
 

 

  
Abstract — The article deals with time-dependent analysis of the 

failure probability of a load bearing element of a steel bridge. The 
theoretical model of fatigue crack propagation is based on linear 
fracture mechanics. The Latin Hypercube Sampling statistical method 
is used to calculate the unconditional and conditional probabilities. 
The conditional probability is calculated by excluding those random 
observations that have a detectable crack length observed during the 
inspection. The effect of included and excluded observations of input 
random quantities on the conditional failure probability is mapped 
and shown graphically. It is proven that the number of stress peaks 
per year can be considered as one random variable for any time 
interval of the life span of the bridge. 
 

Keywords — Fatigue, steel, bridge, probability, stochastic, 
fracture mechanics, random sampling. 

I. INTRODUCTION 
teel bridges in operation are subjected to repeated loads of 
considerable intensity and fatigue is an important 

consideration [1, 2]. Repeated application of live load may 
lead to failure of material even when the load level is lower 
that for the ultimate limit states [3]. The process begins at the 
initiation site of initial cracks. Fatigue crack initiation often 
occurs at an inclusion, impurity or surface flaw, which acts as 
a local stress raiser and results in small scale plastic 
deformation. 

Fatigue crack propagation is a process of the cycle-by-cycle 
accumulation of damage in a material undergoing fluctuating 
stresses and strains. All factors that affect the fatigue life of 
metal structures can be grouped into four categories: material, 
structure, loading, and environment [4]. The safety of steel 
bridges is ensured mainly by structural elements bearing their 
self-weight and traffic loads. Failure of the load carrying 
structure leads to a state of disrepair, degradation of the 
transport network and threatens traffic safety. 

The state of the art review of metal fatigue has been 
published, for e.g. in [4-6]. Numerous methods have been 
proposed for the evaluation of the remaining fatigue life of 
load carrying steel structures and steel bridges [7-9], some of 
which are based on probabilistic approaches [10-14]. The state 
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of the art review of the analysis of the life cycle of steel 
bridges including reliability is presented in [15, 16]. 

The lifetime of steel bridges under real service conditions 
can be studied using methods based on linear fracture 
mechanics in combination with stochastic approaches [17, 18].  
Stochastic methods can be divided into sensitivity [19-25], 
statistical [27, 28] and probability analyses [29, 30]. Structural 
performance can be measured in terms of reliability [31]. 
Common probabilistic approaches for assessing the reliability 
and safety of load bearing structural members are based on the 
calculation of the probability of failure, load effect, structural 
resistance, computational model, reliability function, 
probability of failure and reliability indicators [32-34]. 

Probabilistic structural design is a decision problem added 
to probabilistic structural analysis [31]. The current trend in 
these works is not the use of one, but of multiple MCDM 
methods in problems of ranking and selection [35-37]. 

The subject of this article is the research into probabilistic 
assessment of the fatigue life of existing steel bridges. The 
resistance of structural elements with cracks is studied based 
on the concept of linear fracture mechanics. 

Fracture mechanical methods assume that the considered 
structural member contains a crack. The main focus is not on 
crack initiation but rather on the material behaviour at the 
crack tip once the member is loaded. The assessment of fatigue 
life requires that the random character of production, crack 
growth, applied load and subsequent failure due to cracks are 
duly taken into account [16]. The fatigue behaviour of steel is 
specific and therefore an important part of fatigue studies is 
information based on experimental research [38]. 

II. FATIGUE LIFE ASSESSMENT OF STEEL STRUCTURES 
Existing bridges are assessed to provide evidence 

demonstrating whether it will safely function over the duration 
of a residual life [16]. It is based mainly on the results of 
assessing hazards, anticipated future load effects, material 
properties, geometry and on the structural state of the bridge. 

A. Linear Fracture Mechanics  
Linear fracture mechanics, particularly in the field of 

mechanical engineering, has been the subject of intensive 
research. It has gradually being modified and applied to the 
design of load bearing building structures. Linear elastic 
fracture mechanics analyses the propagation of an initial crack 
of magnitude a in dependence on the number of fatigue cycles 
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N. Fatigue crack growth is generally described by Paris’s rule, 
which is expressed by Paris and Erdogan [39]. 
 

