
 
 

 

  
Abstract—This paper is aimed at possible controller tuning of 

infinite-dimensional controllers of a predictor (compensator) type 
obtained from an algebraic-based controller structure design method 
for linear systems with delays. The design procedure is simple 
enough so that it can attract practitioners. The controllers are of a 
generalized proportional-integral(-derivative) (PI(D)) type after a 
trivial limit approximation, and those obtained for stable controlled 
processes can be compared to the well-known Smith predictor 
scheme. Some well-established tuning rules for three study cases are 
then used and compared; namely, the Chien-Hrones-Reswick and the 
equalization methods are applied for first and second order plants 
with input and state delays, and the quasi-continuous shifting 
procedure with the spectral abscissa minimization versus the triple-
dominant-root setting are used to the unstable first-order case. These 
tuning rules are directly applied to PI(D) laws in the simple feedback 
structure as well, which is compared to the results for the 
compensation controllers. The robustness of designed controllers is 
simply benchmarked via some selected perturbations in the static 
gain and both delays. Simulation outputs and performance measures 
are given to the reader to display and quantify the obtained results for 
clearer comparison. 
 

Keywords—Systems with time-delays, PID control, controller 
tuning, dead time compensator, dominant pole, spectral abscissa, 
simulation.  

I. INTRODUCTION 

YSTEMS with input and/or state time delays (Time Delay 
Systems, TDSs) have paid considerable and well-deserved 

attention by scientists and engineers during recent decades [1], 
[2]. The reason is mainly twofold. First, delays are integral 
part of a multitude of real-world systems and processes [3]. 
Second, they can effectively approximate the inertia of a 
higher order [4]-[6]. 

Proportional-integral-derivative (PID) controllers have been 
sufficiently applied in practice for more than seven decades 
and they have remained to be widely used in industry due to 
their simplicity, satisfactory control effect, robustness and 
reliability [7], [8]. However, it is well-known that the use of 
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conventional control laws for TDSs with significant delay 
values (with respect to time constants) can rapidly deteriorate 
the feedback control performance and may lead to a poor 
control response [9], [10]. This is mainly caused by the fact 
that the feedback control system is no longer finite-
dimensional. It is generally inappropriate to use the 
conventional control methods in which the delays are not 
considered in the design. 

In order to tackle these issues and enhance the overall 
performance, it is hence necessary to use some advanced 
structural or tuning techniques, or some approximation 
techniques. To name just a few, the extended Hermite-Biehler 
theorem, which expresses the relation between real and 
imaginary parts of the stable characteristic quasipolynomial 
and their real root that must satisfy a certain interlacing 
property, was used to determinate stability regions in the space 
of PI and PID gains in [11], [12], and [13], respectively, or in 
a combination with the Padé approximation [14]. Rational 
approximations were applied within PI/PID controllers’ 
algebraic design by using rings of polynomials and stable-
proper rational functions in [15] and [16], respectively. 
Castaños et al. [17] performed the known D-subdivision 
method to declare the exact spectral abscissae in the space of 
PI parameters for first-order linear passive systems with the 
closed-loop feedback of neutral type. Optimal and 
optimization techniques suggest themselves: the minimization 
of the Integral Absolute Error (IAE) compared to dominant 
pole placement was performed in [18]; Srivastava et al. [19] 
combined the concept of linear quadratic regulator based 
PI/PID tuning method together with the dominant pole 
placement approach to derive the PID parameters analytically 
for second order plus time delay systems; several heuristic 
algorithms for tuning of PID controllers for First Order Plus 
Time Delay (FOPTD) systems were compared in [20]. 

Another possibility is compensate delays to further enhance 
control performances. The well-known Smith predictor [21], 
[22], see Fig. 1, is the most popular deadtime compensation 
scheme. Its compensation nature can be seen from 
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where ( )0 e sG s τ− ɶɶ  represents the transfer function of the 

controlled system’s model, ( )SC s  stands for the feedback 

controller in the predictor structure and ( )C s  is the equivalent 

controller in the classical simple feedback loop (see Fig. 2). 
Notice that r, e, u, and y stand for the reference, control error, 
manipulate input and controlled output signals, respectively, in 
the figures. However, the Smith predictor is susceptible to 
stability problems in the face of model imperfections. 
 

 
Fig. 1 Smith predictor (delay compensator) scheme 

 

 
 
Fig. 2 Simple negative feedback loop scheme 
 

The finite spectrum assignment (FSA) controller [23], 
unlike the PID or the Smith predictor, ideally allows to assign 
of the closed-loop poles arbitrarily. The basic idea of the FSA 
is that the state variables are predicted over the delay period by 
using a control law that contains a distributed delay term. For 
instance, for systems with input delay τɶ , the predicted state 

1n×∈x
⌢

R  reads 
 

( ) ( ) ( )0
e e dt t u tτ θ

τ
τ θ θ−

−
+ = + +∫

A Ax x B
ɶ ɶɶ

ɶ

⌢ ɶɶ , (2) 

 

where Aɶ , Bɶ  stand for modeled (estimated) state matrices, 
which is then used to set the feedback controller e.g. as 

( ) ( )Tu t t τ= − +K x⌢ ɶ  where 1n×∈K R  is the controller gain 

matrix, and the superscript “T” means the matrix transpose. 
The corresponding controller equation in the Laplace 
transform (with zero initial conditions) reads 
 

( ) ( )( ) ( ) ( )1T T1 e e
s

s U s s
τ τ− − − − − − = − 

 

I A AK I A I B K X
ɶ ɶ ɶ ɶɶ ɶ , (3) 

 
which indicates the compensation behavior and a link to (1) 
via the difference term on the left-hand side of (3). 

