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On Simple Algebraic Control Design and
Possible Controller Tuning for Linear Systems
with Delays

Libor Pek&

conventional control laws for TDSs with significant delay
Abstract—This paper is aimed at possible controller tuning o¥alues (with respect to time constants) can rapidly deteriorate
infinite-dimensional controllers of a predictor (compensator) typthe feedback control performance and may lead to a poor
obtained from an algebraic-based controller structure design methqghiro| response [9], [10]. This is mainly caused by the fact

for linear systems with delays. The design procedure is Simﬁjﬁat the feedback control system is no longer finite-
a

enough so that it can attract practitioners. The controllers are o . . . .
generalized proportional-integral(-derivative) (PI(D)) type after dimensional. It is generally inappropriate to use the

trivial limit approximation, and those obtained for stable controlle§onventional control methods in which the delays are not
processes can be compared to the well-known Smith predicwonsidered in the design.

scheme. Some well-established tuning rules for three study cases argy order to tackle these issues and enhance the overall
then used and compared; namely, the Chien-Hrones-Reswick andg'é‘?formance it is hence necessary to use some advanced

equalization methods are applied for first and second order plal . . . .
with input and state delays, and the quasi-continuous shiftintﬁ:uctural or tuning techniques, or some approximation

procedure with the spectral abscissa minimization versus the tripfg_chniques. To name just a few, the extended Hermite-Biehler
dominant-root setting are used to the unstable first-order case. Thé¥@orem, which expresses the relation between real and
tuning rules are directly applied to PI(D) laws in the simple feedbadfaginary parts of the stable characteristic quasipolynomial

structure as well, which is compared to the results for thgnd their real root that must satisfy a certain interlacing
compensation controllers. The robustness of designed controller%i%perty was used to determinate stability regions in the space

simply benchmarked via some selected perturbations in the stati . . .
gain and both delays. Simulation outputs and performance measu ggl and PID gains in [11], [12], and [13], respectively, or in

are given to the reader to display and quantify the obtained results?orcompi”aﬁon with the Pafjé apprqximation [14]. Rational
clearer comparison. approximations were applied within PI/PID controllers’

algebraic design by using rings of polynomials and stable-
Keywords—Systems with time-delays, PID control, controllerproper rational functions in [15] and [16], respectively.
tuning, dead time compensator, dominant pole, spectral abscissastafios et al. [17] performed the known D-subdivision
simulation. method to declare the exact spectral abscissae in the space of
Pl parameters for first-order linear passive systems with the
closed-loop feedback of neutral type. Optimal and
YSTEMS with input and/or state time delays (Time Delayptimization techniques suggest themselves: the minimization
Systems, TDSs) have paid considerable and well-deservgidthe Integral Absolute Error (IAE) compared to dominant
attention by scientists and engineers during recent decades plle placement was performed in [18]; Srivastava et al. [19]
[2]. The reason is mainly twofold. First, delays are integraJombined the concept of linear quadratic regulator based
part of a multitude of real-world systems and processes [$I/PID tuning method together with the dominant pole
Second, they can effectively approximate the inertia of glacement approach to derive the PID parameters analytically
higher order [4]-[6]. for second order plus time delay systems; several heuristic
Proportional-integral-derivative (PID) controllers have beeglgorithms for tuning of PID controllers for First Order Plus
sufficiently applied in practice for more than seven decadgsme Delay (FOPTD) systems were compared in [20].
and they have remained to be widely used in industry due toAnother possibility is compensate delays to further enhance
their simplicity, satisfactory control effect, robustness angontrol performances. The well-known Smith predictor [21],
reliability [7], [8]. However, it is well-known that the use of[22], see Fig. 1, is the most popular deadtime compensation
scheme. Its compensation nature can be seen from
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where Go(s)e’fs represents the transfer function of thedlgebraic-based controller structure design method that yields
a compensation-type infinite-dimensional controller for

