonian position corrections of T2, 

Table I, w.r.t. S ̶ LEO vs. time (from (14)) 

 

 
Fig. 6 Newtonian to post-Newtonian position corrections of T2, 

Table I, w.r.t. S ̶ LEO vs. time (from (15)) 

 

Fig. 7 shows the post-Newtonian corrections to the 

Newtonian position of T2 (Table I) with respect to S ̶ LEO 

versus the distance, d, between S ̶ LEO and T2. The data were 

computed using (14). Fig. 8 shows the post-Newtonian 

corrections to the Newtonian position of T2 (Table I) with 

respect to S ̶ LEO versus distance between S ̶ LEO and T2, 

computed from (15). 

 
Fig. 7 Newtonian to post-Newtonian position corrections of T2, 

Table I, w.r.t. S ̶ LEO vs. distance(S ̶ LEO,T2) (from (14)) 

 

 
Fig. 8 Newtonian to post-Newtonian position corrections of T2, 

Table I, w.r.t. S ̶ LEO vs. distance(S ̶ LEO,T2) (from (15)) 

 

Fig. 9 shows the radial distances from the ECI center 

between the ECI Newtonian and post-Newtonian positions of 

S ̶ GEO, computed from (14) (blue) and (15) (red). 

Analogously to Fig. 3, Fig. 10 shows the Newtonian and the 

two post-Newtonian orbits of T2 (see Table III) with respect to 

S ̶ GEO, calculated from (14) and (15). Here, as in Fig. 3, the 

reference equations were the Newtonian equations for a 

spherical Earth. Fig. 11 shows the post-Newtonian relative 

velocity of T2 (Table III) with respect to S ̶ GEO, derived from 

(14). Fig 12 shows the post-Newtonian corrections to the 

Newtonian position of T2 (Table III) with respect to S ̶ GEO 

versus the distance, d, between S ̶ GEO and T2. The results 

were computed from (14) (blue) and (15) (red). 
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Fig. 9 radial distance from ECI Newtonian to post-Newtonian 

positions of S ̶ GEO from (14) and (15) 

 

 
Fig. 10 Newtonian and post-Newtonian orbits of T2, Table III, 

w.r.t. S ̶ GEO (from Newtonian equations and (14), (15)) 

 

 
Fig. 11. post-Newtonian velocity of T2, Table III, w.r.t. S ̶ LGEO 

(from (14)) 

 

Figs. 13 and 14 show the radial post-Newtonian corrections 

 
Fig. 12 Newtonian to post-Newtonian position corrections of T2, 

Table III, w.r.t. S ̶ GEO vs. distance(S ̶ GEO,T2) (from (14),(15)) 

 

 
Fig. 13 post-Newtonian radial position corrections of T2,  

Table III, w.r.t. S ̶ GEO vs. time (from (14),(15)) 

 

 
Fig. 14 post-Newtonian radial position corrections of T2  

w.r.t. S ̶ GEO vs. d(S ̶ GEO,T2) (from (14),(15)) 

 

to the Newtonian position of T2 (Table III) with respect to 
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S ̶ GEO versus time and distance, d, from S ̶ GEO to T2, 

respectively, computed from (14) (blue) and (15) (red). 

Finally, Figs. 15 and 16 show the transverse post-Newtonian 

corrections to the Newtonian position of T2 (Table III) with 

respect to S ̶ GEO versus time and distance, d, from S ̶ GEO to 

T2, respectively, computed from (14) (blue) and (15) (red). 

 

 
Fig. 15 Post-Newtonian transverse position corrections of T2,  

Table III, w.r.t. S ̶ GEO vs. time (from (14),(15)) 

 

 
Fig. 16 Post-Newtonian transverse position corrections of T2,  

Table III, w.r.t. S ̶ GEO vs. d(S ̶ GEO,T2) (from (14),(15)) 

 

Both the ECI and relative orbits corresponding to (8), (13) 

and (14), (15) were computed using the MATLAB standard 

routine ode45 for the approximation of initial value problems 

(IVPs) in first order ordinary differential equations. Since the 

systems in (8), (13) and (14), (15) are of the second order, they 

were first transformed to related systems of the first order. The 

latter were then completed by a proper set of initial conditions. 

The ode45 solver is based on the Dormand-Prince method [18] 

including two explicit RungeKutta methods of order four and 

five and requiring six function evaluations per step. After each 

step, the difference between these solutions is taken to estimate 

the local error of the fourth order solution. This error estimate 

is then used to adapt the length of the step-size in such a way 

that the tolerance requirements provided by the user are 

satisfied. The Dormand-Prince method has seven stages, but it 

uses only six function evaluations per step because it has the 

First Same As Last property: the last stage is evaluated at the 

same point as the first stage of the next step. The coefficients 

of the method are chosen to minimize the error of the fifth 

order solution. All calculation presented in the paper were 

carried out using the absolute and relative error control with 

the tolerance requirements set to TOLa = TOLr = 10
-11

. 

In a typical run, the whole interval of integration was split 

into 3000 equidistant subintervals. Starting from the first 

subinterval, an IVP was solved on an adapted grid until the 

end of the first subinterval was reached, and the code delivered 

an approximation of the prescribed accuracy. This procedure 

was repeated in the following subintervals, always starting 

with final solution values of the proceeding subinterval. 

Finally, we stress that the experiments carried out here were 

not optimized for the practical production runs; our aim was 

merely to illustrate the importance of the post-Newtonian 

corrections. 

IV. CONCLUSION 

Aside from the expected result that, as can be observed in 

Tables I to III, the relative corrections for the LOS and 

pointing directions between LEO satellites are the largest, the 

most relevant conclusion that can be derived from this work 

follows from the hypothesis made to derive (14) and (15). In 

fact, from this analysis it can be positively concluded that the 

differences between the post-Newtonian corrections for the 

LOS and pointing directions shown in the tables, and in Figs. 5 

to 8, are mainly due to the hypothesis in (7) and (12). In other 

words, they are due to the basic assumption that, according to 

(7), the ECI time coordinate is almost absolute and, according 

to. (12), it is not. Clearly, both hypothesis are truly post-

Newtonian, since they are consistent with the order of the 

expansions considered in each case, although obviously, the 

second is closer to the principles of general relativity. 

Consequently, from the point of view of this theory, the 

corrections predicted from (14) can only be considered as 

upper-bounds for the corrections deduced using (15), cf. the 

beginning of Section III. Therefore, we conclude that to obtain 

corrections similar to those derived here from (15), only those 

satellites with atomic clocks on board can be used. 
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