This contribution intends to provide the reader with a simple 

algebraic-based controller structure design method that yields 
a compensation-type infinite-dimensional controller for 
systems with input and/or state delays. The work is motivated 
by the intention to acquire mainly engineers and practitioners 
with an uncomplicated methodology of control design for 
delayed systems and to suggest some possible controller tuning 
ideas. Once the general control law is found, we perform 
several well-established tuning rules and methods to set 
adjustable parameters based on the dynamic properties of the 
controlled system and the controller. Namely, three study cases 
are presented for controlled processes with input and state 
delays: the first-order (of inertia) stable and unstable case, and 
the second-order stable case. Since the designed controllers for 
the first case have (after a trivial approximation) the PI 
structure, the habitual Chien-Hrones-Reswick (CHR) method 
[24] and the Equalization Method (EM) [25] (also called as 
the balanced one [26]) are utilized for the simplicity. It is i.a. 
shown by example that the derived controllers are very close 
to both the tuning rules, in some sense. In the second-order 
case, both the methods are applied again, and it is found here 
that the use of the corresponding purely PID controller for the 
CHR method leads to an unstable closed-loop feedback. Since 
the designed infinite-dimensional controller for the unstable 
case is no longer of a PI(D) type, we decided to tune it by the 
application of the Quasi-Continuous Shifting Algorithm 
(QCSA) [27] to feedback poles loci of an infinite spectrum. 
Here, a comparison of the triple dominant root setting and the 
spectral abscissa minimization (which is very close to the 
double dominant root setting) is made. Finally, the robustness 
of controller design and tuning is benchmarked via some 
perturbations in the static gain and delays of the controlled 
plant. Several performance and control-quality measures 
quantify these results. 

Notation: C , R , denote the set of complex numbers and 

real numbers, , respectively. nR  expresses the n-dimensional 

Euclidean space, n m×
C  is the set of all complex-valued 

matrices of the dimension n m× . The set of real polynomials 

is denoted as [ ]sR , and the set of quasipolynomials as [ ]Qr s , 

i.e. ( ) [ ]Qq s r s∈  if ( )
0 0

ei ij
n k sn i

iji j
q s s q s τ−

= =
= +∑ ∑  where 

ijq ∈R , 0 0iτ = , else 0ijτ ≥ . ( ){ }0 : | Re 0s s− = ∈ <C C  where 

( )Re s  means the real part of s ∈C . Let 

( ) :F s s F∈ ∈֏C C , then ( ) ( ){ }: :H F s F s∞ ∞
= < ∞  

where ( ) ( )sup
s

F s F s+∈∞
=

C
. 

II. PRELIMINARIES 

A. Controller Structure Design  

Consider the simple feedback loop (as in Fig. 2) with the 
linear delayed controlled plant governed by the transfer 
function ( ) ( ) ( )sAsBsG /=  where ( )sA , ( )sB  are coprime 

elements of the ring QMR  defined as follows [28], [29]: 
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Definition 1. (RQM ring). ( ) ( ) ( ) QMdn RststsT ∈= /  where 

( ) ( )0 e s
n nt s t s τ−= , ( ) ( ) [ ]0 ,n d Qt s t s r s∈ , 0≥τ ; ( ) ∞∈ HsT , 

and it is formally stable (i.e., all infinite chains of vertical 

poles are located in 0
−

C ). 

Proposition 1. (RQM divisibility). Any 

( ) ( ) ( )1 1 1/n d QMT s t s t s R= ∈  divides 

( ) ( ) ( )2 2 2/n d QMT s t s t s R= ∈ , if and only if all finite zeros 

+∈ 0Ciz  of ( )sT1  are those of ( )sT2 , the relative order of  

( )sT1  is less or equal to the relative order of ( )sT2 , and all 

formally unstable factors of the numerator of ( )sT1  are those of 

( )sT2 . 

Let the reference signal and the load disturbance be ( )tr , 

( )td  , respectively. The control system is stable if and only if 

 
( ) ( ) ( ) ( ) 1=+ sQsBsPsA , (4) 

 
where ( ) ( ) QMRsPsQ ∈,  are coprime numerator and 

denominator, respectively, of the controller ( )C s . Once a 

particular solution ( ) ( ){ }sPsQ 00 ,  of (4) is found, ( )tr  is 

asymptotically tracked and ( )td  is attenuated if 

 

( ) ( )
( )

( ) ( )
( )

QM
R

QM
D

A s P s
R

F s

B s P s
R

F s

∈

∈
, (5) 

 
where ( )sFR , ( ) QMD RsF ∈  are factorized denominators of 

( ) ( ) [ ], Qr s d s r s∈ , respectively. Conditions (5) are ensured 

via the parameterization 
 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )sBsTsPsPsAsTsQsQ ∓00 , =±=  (6) 

 
where ( ) QMRsT ∈  is arbitrary, see [29] for further details and 

references. 

B. PID Tuning Rules for CHR and EM  

Let the plant model be of the FOPTD form 
 

( ) e

1

s
PK

G s
Ts

τ−

=
+

ɶ

. (7) 

 
Consider the known PID controller as 

 

( ) 1
1

1
D

C
I F

T s
C s K

T s T s

 
= + + + 

, (8) 

 

where IT , DT , FT  mean, respectively, the integrative, 

derivative, and filter time constant with F DT T≫ , and CK  

represents the controller gain. Obviously, if 0DT = , the PI 

controller is obtained. 
The PI and PID tuning rules according to the well-known 

CHR method for FOPTD model read, respectively, 
 

7 6
,

20 5C I
P

T
K T T

K τ
= =

ɶ
, (9) 

3
, , 0.5

5C I D
P

T
K T T T

K
τ

τ
= = = ɶ

ɶ
. (10) 

 
The EM (also called as the balanced tuning) aims to 

minimize the total variation of the control action, ( )tu , in 

order to provide the control response, ( )ty , as close to the 

plant response as possible by means of constrains of weighted 
moments of the controller output. The PI tuning rule for the 
controlled plant model (7) is the following 
 

( ) ( )2 2
1 1 1 1

,
2 2C I ar

P

K T T
K

θ θ+ − + −
= = , (11) 

 
in which / arTθ τ= ɶ , where arT  expresses the average residence 

time; it holds that arT T τ= + ɶ  for (7) [25]. 