( )mKC
dN
da

∆⋅= , (1) 

 
where m and C are material-related parameters. Parameter C 

can be expressed as  
 
( ) 21log cmcC ⋅+= , (2) 

 
where c1, c2 can be considered for the steel grade S235 as c1 

= -11.141, c2 = -0.507 [40]. The range of stress intensity factor 
ΔK can be determined by Broek [41]. 
 

( )afaK E ⋅⋅∆=∆ πσ , (3) 
 
where ΔσΕ is the quasi–constant stress range and f(a) is the 

calibration function obtained from experimental research [38] 
for pure bending in the form: 

 
( ) ( ) ( )32 04229.1659.1898.1114.1 relrelrel aaaaf ++−= , (4) 
 
where arel is dimensionless (relative) crack length calculated 

as arel=a/W, where W is the specimen width in the direction of 
crack propagation. The domain of equation (4) is [0.01, 0.5].  

 

 
Fig. 1 Crack propagation in the structural detail with initial crack. 
 
We can express the resistance from equation (1) as the 

accumulation of damage related to the growth from initial 
crack a0 into a critical crack acr.  
 

( )[ ]∫
⋅⋅

=
cra

a
mcr

aaf

daR
0 π

, (5) 

 
As will be shown in the next paragraph, the calculation of 

the conditional failure probability is based on the resistance 
calculated for the detectable crack size ad. Resistance for crack 
growth from initial crack a0 into a detectable crack size ad can 
be written analogously as: 

 

( )[ ]∫
⋅

=
da

a
md

aaf

daR
0 π

, (6) 

 
Fatigue limit state (failure) occurs when Rcr is equal to the 

load effects At. 

NCA m
Et ⋅⋅∆= σ , (7) 

 
where N is the total number of cycles reached at the time the 

crack reaches its critical length acr, where acr/W ≤ 0.5. The 
value At (action) is a function of time, because the number of 
cycles N (cumulative effect of traffic) is a non-decreasing 
function in time. The reliability function can be written in a 
differential form based on previous equations as: 

 

tcr ARG −= , (8) 

B. Probabilistic Analysis  
Failure (brittle fracture) occurs if G<0. The occurrence of 

failure is generally random because the initial crack a0 and the 
other variables described in the preceding paragraph are 
random in nature. The input random variables are listed in the 
Table 1.  

TABLE I 
INPUT RANDOM VARIABLES 

Characteristic Pdf Mean 
value 

St. deviation 

Initial crack size a0 
Detectable crack size ad 
Parameter m 
Stress peaks range ∆σE 
Specimen width W 
Stress peaks per year Ni 

lognormal 
Gauss 
Gauss 
Gauss 
Gauss 
Gauss 

0.2 mm 
5 mm 

3 
28 MPa 
340 mm 

106 

0.06 mm 
0.6 mm 

0.03 
6 MPa 
17 mm 

105 
 
Initial crack a0 has a lognormal probability density function 

(pdf), the other random variables have Gauss pdf. The 
application of lognormal pdf for a0 has been discussed within 
the logical context of probabilistic models of fatigue resistance 
[42]. Pdf of a0 must have zero probability density close to zero 
lengths of a0 and at the same time decrease very rapidly when 
observing higher values. The lognormal pdf of a0 fulfils these 
conditions very well, but it is not the only applicable pdf [42]. 

 

 
Fig. 2 Lognormal pdf of initial crack length a0 
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The Latin Hypercube Sampling (LHS) method [43, 44] is 
used to analyze the probability of failure 

 
( )0<= GPPf , (9) 

 
The probability of failure is analyzed using 200 thousand runs 
of the LHS method. For such a high number of runs, the 
numerical precision of the LHS method approaches the Monte 
Carlo method (MC). It is still advantageous to use the LHS 
method, for e.g. due to the deterministic value of the minimum 
(0.0521 mm) and maximum (0.7019 mm) observations, see 
Fig. 3. 
 

 
Fig. 3 LHS sampling of initial crack a0 

 

 
Fig. 4 LHS sampling of initial crack a0 

 

 The minimum and maximum values of random realizations 
of the other random variables are also given deterministically. 
The minimum and maximum values of ∆σE are 1.675 MPa and 
58.698 MPa, therefore, the use of Gauss pdf does not lead, for 
200 thousand runs, to negative random realizations of ∆σE, see 
Fig. 4. This is a big advantage of the LHS method in 
comparison to the MC method, where extreme values would 
have to be controlled or truncated histograms of inputs would 
have to be used. 
 Analysis of the probability of failure is performed in the 
time interval of zero to hundred and twenty years. The number 
of stress peaks per year Ni is considered for each individual 
year. One hundred and twenty statistically independent random 
variables Ni are needed in total. The number of stress peaks 
per y years is then calculated as the sum N1+N2+...+Ny. 