systems with input and/or state delays. The work is motivated
controller in the predictor structure alﬁb(s) is the equivalent by the intention to acquire mainly engineers and practitioners
ith an uncomplicated methodology of control design for
elayed systems and to suggest some possible controller tuning
iigeas. Once the general control law is found, we perform
ggveral well-established tuning rules and methods to set
adjustable parameters based on the dynamic properties of the
controlled system and the controller. Namely, three study cases
are presented for controlled processes with input and state
delays: the first-order (of inertia) stable and unstable case, and
the second-order stable case. Since the designed controllers for
the first case have (after a trivial approximation) the PI
structure, the habitual Chien-Hrones-Reswick (CHR) method
[24] and the Equalization Method (EM) [25] (also called as
the balanced one [26]) are utilized for the simplicity. It is i.a.
shown by example that the derived controllers are very close
to both the tuning rules, in some sense. In the second-order
case, both the methods are applied again, and it is found here

controlled system's modelC;(s) stands for the feedback

controller in the classical simple feedback loop (see Fig.
Notice thatr, e, u, andy stand for the reference, control error,
manipulate input and controlled output signals, respectively,
the figures. However, the Smith predictor is susceptible
stability problems in the face of model imperfections.

controller

Fig. 1 Smith predictor (delay compensator) scheme that the use of the corresponding purely PID controller for the
CHR method leads to an unstable closed-loop feedback. Since
F e u y the designed infinite-dimensional controller for the unstable
C) }—’{ G %—' case is no longer of a PI(D) type, we decided to tune it by the
controller application of the Quasi-Continuous Shifting Algorithm

(QCSA) [27] to feedback poles loci of an infinite spectrum.
Here, a comparison of the triple dominant root setting and the
spectral abscissa minimization (which is very close to the
Fig. 2 Simple negative feedback loop scheme double dominant root setting) is made. Finally, the robustness
of controller design and tuning is benchmarked via some
The finite spectrum assignment (FSA) controller [23]perturbations in the static gain and delays of the controlled
unlike the PID or the Smith predictor, ideally allows to assigplant. Several performance and control-quality measures
of the closed-loop poles arbitrarily. The basic idea of the FS4uantify these results.
is that the state variables are predicted over the delay period byjotation: C, R, denote the set of complex numbers and
using a control law that contains a distributed delay term. FPéaI numbers
instance, for systems with input deldy, the predicted state

XxOR™ reads

, , respectivelR" expresses the-dimensional

Euclidean space,C™™ is the set of all complex-valued
matrices of the dimensionxm. The set of real polynomials

- 0 is denoted afR[s], and the set of quasipolynomials g4s],
2(t+f):eA’x(t)+I_e‘ABBu(t+6?)d6?, 2) I o
- ie. q(s)Org[s] if q(s)=s"+> g e S where

where A, B stand for modeled (estimated) state matricey UR. 7, =0, elser; 20. C, ={s0C|Re(s)< ¢ where
which is then used to set the feedback controller e.g. %&(s) means the real part of sOC. Let

u(t)=-K'x(t+7) where KOR™ is the controller gain

_ _ _ F(s):sOCH FOC, then H, ={F(s):|F(s)], <o}
matrix, and the superscript “T” means the matrix transpose. ©
The corresponding controller equation in the Laplacehere|F(s)| =sup,.|F(s)|.

transform (with zero initial conditions) reads

Il. PRELIMINARIES
(g i\ o(e-A) )“) = T AT
(1 K (g A) (e He v (S) KX (S) 3 A. Controller Sructure Design
Consider the simple feedback loop (as in Fig. 2) with the
which indicates the compensation behavior and a link to (inear delayed controlled plant governed by the transfer
via the difference term on the left-hand side of (3). function G(s) = B(s)/ As) where A(s), B(s) are coprime