The PID rule for a general linear system with input delay τ  is 
more complex: 

 

( )
( ) ( )

2

2

2

1 1 1 2 2
,

1 1 2

0.5 1 1 2 2 ,

,

C
P

I ar

I aa ca ar I cr cr
D

I

K
K

T T

T T T T T T T
T

T

θ θ
θ

θ θ

 + + −
 =
 + + 

= + + −

− − + +
=

 (12) 

 
where 
 

( ) ( ) ( )

( )
( ) ( )

0

0

2

, ,

, d / d ,

1 1 ,
2

0.5 2
1 1 .

3

P
ar s

P

s
aa

ar

cr P C
I

ca P C
ar I

G s K
T X s X s

K s

X s
T X s X s s

T

T K K
T

T K K
T T

ττ

τ τ

=

=

−
= − =  

′   ′= =

  
= − +   

  

  
= − +   

  

 (13) 

 
Note that the EM for a FOPTD model tries to keep the 

Integral Time Absolute Error (ITAE) and the Integral Time 
Absolute Derivative (ITAD) almost equal, i.e. 
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( ) ( )
0 0

d dIt e t t T t e t t
∞ ∞

≈∫ ∫ ɺ . (14) 

 

C. PID Tuning Rules for CHR and EM  

Let the characteristic quasipolynomial ( )p,s∆  include the 

number n of adjustable parameters [ ] nT
nppp R∈= ,..., 21p . 

The goal of the QCSA is to iteratively shift a selected subset 

is , of the (dominant) spectrum to updated desired loci iσ  via 

the sensitivity matrix nnsp×∈CS  as 
 

σSp ∆=∆ + , (15) 

 
where the ith element of σ∆  is iii s δσ −= , for some 

sufficiently small 0>iδ , and the (i,j)th entry of S means 

ji ps δ∂ . Usually, one wants to reach the minimum spectral 

abscissa or to get the apriori described poles loci. Note that the 
double pair of dominant poles is a typical result of the IAE 
optimization of delayed PID control loops [18], and the triple 
real pole dominant setting results in nearly optimal solution in 
the sense of the optimal nominal tuning for precisely known 
systems and the optimal robust PI tuning for systems with 
uncertainties [30]. 

III.  STUDY CASES 

A. First Order Stable Plant  

Let the controlled process be governed by  
 

( ) ( )

( )

( )
( )

( ) ( )

e

e

e e

, ; 0,0 0.5 ,

s

s

s s

QM

b

m s B sb
G s

A ss a s a

m s

A s B s R a

τ

τ

ϑ ϑ

τ ϑ π

−

−

− −= = =
+ +

∈ ≥ < <

, (16) 

 
where the condition for ϑ  ensures the system stability, and 

( )tr , ( )td  be step-wise functions, i.e. 

( ) ( ) ( )/R D fF s F s s m s= = . Then, ( ) ( ) [ ], f Qm s m s r s∈  can 

be an arbitrary stable (quasi)polynomials of degree one; for the 

simplicity, say ( ) ( ) , 0fm s m s s λ λ= = + > . A stabilizing 

particular solution of (4) is e.g., 
 

( )0 0

e
1,

e

s

s

s b
Q P s

s a

τ

ϑ
λ −

−

+ −= =
+

, (17) 

 

If ( )T s  - according to (6) - is chosen as 

 

( ) ( ) ( )0 0, 1
e s

s
T s T s T s

bs a ϑ
λ λ

−

+  = = − +  
, (18) 

 

one obtains the controller 
 

( ) ( )
e

1 e

s

s

s a
C s

b s

ϑ

τ

λ
λ

−

−

+=
+ −

 (19) 

satisfying conditions (5) in a simple form. 
 
It can be easily verified that 

 

( ) ( )
( )

( )exp
RY

Y s s
G s

R s s

λ τ
λ
−

= =
+

 

 

where  ( ) ( ) ( )/R s r s m s= . Controller (19) is of a 

compensation (predictor) type, see (1), (3) for the comparison. 
Note that the use of (1) in the nominal case yields 

( ) ( )
0SC s C s

τ =
=    , which is a finite-dimensional yet delayed 

PI structure. 
To apply the EM and CHR tuning principles, let us use the 

following trivial approximation of ( )C s  

 
0ϑ τ= → , (20) 

 

which gives the approximating PI controller ( )C s  of structure 

(8) with 
 

1
,C IK T

b a

λ= = . (21) 

 
Moreover, the tuning rules (9), (11) require the knowledge 

of T  in model (7). In fact, (16) is infinite-dimensional 
allowing complex poles. A possibility is to take the time 
constant as 

 

 
0

1
T

s
=  (22) 

 
where 0s  means the dominant (rightmost) pole. 

Proposition 2. The explicit PI tuning rules for (19) under 
the approximation (20) according to the CHR method and EM 
for CK  are, respectively, 

 

7

20

aTλ
τ

= , 
( )( )2

1 1

2

a θ
λ

+ −
= . (23) 

 
Proof. Assume τ τ=ɶ , and it holds that /PK b a= . Then, 

the comparison of (20) with (9) and (11) for CK  gives (23) 

directly, while IT  is fixed as in (21). ■ 

Proposition 3. Consider the mutual relations between 
,C IK T  the CHR method and EM, and let IT  is given by (21). 