C. Conditional probability  
During the analysis of the probability of failure of bridge 

structures, a situation may arise where we are studying the 
probability of failure of a bridge in operation (phenomenon A) 
for which no crack was detected until time ti (condition B). We 
are seeking the probability G ≤ 0 of phenomenon A under 
condition B (when it is known that phenomenon B occurred), 
which can be written as P(A|B). The conditional probability 
can be described using the MC method, see Fig. 5. 
If phenomenon B occurred, then we are only in the set B in 
Fig. 5, the rest of set A can be excluded. 

 

 
Fig. 5 The conditional probability described using the MC method 
 
Let us consider ten random realizations of one bridge with 

the same traffic load. The bridges are put into operation at 
time t0=0 without detectable cracks, but have random very 
small initial cracks a0 and other random initial imperfections. 
All bridges are inspected at time t1. A crack of detectable size 
a>ad is found in three bridges. These observations are 
identified using condition (10), which considers the random 
effects of input variables in Table 1. 

 
0≤− td AR , (10) 

 
Bridges with a>ad are closed and without traffic. The 

probability of failure is studied by analyzing the occurrence of 
failure in the remaining seven bridges, for which a detectable 
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crack was not previously observed. If we write P(A|B), we are 
seeking the probability that phenomenon A will occur 
(failure craa ≥ ) in the set (bridges with a<ad at time t1), see 
Fig. 5. When failure occurs in two bridges, then 
P(A|B)=2/7=0.286. 

 
( )BAPPfI = , (11) 

 
The conditional probability is calculated using (11) with the 
time step of one year. 

III. THE COMPUTATION OF FAILURE PROBABILITY 
The required reliability was described by the target reliability 
index β=2, which corresponded to the designed probability of 
failure Pd = 0.02277. If Pf reaches magnitude Pd, then all 
observations (all bridges) from the random selection (200 
thousand random realizations) are inspected. In the example 
described here, the first inspection (Pf=Pd) occurred at time 
t1 = 39 year. Only those observations (186955 random 
realizations) for which a crack was not detected during 
previous inspection are included in the calculation of the 
second path of the probability of failure (first conditional 
failure probability Pf1). If Pf1 reaches magnitude Pd, a second 
inspection is performed and random realizations of bridges 
with crack a>ad are excluded from the 186955 random 
realizations. Only those observations (165746 random 
realizations) for which a crack was not detected during 
previous inspection are included in the calculation of the third 
path of the probability of failure (second conditional 
probability of failure Pf2). The calculation procedure for PfI 
(11) is repeated in this manner after further inspections for the 
other paths Pf3, Pf4, see Fig. 6. Inspections are performed when 
Pd is reached at 39, 54, 71, 90, 113 years of the bridge life. 

 

 
Fig. 6 Dependence of the failure probability on years of operation 
 

 Each subsequent path is calculated with fewer random 
realizations. The original set of 200 thousand random 
realizations is gradually reduced to 186955, 165746, 138525, 
111372 and 85047 random realizations (set B); see blue points 
in Fig. 9 to Fig. 25. The elimination procedure is described in 
detail in the following paragraphs. 

The first left path Pf represents unconditional probability of 
failure. In reliability condition (9) calculated on the basis of 
(8) Rcr is strongly dependent on a0, see Fig. 7.  

 
Fig. 7 Dependence between initial crack length a0 and resistance Rcr 

 
The crucial process in calculating path PfI is the exclusion of 

the random observations, which fulfil condition (10), which is 
based on the calculation of Rd. Random observations Rd are 
shown in Fig. 8. Similarly, as shown in Fig. 7, a strong non-
linear dependence of Rd on a0 is evident, see Fig. 8. The 
advantage of sampling based methods (Monte Carlo, LHS, and 
Importance Sampling) in comparison to other probability 
methods [45, 46] is the simple, transparent and natural 
inclusion of correlation between samples. 