This contribution intends to provide the reader with a Simpl&ements of the rin@R,,, defined as follows [28], [29]:
" : :
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Definition 1. (Row ring). T(s)=t,(s)/t,(s)0 Row where where T, T,, T, mean, respectively, the integrative,
t,(s) =t (s)e™, ty(s).ty( )DrQ[s] r>0; T(S)D H_, derivative, and filter time constant witfi. >T,, and K

and it is formally stable (i.e., all infinite chains of verticaléPresents the controller gain. Obviously,Tf =0, the PI

poles are located ifi; ). controller is obtained. . '

i LG i)y L e
T,(S) =ty (S)/ty (S)ORyy » if and only if all finite zeros K. = 7T 6 | ©)

z OC; of T,(s) are those ofT,(s), the relative order of 20Kt S

Tl(s) is less or equal to the relative order 'Qi(s), and all K = 3 T (10)

formally unstable factors of the numeratorTofs) are those of SKeT
T, (s)

. . The EM (also called as the balanced tuning) aims to
Let the reference signal and the load dlsturbance@e

. . . . minimize the total variation of the control action(t), in
d(t) » respectively. The control system is stable if anly if order to provide the control responsye(t), as close to the

( ) ( ) ( ) ( )_ plant response as possible by means of constrains of weighted
Als)Pls)+ Bls)Qls) =1, ) moments of the controller output. The PI tuning rule for the

controlled plant model (7) is the following
where Q(s),P(s)l] R are coprime numerator and

denominator, respectively, of the controll€(s). Once a K _1+(1-8) T o7 1+(1-6)°
particular solution {Q,(s),R,(s} of (4) is found, r(t) is ¢ 2k, 2
asymptotically tracked and(t) is attenuated if

: (11)

inwhich 8=7/T, , whereT, expresses the average residence
( )p(s) time; it holds thafl,, =T +7 for (7) [25].
s) U Rou The PID rule for a general linear system with input delag

(5)  more complex:
( )P s)

DRQM
Rl « o A[1V1r -
Kl 1+v1e 22 )

/—\

where Fq(s),Fo(s)OR,, are factorized denominators of

r(s),d(s)Or,[s], respectively. Conditions (5) are ensuredh =0-5T (1+V I+ ° - 29) , (12)
via the parameterization T = (T, ~Ta _Tca)Tl_ar +(T +T,)T, |
Qls) = Qu(s)£ T(s)Als). P(s) = Ry(s) 7 T(s)B(s) (6) |
where
where T(s)D R,y is arbitrary, see [29] for further details and
references. G(s)-K
. :[-x(s)]szo,x(s):L,
B. PID Tuning Rules for CHR and EM Kps
Let the plant model be of the FOPTD form X'(s
P L O] g)]s-o X' (s) =X (s) /b,
—7s ar
G(s)="=2. @ - [ [z ]J a
Ts+1 T, =7|1-K K. | 1+ — ||,
2TI
Consider the known PID controller as T.= 0.572 [1_ KK (1+£D
ar |
C(s) =K, (1+i+ ToS j (®)
Tis Tes+l Note that the EM for a FOPTD model tries to keep the

Integral Time Absolute Error (ITAE) and the Integral Time
Absolute Derivative (ITAD) almost equal, i.e.
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i “tle btains th troll
'[O t|e(t)|dt =T, '[0 t|e(t)|dt_ (14) ©ne obtains the controller
c(s)=2_srae” )
C. PID Tuning Rulesfor CHRand EM b s+ (1_ e—rs)

Let the characteristic quasipolynomi&l(s, p) include the satisfying conditions (5) in a simple form.

number n of adjustable parameterﬁ:[pl,pz,...pn]T OR".