Then, the explicit PI tuning rules for (19) under the 
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approximation (20) according to the CHR method and EM are 

 
7 1

,
24 T

λ λ
τ τ

= =
+

, (24) 

 
respectively. 

Proof. Let τ τ=ɶ  again. Assume conditions (9) first. If IT  

from (9) and (21) are matched, one gets 15 / 6T a−= , which is 
then substituted to CK  in (9) for /PK b a= , giving rise to 

 
7 1

24CK
bτ

= . (25) 

 
Eventually, the matching of (21) and (25) for CK  yields 

(24). The same procedure is applied to (11) and (21) to get the 
right-hand formula in (24). ■ 

Remark 1. Unlike ( )RYG s , the control system itself is 

infinite-dimensional since the characteristic quasipolynomial 

includes the factor e ss a ϑ−+  due to (16). 
Remark 2. Clearly, there is a single tunable parameter λ  for 

two controller parameters to be determined. However, any 

attempt to set ( )T s  does not solve the problem. For instance, 

if ( ) ( ) ( )0 1 0 /T s t s t s λ= + +  for some suitable real-valued 

0 1,t t , it results in the controller of a PID type, not a PI one. 

Remark 3. Let us make a note on the closeness of the fixed 
value of IT  determined by (21) to those required by the CHR 

method and EM given by (9) and (11). Under the 

approximating assumption (20), it holds that 1T a−= ; hence, 
conditions (9) and (11) read 

 
6 1 1

,
5I IT T

a a
= = , (26) 

 
respectively. Contrariwise, whenever ϑ τ= → ∞ , all the 
values of IT  approach infinity. Thus, it is evident that all the 

limit values are very close to each other and the proposed 
design method almost meets the requirements of the EM and 
the CHR method. 

B. Second Order Stable Plant  

Consider the same external inputs as in subsection II-A. Let 
the stable plant model be factorized as 

 

( ) ( ) ( )
( )

( )( )
( )

1 2 1 2

1 2

e

e
,

e e

0,0 0.5 , 0,

s

s

s s

b

m sb
G s

s a s a s a s a

m s

a a

τ

τ

ϑ ϑ

τ ϑ π

−

−

− −
= =

+ + + +

≥ < < >

 (27) 

 

where ( )m s  is a second-order stable (quasi)polynomial. 

Let us select two options as follows: ( ) ( )2

1m s s λ= +  and 

( ) ( )( )2 1 2m s s sλ λ= + + . Then, a solution of (4) reads 

 

( ) ( )
( )( )0 0

1 2

e
1,

e

s

s

m s b
Q P s

s a s a

τ

ϑ

−
⋅

−

−
= =

+ +
 (28) 

 
that can be parameterized by (6) to satisfy (5) via the setting 
 

( ) ( )11T s A s
b

λ − 
= − 
 

ɶ
, (29) 

 

where either 2λ λ=ɶ  or 1 2λ λ λ=ɶ , respectively, which yields 

 

( ) ( )( )
( )

1 2

2

e

1 e

s

s

s a s a
C s

b s s

ϑ

τ

λ
λ λ

−

−

+ +
=

+ + −

ɶ

⌣
ɶ

, (30) 

 

where 2λ λ=
⌣

 or 1 2λ λ λ= +
⌣

. 

Then ( ) ( )e /s
RYG s m sτλ −= ɶ  and ( ) ( )

0SC s C s
τ =

=     again, 

for the exact plant model. By applying (20) to (30), we have 
 

( ) ( )( )
( )
1 2s a s a

C s
b s s

λ
λ

+ +
=

+

ɶ

⌣ . (31) 

 
Proposition 4. The controller gain, integrative, derivative 

and filter time constants for (31) are, respectively, 
 

( )( )

( )( )
( )( )

2 1 2 1 2

1 2

1 2

2 1 2

1
, ,

1
, .

C I

D F

a a a a a
K T

a ab

a a
T T

a a a

λ λ λ

λ λ

λ λ

λλ λ λ

+ − +
= = −

− −
= =

+ −

⌣ ⌣
ɶ

⌣ ⌣

⌣ ⌣

⌣⌣ ⌣ ⌣

 (32) 

 
Proof. Formula (8) can also be expressed as 

 

( ) ( ) ( )
( )

( ) ( ) ( )

2

2

1 1

1

1

1

I D IF F
C

I F

I F

C I IF D F D F D

F

F

T s T T sT s T s
C s K

T s T s

T T
s s

K T TT T T T T T

T
s s

T

+ ++ +
=

+
++ +

+ + +
=

 
+ 

 

 

 
that implies – by its matching with (31) – the following set of 
algebraic equations 
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( )
( )

( )

1 2

1 2

, ,

1 1
, .

C F D I F

F I F D

I FF D

K T T T T
a a

b T T T T

a a
T TT T

λ

λ

+ +
= + =

+

= =
+

ɶ

⌣
 

 
After some algebra, the solution of this set gives (32).  ■ 
Tuning rules (10) and (12) are then applied to (32) to get λ  

or the pair 1 2,λ λ ; however, an explicit (analytic) form cannot 

be obtained. Obviously, there are three conditional equations 
for one or two unknowns, and the filter constant is fixed from 
(32). 

Remark 4. The FOPTD model (7) is necessary for the CHR 
tuning method again. Here, one can adopt the idea introduced 
e.g. [31], according to which T  is given by (22) and 
 

1

1

s
τ τ= +ɶ , (33) 

 
where 1s  means the second most dominant pole of (27). Note, 

moreover, that 1 1
1 2arT a a τ ϑ− −= + + −  for (27), see (13). 