 

 
Fig. 8 Dependence between initial crack length a0 and Rd 

 
The statistical dependencies shown in Fig. 7 and Fig. 8 are 

strongly non-linear; therefore Spearman's rank correlation 
coefficient is a more suitable indicator of correlation 
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dependence than, for e.g. Pearson correlation. Pearson's 
correlation assesses linear relationships, Spearman's 
correlation assesses monotonic relationships (whether linear or 
not). Both Spearman's and Kendall's tau can be formulated as 
special cases of a more general correlation coefficient. 

It can be noted that if Spearman's rank correlation 
corr(a0, Rd)=-0.99 and corr(a0, Rcr)=-0.99 then 
corr(Rd, Rcr)=0.99. If we artificially decrease the correlation 
between Rd and Rcr there is a significant reduction and 
shortening of the observation interval in the probabilistic 
analysis. 

Fig. 9 to Fig. 12 show random sample distributions of 
observations without detectable cracks during the first 
inspection (blue dots) and observations with detectable cracks 
during the first inspection (red points). Probabilistic analysis 
and calculation of Pf1 is performed with the first (left) part of 
the spectrum (blue points), while the rest of the selection (red 
points) is excluded. 

A shift of the blue and red spectrum is visible from Fig. 9 to 
Fig. 12. The mean values of excluded (red) observations in 
Fig. 9, Fig. 10 are higher than the included (blue) observations 
used for the calculation of Pf1. Conversely, the mean values of 
the red observations in Fig. 11, Fig. 12 are lower than the blue 
observations. The subsequent calculation of Pf1 is therefore 
based on different statistical characteristics of input random 
variables than Pf. The greatest effect is observed in ∆σE, where 
the excluded observations have significantly higher mean 
values than the included blue observations, whose mean values 
decrease, see comparison of Fig. 10 and Fig. 4. 

 

 
Fig. 9 Selection of LHS samples of a0 after first inspection 

 

 
Fig. 10 Selection of LHS samples of ∆σE after first inspection 

 
The random variability of ∆σE strongly influences the 

results of the probabilistic analysis in Fig. 6. Introduction of 
∆σE as a non-random (constant) variable leads to constant 
inspection intervals. The random variability of ∆σE practically 
takes into account the uncertainty in the weight of vehicle 
axles. The calculation of the conditional probability Pf1 is 
performed with the exclusion of random observations with 
relatively high values of random realizations ∆σE. Detectable 
cracks were observed mainly in heavily loaded bridges, which 
are excluded from operation or repaired after the first 
inspection. 

 

 
Fig. 11 Selection of LHS samples of Rcr after first inspection 
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Fig. 12 Selection of LHS samples of Rd after first inspection 

 
 Similar conclusions are apparent from Fig. 13 to Fig. 16 as 
were made on the basis of the analysis in Fig. 9 to Fig. 12, but 
the set of excluded observations is larger. Because of the 
exclusion of a higher number of points, the calculation of Pf2 is 
less precise than the calculation of Pf1 and the calculation of 
Pf1 is less precise than the calculation of Pf. However, this is 
insignificant from a practical point of view, which was verified 
using four million simulation runs of LHS, where the plotted 
results of the probability of failure are identical with the results 
in Fig. 6. 

 
Fig. 13 Selection of LHS samples of a0 after second inspection 

 

 
Fig. 14 Selection of LHS samples of ∆σE after second inspection 

 

 
Fig. 15 Selection of LHS samples of Rcr after second inspection 

 
 It is evident from Fig. 17 to Fig. 20 that the red region of the 
spectrum is expanding and that the differences between the 
blue and red spectrum widen. Comparison of Fig. 17 with Fig. 
13, Fig. 9 and Fig. 3 shows a decrease in the mean value and a 
slight decrease in the dispersion of the red spectrum. The mean 
value of the red spectrum in Fig. 18 is lower than in Fig. 14 
and the mean value of the red spectrum in Fig. 14 is lower than 
in Fig. 10. On the contrary, the mean values of the observation 
of variables Rcr and Rd shown in red slightly increase, see Rcr 
in Fig. 19 vs Fig. 15 and/or Fig. 11; and Rd in Fig. 20 vs Fig. 
16 and/or Fig. 12. This trend of increasing the differences 
between the excluded and included observations continues 
even after the third inspection; see Fig. 21 to Fig. 24. 
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Fig. 16 Selection of LHS samples of Rd after second inspection 