The goal of the QCSA is to iteratively shift a selected subset
s, of the (dominant) spectrum to updated desired ncvia

It can be easily verified that

Y(s) _ Aexp(-7s)
the sensitivity matrixSO C™™" as Gre (3) R(s)  s+/

Ap=S'As, 15 where R(s)=r(s)/m(s). Controller (19) is of a

compensation (predictor) type, see (1), (3) for the comparison.
Note that the use of (1) in the nominal case yields

sufficiently small 6, >0, and the i(j)th entry of S means Cs(s):[C(s)] W which is a finite-dimensional yet delayed
as/daj . Usually, one wants to reach the minimum spectr?.!I structure =

abscissa or to get the apriori described poles loci. Note that therg apply the EM and CHR tuning principles, let us use the

double pair of dominant poles is a typical result of the IAI?OIIOWing trivial approximation ofC(s)
optimization of delayed PID control loops [18], and the triple

real pole dominant setting results in nearly optimal solution in
the sense of the optimal nominal tuning for precisely knowH =7 — 0, (20)
systems and the optimal robust PI tuning for systems with

where theith element of A is o, =5 -7, for some

uncertainties [30]. which gives the approximating P! controll€(s) of structure
(8) with
lll. Stuby CASES
A. First Order Sable Plant Ke = % T = i (21)
a

Let the controlled process be governed by

i Moreover, the tuning rules (9), (11) require the knowledge
be of T in model (7). In fact, (16) is infinite-dimensional
G(s)= be™ _ m(s) - B(s) (16) allowing complex poles. A possibility is to take the time
s+ae”™ s+ae” A(s) constant as

m(s)
1

A(s),B(s)0Ry,; 720,0<ad< 0.57, T:| | (22)
S

where the condition for? ensures the system stability, and ) )
r(t), d(t) be step-wise functions, i e Wheres, means the dominant (rightmost) pole.

_ _ Proposition 2. The explicit PI tuning rules for (19) under
Fe(s)=Fo () =s/m; (s). Then, m(s),m; (s)0 rQ[s] N the approximation (20) according to the CHR method and EM
be an arbitrary stable (quasi)polynomials of degree one; for thg K. are, respectively,

simplicity, say m(s)=m, (s)=s+1,4>0. A stabilizing

particular solution of (4) is e.g., 2
all+(1-6
A:—;irr,ﬂl: ( (2 )) (23)
s+A-be’
Q,=1P, (s) :—s+ el (17)

Proof. Assumef =7, and it holds that, =b/a. Then,

If T(s) - according to (6) - is chosen as the comparison of (20) with (9) and (11) fét. gives (23)

directly, while T, is fixed as in (21). ]
S+ p) Proposition 3. Consider the mutual relations between
T(S) :TO(S)—s+ae"’5 'TO(S) :[B_ j (18) K., T, the CHR method and EM, and [&t is given by (21).

Then, the explicit Pl tuning rules for (19) under the
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approximation (20) according to the CHR method and EM ar@/here m(s) is a second-order stable (quasi)polynomial.

Let us select two options as followsy (s) = (s+4)° and

A=l p=_t 24
Toa” TT+r] (24) m, (s) =(s+4)(s+4,). Then, a solution of (4) reads
respectively. m(s)-be™

Proof. Let 7 =7 again. Assume conditions (9) first. Q =1LRy(s) :(s+ale"95)(s+a2) (28)
from (9) and (21) are matched, one g&ts 5/6a™*, which is
then substituted td,, in (9) for K, =b/a, giving rise to that can be parameterized by (6) to satisfy (5) via the setting

71 A _

Ke = oabr (25)  T1(s) :[B—lJA '(s), (29)

Eventually, the matching of (21) and (25) fét. yields ) . ) .
where eitherd =A% or 1= ,1,, respectively, which yields
(24). The same procedure is applied to (11) and (21) to get the

right-hand formula in (24). [
) . ) ( "’S) s+a,)
Remark 1. Unlike Gy (s), the control system itself is

s /T +A(1-e")’

U|Lz

(30)
infinite-dimensional since the characteristic quaS|ponnom|aI
includes the factos+ae™” due to (16).