C. First Order Unstable Plant  

Assume the model (16) yet with ( )0,0.5aϑ π∉ . Whenever 

( )m s  is taken as in subsection III-A, the solution of (4) is 

excessively complicated due to RQM conditions (see Definition 
1).  

To avoid this, let 
 

( ) e es sm s s a bϑ τλ− −= + + , (34) 

 
where λ  is the tunable parameter. Note that necessary and 
sufficient stability conditions for (34) were explicitly derived 
e.g. in [32]. Apparently, the pair 0 01,Q P λ= =  is a stabilizing 

solution of (4) that can be parameterized by the option 
 

( ) ( )0
0

0

, 0
m s

T s
b s

λ λ
λ

= >
+

, (35) 

 
which gives rise to the controller transfer function 
 

( ) ( )
( )

0 0 0

0

e1

1 e

s

s

b s b a
C s

b s

ϑ

τ

λ λ λλ λ
λ

−

−

+ + +
=

+ −
. (36) 

 
The characteristic quasipolynomial then reads 

 

( ) ( )( )0 0, ,s m s sλ λ λ∆ = + . (37) 

 

Note that ( ) ( ),S RYC s G s  are no longer finite-dimensional. 

The use of the QCSA is very simple here since ( )m s  has only 

one unknown parameter to be determined, and the remaining 

factor in ( )s∆  is a polynomial. In order to avoid the influence 

of the pole 0λ− , it must hold that ( )0 0,Re 0msλ− <≪  where 

0,ms  means the rightmost root of quasipolynomial ( )m s . 

IV. NUMERICAL EXAMPLES 

The presented numerical (simulation) examples are aimed to 
verify the performance of the designed compensating 
controllers (19), (30), (36) and their tuning rules in the 
nominal case and for some selected perturbations. A 
benchmark with the direct use of CHR and EM tuning laws 
(9)-(13) for simple PI(D) feedback controllers is also given to 
the reader. 

The following performance measures are utilized: If 

( ) const.r t r= =  and ( ) 0d t = , let us define 

 

( ) ( )

( )
( ){ } ( )

( )

0

0

95, 0 0 0

0

: max / ,

IAE : d ,

: max : 0.05 , while 0.05 , ,

IAID : d .

r e t

r

r

r

e e t r

e t t

T t e t r e t r t t

u t t

<

∞

∞

∆ =

=

= = < ∀ >

=

∫

∫ ɺ

 

 

Once ( ) 0d t ≠  enters to the control system, values 

95,, , IAE , IAIDd d d de T∆  are defined analogously as the control 

reaction measures to the disturbance. 

A. Example 1  

Consider system (16) with the nominal parameters 0.2a = , 
0.6b = , 4τ = , 0.8ϑ = . The system dominant pole equals 

0 0.2429s = − , i.e. 4.117T = . The CHR and EM tuning rules 

(9) and (11) yield requirements 0.2095, 5.1026C IK T= =  and 

0.1201CK = , 4.9409IT = , respectively. Clearly, the actual 

fixed 5IT =  according to (21) is very close to the required 

values; thus, controller (19) implicitly satisfies both the tuning 
rules, in some sense (see Remark 3). Regarding controller 

parameter λ , formulas (23) give 27.205 10λ −= ⋅  and 

0.1257λ = , respectively, whereas (24) yields 27.292 10λ −= ⋅  
and 0.1232λ = , respectively. The EM does not prove the 
equality (14) since ITAE = 107.47, ITAD = 66.27 for 

0.1257λ = . Note that the use of the pure PI controller with 
the required constants according to the EM gives ITAE = 
44.11, ITAD = 52.12. By simulations, we found that the 
condition (14) is satisfied for 0.2151λ =  (ITAE = ITAD = 
49.11) - it i.a. means that the controlled output is close to the 
step response of the plant, see Fig. 3 for the comparison. 

Simulation results (for ( ) ( ), 75r t d tη η= = −  where ( )tη  

is the Heaviside function) are compared in Table I. The beast 
and the worst cases are highlighted in green and red, 
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respectively. Since the controller is parametrized only by using 
λ , only some its values are chosen. The table also contains 
results when using pure PI controllers set by the EM and the 
CHR rules. Notice that the higher λ  implies the faster response 
with better disturbance attenuation yet with more aggressive 
control action. Similarly, it can be observed that the PI 
controller set by the EM gives better responses compared to 
that tuned via the CHR method. 

Selected control responses ( ) ( ),u t y t  are displayed in 

Fig. 4a and Fig. 4b, respectively.  
  

Fig. 3 Step response of (16) vs. control responses 
 

Table I. Performance measures – the nominal case – Example 1 

λ  
re∆  95,rT  IAE r  IAID r  de∆  95,dT  IAE d  IAID d  

27.2 10−⋅  0 45.6 17.8553 0.3457 0.2315 37.9 5.4025 0.3327 

0.1257 0 27.8 12.0048 0.3734 0.2168 27.5 3.5866 0.3333 
0.2151 0 17.9 8.7017 0.4466 0.2070 21.8 2.5953 0.3333 

PI-CHR 0 33.8 13.7519 0.3332 0.2244 30.2 4.1173 0.3332 
PI-EM 0.0071 12.6 8.2014 0.461 0.2126 19.7 2.4355 0.3392 

  

  
 (a) (b) 

 
Fig. 4 Selected nominal control responses u(t) (a), y(t) (b) – Example 1 

 
Now, consider the following perturbation in the controlled 

plant 
 

0.2a = , 0.66b = , 4.8τ = , 0.72ϑ = , (38) 
 
i.e., the 20% error in the input-output delay and the 10% error 
is the static gain and the internal delay, while its model is 
assumed as in the nominal case. Corresponding performance 

measures for the calculated controllers are benchmarked 
against each other in Table II, and control responses are 
displayed in Fig. 5. For perturbation (38), a very good choice 
is represented by the found balanced value 0.2151λ =  (in the 
sense of EM). A lower value of λ  gives a slower control 
response, while the direct PI design via the CHR method 
yields an aggressive yet not very fast response.  