 

 
Fig. 17 Selection of LHS samples of a0 after third inspection 

  
 Analysis of the differences between the excluded and 
included sum of observations N1+N2+...+Ny showed that both 
sets of data are statistically comparable, i.e. they have the same 
statistical moments, see Fig. 25. This means that the sum 
N1+N2+...+Ny can be substituted with one random variable N, 
whose mean value and standard deviation would increase with 
increasing number of years under the rules for the sum of 
statistically independent random variables with Gauss pdf. For 
example the mean value for twenty years of operation of the 
bridge would be calculated as 20⋅106 and standard deviation as 
√20⋅105 = 4.472⋅105. The results of the probabilistic analysis 
shown in Fig. 6 evaluated with one random variable N or with 
120 random variables Ni are identical. 

 

 
Fig. 18 Selection of LHS samples of ∆σE after third inspection 

 

 
Fig. 19 Selection of LHS samples of Rcr after third inspection 

IV. CONCLUSION 
The assessment of the fatigue life based on the 

unconditional and conditional probabilities of failure is 
presented in the article. The described methodology makes it 
possible to determine the probability of failure of a bridge for 
which a detectable crack was not observed during inspection. 
Otherwise, the bridge must be closed and cracks repaired. In 
the analysed example, it has been shown that inspections are 
performed at 39, 54, 71, 90, 113 years of bridge operation. 
Extension of the inspection intervals occurs due to non-zero 
standard deviation of the stress peaks range ∆σE.  

Introduction of ∆σE as a non-random variable leads to 
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constant inspection intervals. From a technical point of view, 
in the case of the present example, a constant inspection 
interval of 15 years with the first inspection after 40 years of 
operation of the bridge can be conservatively recommended in 
the case studied.  

 

 
Fig. 20 Selection of LHS samples of Rd after third inspection 

 

 
Fig. 21 Selection of LHS samples of a0 after fourth inspection 

 
In the present example the number of stress peaks per year 

was considered as one random variable Ni for each year of 
operation, therefore, 120 statistically independent random 
variables Ni were considered for 120 years of operation. This 
is demanding for computer RAM and prolongs computation.  

 

 
Fig. 22 Selection of LHS samples of ∆σE after fourth inspection 
 
The statistical analysis of the excluded and included 

observation sums N1+N2+...+Ny performed after each 
inspection has shown that the sum N1+N2+...+Ny can be 
effectively substituted with one random variable with zero 
mean value and standard deviation of 105, where each random 
LHS realization is multiplied by the square root of the number 
of years of operation and added to the number of years of 
operation multiplied by 106. This transformation permits 
highly efficient consideration of the number of stress peaks per 
year using one random variable; it is especially useful for 
calculating global sensitivity indices subordinated to contrast 
functions [47] or structural reliability sensitivity indices [48]. 

 
Fig. 23 Selection of LHS samples of Rcr after fourth inspection 
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Fig. 24 Selection of LHS samples of Rd after forth inspection 

 

 
Fig. 25 Selection of LHS samples of sum of Ni after forth inspection 

 
A nearly one hundred percent correlation between the initial 

crack length a0 and fatigue resistance R was shown. The 
random dependence between a0 and R is nonlinear; therefore 
three types of correlation dependencies were evaluated: 
Pearson correlation, Spearman's rank correlation coefficient 
and Kendall's tau. Spearman's rank correlation coefficient is 
particularly suitable for measuring the correlation between a0 
and R. Spearman correlation value of −0.99 means that 
variables a0 and R are an almost perfect monotone function of 
each other. This contrasts with Pearson correlation, which has 
not provide a perfect value because a0 and R are not connected 
by a linear function. The fatigue resistance increases very 
rapidly with decreasing initial crack size, see Fig. 7 and Fig. 8. 

It is evident that considering resistances Rcr and Rd with 
separate histograms with no relation to a0 can lead to 
significant errors in the probabilistic analysis.  
 The research results obtained in this article can be used in 
statistical and probability analyses of fatigue phenomena with 
conditional probabilities so that inspection intervals are 
planned as optimally as possible with the lowest cost and 
maximum lifetime of the bridge. 
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