Remark 2. Clearly, there is a single tunable parametefor \whered =21 or A = A+A,.
twi troll t to be det d. H 5

o controller parameters to be determine owever, any Then G, ( ):/]e‘“/m( andC [C Lo again,

attempt to sefl (s) does not solve the problem. For instance,

forthe exact plant model. By applying (20) to (30), we have
if T,(s)=(t,s+t,)/(s+A) for some suitable real-valued P Y appy g( )to (30)

t,.t,, it results in the controller of a PID type, not a Pl one.

Remark 3. Let us make a note on the closeness of the f|xe%
value of T, determined by (21) to those required by the CHR

method_ ar_ld EM givgn by (_9) and (11)._1Under the Proposition 4. The controller gain, integrative, derivative
approximating assumption (20), it holds tiat=a; hence, and filter time constants for (31) are, respectively,
conditions (9) and (11) read

i(s+a1)(s+a2) _ (31)
b

1
Mgt Ty @) fe* Ab e, 1 .
_(ima)ii-a) s >
respectively. Contrariwise, whenevef =1 — oo, all the To=—77 = e W
values of T, approach infinity. Thus, it is evident that all the A (Aa2 +al(/1 az))
limit values are very close to each other and the proposed
design method almost meets the requirements of the EM and™roof. Formula (8) can also be expressed as
the CHR method.
B. Second Order Stable Plant C(s) =K, il S(TFS+1) +(TFS+1) MPULH
Consider the same external inputs as in subsection II-A. Let TIS(TFS+1)
the stable plant model be factorized as 24 T +T; - 1
Ke(T4Ty) T (1) T (T4 T)
be™ T S[S+ 1 j
G(s)=—2° S| C R Te
(s+aie S)(s+a2) (s+aie ”5)(s+a2)
m(s) that implies — by its matching with (31) — the following set of

r20,0<a9< 0574 > 0, algebraic equations
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A Ke (TF +TD) T +T, one unknown parameter to be determined, and the remaining
b T, 4 *a, = T (T +T,)’ factor in A(s) is a polynomial. In order to avoid the influence
aa, = 1 i= 1 of the pole—4,, it must hold that-A, <« Re(soym) < 0 where
T (TF +TD) T S.m Means the rightmost root of quasipolynomia@s).

After some algebra, the solution of this set gives (32).m
Trl:nmg.rjlej (,12) and (12) are tr|1_e_n applllec_l tof(32) todget The presented numerical (simulation) examples are aimed to
or the pair4,,4,; however, an explicit (analytic) form CannOtverify the performance of the designed compensating

be obtained. Obviously, there are three conditional equatiofsntrollers (19), (30), (36) and their tuning rules in the
for one or two unknowns, and the filter constant is fixed frotAominal case and for some selected perturbations. A
(32). benchmark with the direct use of CHR and EM tuning laws

Remark 4. The FOPTD model (7) is necessary for the CHR9)-(13) for simple PI(D) feedback controllers is also given to
tuning method again. Here, one can adopt the idea introduggd reader.

e.g. [31], according to which is given by (22) and

IV. NUMERICAL EXAMPLES

The following performance measures are utilized: |If
r(t)=r =const.andd(t) =0, let us define
rT=r+ E , (33)

where 5 means the second most dominant pole of (27). Note

e = max,,_, [e(t) I,

IAE, := I:|e(t)|dt,

moreover, thall, =a*+a,"+7 -9 for (27), see (13).
Tos, = max{t, Je(t,)| = 0.08} ,whilde(t) < 0.06Lit >t

C. First Order Unstable Plant
Assume the model (16) yet wita?[1(0,0.57) . Whenever |A|Dr3=IO |u(t)|dt

m(s) is taken as in subsection IlI-A, the solution of (4) is

excessively complicated due Raw conditions (see Definition Once d(t)¢0 enters to the control system, values

1). Dey,Tes 4, IAE, IAID ; are defined analogously as the control

To avoid this, let reaction measures to the disturbance.