Table II. Performance measures – perturbation (38) – Example 1 

λ  
re∆  95,rT  IAE r  IAID r  de∆  95,dT  IAE d  IAID d  

27.2 10−⋅  0 38 16.2956 0.3163 0.2581 36.1 5.3693 0.3029 

0.1257 1.33·10-4 21.1 10.9222 0.3438 0.2472 26.4 3.5867 0.3031 
0.2151 0.0346 12.8 8.4739 0.5591 0.2393 21 2.6079 0.3101 

PI-CHR 0.1567 21.1 9.674 0.5893 0.2442 19.7 2.6321 0.3452 
PI-EM 0 26.2 12.5153 0.303 0.2538 28.6 4.1137 0.303 
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 (a) (b) 

 
Fig. 5 Selected perturbed control responses u(t) (a), y(t) (b) according to (38) – Example 1 
 

Let us verify the robustness for the opposite perturbation in 
the plant parameters, i.e., 

 
0.2a = , 0.54b = , 3.2τ = , 0.88ϑ = . (39) 

 

The corresponding data can be found in Table III and 
Fig. 6. Now, surprisingly, the direct PI design via the CHR 
method seems to be the best choice. However, a compromising 
solution is 0.1257λ =  obtained from the EM as in (23). 

Table III. Performance measures – perturbation (39) – Example 1 

λ  
re∆  95,rT  IAE r  IAID r  de∆  95,dT  IAE d  IAID d  

27.2 10−⋅  0 53.8 19.6794 0.3804 0.2096 39.9 5.5055 0.3689 

0.1257 0 34.4 13.322 0.4242 0.1887 28.6 3.5916 0.3703 
0.2151 0 23.9 9.6599 0.5713 0.1766 22.6 2.5947 0.3704 

PI-CHR 0 22.2 9.0702 0.3901 0.1826 20.6 2.4357 0.3704 
PI-EM 0 40.7 15.2378 0.3696 0.1977 31.7 4.1387 0.37 

 

  
 (a) (b) 
 

Fig. 6 Selected perturbed control responses u(t) (a), y(t) (b) according to (39) – Example 1 
  

B. Example 2  

Let (27) be with the nominal parameters 1 0.2a = , 2 0.5a = , 

0.6b = , 4τ = , 0.8ϑ = . System dominant poles then equal 

0 0.2429s = − , 1 0.5s = − , i.e. 4.117T =  and 6τ =ɶ  (for the 

CHR method) in the accordance to (22) and (33), respectively. 
Conditions (10) in the sense of the CHR method require the 

following data: 
 

0.0686, 4.117, 3C I DK T T= = = . (40) 

By comparison of (40) and (32) with ( )1m s , the following 

values in the sense of the CHR method are, respectively, 
obtained: 0.1891λ = , 0.1734λ = , , 0.0851λ = . Note that 
rules for CK  and IT  are close to each other since when CK  is 

required as in (40), one can simultaneously compute from (32) 
that 4.3553IT = . 

From (12) for the EM, we get the following values: 
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0.1057, 6.9318, 1.849C I DK T T= = = . (41) 

 
Again, by the matching (41) and (32), we have: 0.2526λ = , 

7.3324λ = , 0.0882λ = , respectively. 

If ( )2m s  is considered, the matching of pairs 

{ } { }, , ,C I C DK T K T  for the CHR method yield, respectively: 

1,2 0.1734 0.0679jλ = ± , 1,2 0.0851 0.2344 jλ = ± . For the EM, 

one gets the following values: { }1 20.0921, 14.5727λ λ= = , and 

1,2 0.0882 0.2762 jλ = ± . The pair { },I DT T  cannot be compared 

due to the linear dependence of equations. 
Similarly to Example 1, neither compensation controllers nor 

PID controller tuned by the EM satisfy (14). It was found by 
simulations that this condition holds for 1 2 0.3265λ λ λ= = =  

(ITAE = ITAD = 61.66). Corresponding control responses and 
controlled system step response are displayed in Fig. 7. The 
option 0.3265λ =  yields almost identical response to the 
plant step response. 

 
Fig. 7 Step response of (27) vs. control responses 

 
In Table IV, selected corresponding nominal performance 

measures are given, along with the result for the PID controller 
tuned by the EM and the CHR method. The selection can be 

done since ( )1m s  has only a single nonzero real parameter. The 

control responses are further displayed for ( )1m s  in Fig. 8, 

and those for ( )2m s  in Fig. 9. 

 

Table IV. Performance measures – the nominal case – Example 2 

1,2,λ λ  re∆  95,rT  IAE r  IAID r  de∆  95,dT  IAE d  IAID d  

0.0882 0 57.8 26.5506 0.1657 0.5193 61.7 15.9355 0.1653 
0.1891 0 29.3 14.6263 0.1667 0.4624 37.9 8.7452 0.1667 
0.2526 0 22.8 11.9677 0.1712 0.4408 32.7 7.1506 0.1667 
0.3265 0 18.5 10.1756 0.2156 0.4218 29.4 6.0753 0.1667 
7.3324 1.11·10-4 4.7 4.3237 201.0132 0.2871 19.4 2.5637 0.1666 

0.0921, 14.5727 0 36.6 14.9659 4.5211 0.4255 42.5 8.9478 0.1665 
0.0882 ± 0.2762j 0.3668 31.5 12.1113 0.5898 0.4137 29.4 5.1084 0.2824 
0.0851 ± 0.2344j 0.3196 35.8 12.6426 0.465 0.4277 32.6 5.7852 0.2603 
0.1734 ± 0.0679j 3.28·10-4 26.9 14.0597 0.167 0.4622 36.2 8.4017 0.1667 

PID-CHR 0.1118 33 12.7818 0.234 0.4514 27.9 7.005 0.1917 
PID-EM 0 25.2 10.9817 5.9234 0.4012 33.5 6.5586 0.1667 

 

  
 (a) (b) 
 
Fig. 8 Selected nominal control responses u(t) (a), y(t) (b) – Example 2, m1(s) 
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 (a) (b) 
 

Fig. 9 Selected nominal control responses u(t) (a), y(t) (b) – Example 2, m2(s) 
 
The higher value of λ  is, the more aggressive the control 

response is obtained. The use of ( )2m s  brings about a slow or a 

periodic response that can improve the disturbance attenuation 
yet suffers from a reference-response overshoot. If 0.3265λ = , 
the control action is almost constant. Pure PID controllers give 

comparable results to the use of ( )2m s ; the controller designed 

by the EM is more aggressive than that tuned by the CHR 
method with a very high initial control action.  

Let us now perturb the controlled plant such that the model 
differs from the real plant. The perturbation is analogous to (38) 

where 1a a= . The corresponding results are given in Table V 

and Figs. 10 and 11 for ( )1m s  and ( )2m s , respectively. 

Apparently, a value lying between the EM result 0.2526λ =  
and the balanced tuning 0.3265λ =  represents a very good 
tuning choice in the case of perturbation (38). For the option 

( )2m s  and for the use of standard PID controllers, the same 

statements as in the nominal case hold true. Note that the value 
7.3324λ =  causes an unstable feedback. 

Table V. Performance measures – perturbation (38) – Example 2 

1,2,λ λ  re∆  95,rT  IAE r  IAID r  de∆  95,dT  IAE d  IAID d  

0.0882 0.0034 47.6 24.4174 0.1523 0.5693 56.2 16.0164 0.1521 
0.1891 0.0248 23 13.9914 0.1654 0.5191 34.7 8.9936 0.1566 
0.2526 0.0459 17.9 11.9065 0.189 0.4985 30.2 7.4273 0.1611 
0.3265 0.0723 17.8 10.6117 0.2606 0.4805 27.1 6.3525 0.1669 
7.3324 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 

0.0921, 14.5727 0 29.5 13.6185 4.5328 0.4802 39.1 8.9532 0.1515 
0.0882 ± 0.2762j 0.5981 69.1 18.8183 0.8728 0.4603 55 8.21 0.4006 
0.0851 ± 0.2344j 0.5275 64.6 18.3313 0.6709 0.5044 59.9 9.1611 0.3661 
0.1734 ± 0.0679j 0.0415 21.7 13.9055 0.1738 0.519 33.5 8.8265 0.1601 

PID-CHR 0.2312 46.5 14.9993 0.2832 0.5106 43.7 8.6158 0.2105 
PID-EM 0.1349 37.6 12.1762 0.291 0.494 26.5 6.8744 0.1959 

 

  
 (a) (b) 

Fig. 10 Selected perturbed control responses u(t) (a), y(t) (b) according to (38) – Example 2, m1(s) 
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 (a) (b) 
 

Fig. 11 Selected perturbed control responses u(t) (a), y(t) (b) according to (38) – Example 2, m2(s) 
 
Table VI along with Figs. 12 and 13 provide the reader with 

results for perturbation (39). 
For this perturbation, similar statements to perturbation (38) 

can be formulated. Moreover, the periodic 
solutions 1,2 0.0882 0.2762 jλ = ± , 1,2 0.0851 0.2344 jλ = ±  

would be good options as well, especially when rejection the 
disturbance; however, there is a significant overshoot (i.e., 
control error) here. It is also interesting to see the difference 
between these two close settings. Namely, the former option 
provides a relatively fast reference tracking; whereas, the latter 
one reduces the error due to input disturbance more effectively. 
If one compares data in Table VI, it can be observed that a 
complex conjugate pair 1,2λ  with a small non-zero imaginary 

part can enhance performance measures (see 0.1891λ =  versus 

1,2 0.1734 0.0679jλ = ± ). Last but not least, it is worth noting 

that the PID controller designed by the CHR method yields 
acceptable performance for this perturbation. 

C. Example 3  

Assume (16) with 0.2a = − , 0.6b = , 4τ = , 0.8ϑ = . It can 

be proved that ( )m s  as in (29) is stable for 1/ 3 0.564λ< < , 

see [32] for more details, and it has a minimum abscissa 

( )0,Re 0.0794381ms = −  at 0.35486789λ = . This 

quasipolynomial root is simultaneously real and double; 
therefore, the triple real feedback pole is reached when 

0 0.35486789λ = . Let us set 0 1λ =  in (35) to get a double real 

dominant pole, due to a less dominancy of the real pole 1 1s = − . 

Results for both the settings compared to another trial 
(periodic) setting, in the nominal case, are given to the reader 
in Table VII and Fig. 14. Perturbations (38) and (39) are 
benchmarked in Tables VIII and IX, and in Figs. 15 and 16, 
respectively. Note that it is set that ( )125d tη= −  (the 

nominal case), and ( )200d tη= −  (for both the 

perturbations). The value for ITAE is computed by using (14) 
for the disturbance-free case. 