A. Examplel
Consider system (16) with the nominal parameters0.2,

where A is the tunable parameter. Note that necessary art1)d: 06, 7=4, §=08. The system dominant pole equals

sufficient stability conditions for (34) were explicitly derived § =-0.242¢, |-.e. T= 4'_117' The CHR and EM tuning rules
e.g. in [32]. Apparently, the pai, =1,P, =/ is a stabilizing (9) and (11) yield requirements. =0.2095], = 5.102 and

m(s)=s+ae™+ibe™, (34)

solution of (4) that can be parameterized by the option Kc =0.1201, T, =4.940¢, respectively. Clearly, the actual
fixed T, =5 according to (21) is very close to the required
T(s) :ﬁ m(s) A.>0 (35) values; thus, controller (19) implicitly satisfies both the tuning
b s+, 0 ' rules, in some sense (see Remark 3). Regarding controller

parameter A, formulas (23) give A=7.205110° and

A =0.1257, respectively, whereas (24) yields= 7.292110?

and A=0.1232, respectively. The EM does not prove the

equality (14) since ITAE = 107.47, ITAD = 66.27 for

A =0.1257. Note that the use of the pure PI controller with

the required constants according to the EM gives ITAE =

4411, ITAD = 52.12. By simulations, we found that the

condition (14) is satisfied ford =0.2151 (ITAE = ITAD =

49.11) - it i.a. means that the controlled output is close to the

step response of the plant, see Fig. 3 for the comparison.
Simulation results (for =7(t),d =7 (t-75) where ;(t)

is the Heaviside function) are compared in Table I. The beast

The use of the QCSA is very simple here sim(es) has only and the worst cases are highlighted in green and red,

which gives rise to the controller transfer function

c(s) _1(Ab+4))s+bAj, +ad e (36)
b s+, (1—e’fs) '

The characteristic quasipolynomial then reads
A(s,2,4,) =m(s)(s+4,). (37)

Note that C(s),Gg (s) are no longer finite-dimensional.
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respectively. Since the controller is parametrized only by using

A, only some its values are chosen. The table also contains 37 “,"/':-‘ =
results when using pure PI controllers set by the EM and the 75} .;/ J e E‘i“.f lsfzesr;response J
CHR rules. Notice that the highdr implies the faster response 5 I —-—-PL.EM
with better disturbance attenuation yet with more aggressive ~ | T AZ0218
control action. Similarly, it can be observed that the PI =15/ f:
controller set by the EM gives better responses compared to 1 ,'
that tuned via the CHR method. 0sl

Selected control responses(t),y(t) are displayed in ‘ . ‘ . ‘ .
Fig. 4a and Fig. 4b, respectively. 0 100 20 30 40 50 60 70

Time (s)
Fig. 3 Step response of (16) vs. control responses

Table I. Performance measures — the nhominal case — Example 1

A Ne Tos, IAE, IAID, Ae, Toss IAE, IAID ,
7.2010° 0 0.3327
0.1257 0 27.8 | 12.0048] 0.3734]  0.2168 275 3.5866  0.3333
0.2151 0 17.9 8.7017 | 0.4466] 0.2070 2138 2.5953]  0.333%
PI-CHR 0 33.€ | 13.751¢ | 0.333: | 0.224/ 30.2 4.117¢ | 0.333:
PI-EM 12.€ 8.201: OGN 0.212¢ 19.7 2.435¢ OB

—A=0072 | 041 fi ——A=0.072 |
o X =0.1257 § e A =001257

--—-2=02151 oal i —-=-A=02151] |
——PI-CHR | ] ok —— PI-CHR
—PLEM | —PI-EM
. 0 A A
100 150 0 50 100 150
Time (s) Time (s)
(a) (b)