 

 

Table VI. Performance measures – perturbation (39) – Example 2 

1,2,λ λ  re∆  95,rT  IAE r  IAID r  de∆  95,dT  IAE d  IAID d  

0.0882 0 70.5 28.9349 0.1808 0.4783 68.7 16.0691 0.1812 
0.1891 0 37.9 16.2297 0.1851 0.4088 41.7 8.7387 0.185 
0.2526 0 30.8 13.289 0.1897 0.3862 36.1 7.1482 0.1852 
0.3265 0 26.1 11.3 0.2478 0.3664 32.4 6.0745 0.1852 
7.3324 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 

0.0921, 14.5727 0 44.3 16.5619 4.5639 0.3765 46 8.9464 0.1847 
0.0882 ± 0.2762j 0.1609 18.8 8.7793 0.4538 0.3563 20.6 6.5533 0.2273 
0.0851 ± 0.2344j 0.1389 22.3 9.6231 0.3513 0.37 21.8 4.3283 0.2186 
0.1734 ± 0.0679j 0 35.4 15.5981 0.1851 0.4082 39.9 8.3951 0.1851 

PID-CHR 0.0272 19.9 11.833 0.2056 0.3963 29.2 6.1782 0.1908 
PID-EM 0 33.6 12.1768 0.3696 0.3805 34.9 6.5533 0.37 
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 (a) (b) 

 
Fig. 12 Selected perturbed control responses u(t) (a), y(t) (b) according to (39) – Example 2, m1(s) 

 

  
 (a) (b) 

 
Fig. 13 Selected perturbed control responses u(t) (a), y(t) (b) according to (39) – Example 2, m2(s) 
 

Table VII. Performance measures – the nominal case – Example 3 

λ , 0λ   re∆  95,rT  IAE r  IAID r  de∆  95,dT  IAE d  IAID d  ITAE 

0.3549, 0.3549 3.1707 97.4 115.48 4.4721 0.8928 78.3 31.584 1.1706 3574.7 
0.3549, 1 2.3946 91.1 86.48 6.0743 0.6735 71.9 23.169 1.0142 2517.5 

0.4, 1 2.3505 75.6 50.85 6.88 0.5888 50.7 11.717 1.1404 1101.2 
 

  
 (a) (b) 

 
Fig. 14 Selected nominal control responses u(t) (a), y(t) (b) – Example 3 
 

INTERNATIONAL JOURNAL OF MECHANICS Volume 12, 2018 

ISSN: 1998-4448 189



 
 

 

Table VIII. Performance measures – perturbation (38) – Example 3 

λ , 0λ   re∆  95,rT  IAE r  IAID r  de∆  95,dT  IAE d  IAID d  ITAE 

0.3549, 0.3549 4.1958 149.2 107.09 7.8417 1.1210 115.8 31.2291 1.7891 4013.3 
0.3549, 1 3.4249 126.3 80.83 14.8782 0.8556 91.1 23.0724 1.3512 2706.4 

0.4, 1 3.7061 167.5 99.05 19.3616 0.8219 113 21.2443 2.6948 4047 
 

  
 (a) (b) 

 
Fig. 15 Selected perturbed control responses u(t) (a), y(t) (b) according to (38) – Example 3 

 

Table IX. Performance measures – perturbation (38) – Example 3 

λ , 0λ   re∆  95,rT  IAE r  IAID r  de∆  95,dT  IAE d  IAID d  ITAE 

0.3549, 0.3549 3.5936 213.2 201.159 5.8094 0.9802 179.4 53.447 1.6015 10605 
0.3549, 1 2.6654 173.7 125.764 10.0408 0.7011 116.6 31.9775 1.2235 5346.8 

0.4, 1 2.1526 160 79.228 10.7607 0.496 94.9 17.6711 1.286 3231.9 
 

  
 (a) (b) 

 
Fig. 16 Selected perturbed control responses u(t) (a), y(t) (b) according to (39) – Example 3 

 
In the nominal case, advantages of the triple dominant root 

setting (minimizing the spectral abscissa, in addition) have not 
been proofed. A complex conjugate pair of dominant poles, 
contrariwise, gives the best results; except for the smoothness 
of the control action when reference tracking. 

Under perturbation (38), the double real pole with the 
minimum abscissa is definitely the best (sufficiently robust) 
solution. The periodic solution is effective to reject the 
disturbance, yet it is rather aggressive. 

In the sense of selected performance measures, perturbation 
(39) yields results similar to the nominal case. 

V. CONCLUSION 

A comparative study on algebraic-based controller PID-like 
design for time-delay systems followed by the application of 
some tuning techniques has been presented. The obtained 
controllers have a predictor-compensation structure. Three 
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prototypal controlled plants with input-output and internal 
delays have been considered. Explicit controller tuning rules 
have been derived for a stable first-order plant using a simple 
approximation and two well-established tuning principles; 
namely, via the Chien-Hrones-Reswick and the balanced 
(equalization) ones. The same principles have been applied to 
a second order stable plant; however, tuning formulas could 
not be obtained by analytic means. A quasi-continuous shifting 
procedure has been introduced to tune poles loci for the 
feedback loop with an unstable first-order delayed system. For 
all these three cases, extensive numerical examples have been 
presented. Tuning rules for compensation controllers have 
been applied to the nominal case and two selected 
perturbations, and compared to the direct use of standard PI or 
PID controllers. These examples have shown that algebraically 
derived controllers are more robust against perturbations 
compared to standard PI(D) rules. Amazingly, more degrees of 
freedom might not bring better control responses. By using 
several performance measures, we judge that an 
experimentally found balanced tuning (satisfying the equality 
of some integral criteria) represents the best option for stable 
control plants. For the unstable case, the triple real dominant 
roots setting has not proved to be a suitable one; however, a 
double real pole with the minimized spectral abscissa has 
given a robust performance in some sense.  
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