Fig. 4 Selected nominal control responsgé} (a), y(t) (b) — Example 1

Now, consider the following perturbation in the controlledneasures for the calculated controllers are benchmarked

plant against each other in Table II, and control responses are
displayed in Fig. 5. For perturbation (38), a very good choice
a=0.2,b=0.667r=4.8, $=0.72, (38) s represented by the found balanced value0.2151 (in the

sense of EM). A lower value ofl gives a slower control
i.e., the 20% error in the input-output delay and the 10% errm@rsponse, while the direct Pl design via the CHR method
is the static gain and the internal delay, while its model igelds an aggressive yet not very fast response.
assumed as in the nominal case. Corresponding performance

Table II. Performance measures — perturbation (38) — Example 1

A Ae Tos, IAE, IAID e, Tosa IAE, IAID
7.2M10? 0 0.3029
0.1257 | 1.33-16' 21.1 10.9222 | 0.3438 | 0.2472 26.4 3.5867 | 0.3031
0.2151 | 0.0346 12.8 8.4739 | 05591 | 0.2393 21 2.6079 | 0.3101
PI-CHR 21.1 9.67¢ 0.244: 19.7 2.632:
PI-EM 26.2 125153 | 0.303 | 0.2538 28.6 4.1137 | 0.303
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—A=0.072

e A =0.1257 0.4 —A:o.ozz
—= A= 02151 CAZ01s

——-A=0.2151
— — PI-CHR 0.2 — — PI-CHR
— PI-EM — PI-EM
0
100 150 0 50 100 150
Time (s) Time (s)
(@) (b)

Fig. 5 Selected perturbed control responggs(a), y(t) (b) according to (38) — Example 1

Let us verify the robustness for the opposite perturbation inThe corresponding data can be found in Table Il and
the plant parameters, i.e., Fig. 6. Now, surprisingly, the direct Pl design via the CHR
method seems to be the best choice. However, a compromising

a=0.2,b=0.54, 1=3.2, $=0.88. (39) solution isA =0.1257 obtained from the EM as in (23).

Table IIl. Performance measures — perturbation (39) — Example 1

A JA:) IAID
7.2[103 0 0.3804
0.1257 0 13.322 0.4242
0.2151 0 23.9 9.6599 0.1766 22.6 2.5947 0.3704
PI-CHR 0 22.2 9.070: 0.390: 0.182¢ 20.€ 2.435%
PI-EM 0 40.7 15.2378 | 0.3696 0.1977 31.7 4,1387 0.37

¥
0.2 ——A=0.072 [
: e X =0.1257 04T i
- A =02151 i ATy
0.15 — — PI-CHR 2t 15
0. —— PI-CHR
—PI-EM —PLEM

Time (s)

150

50

100
Time (s)

150

(@) (b)

Fig. 6 Selected perturbed control responggs(a), y(t) (b) according to (39) — Example 1

K. =0.06867T, = 4.117, = (40)
By comparison of (40) and (32) withn (s), the following
gyalues in the sense of the CHR method are, respectively,
obtained: A =0.1891, 1=0.1734, , A =0.0851. Note that
rules for K, and T, are close to each other since wheg is

CHR method) in the accordance to (22) and (33), respectively. i ) )
Conditions (10) in the sense of the CHR method require thgAuired as in (40), one can simultaneously compute from (32)
that T, = 4.3552

following data:
From (12) for the EM, we get the following values:

B. Example?2

Let (27) be with the nominal parameteas=0.2, a, =0.5,
b=0.6, =4, J=0.8. System dominant poles then equ
5 =—0.242¢, 5 =-05, i.e. T=4.117 and 7 =6 (for the
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K. =0.1057T, = 6.9318, = 1.84 (41)

Again, by the matching (41) and (32), we hades 0.2526, T
A =7.3324, A =0.0882, respectively. 6
If  my(s) is considered, the matching of pairs st
{Ke T} {Kc.Tp} for the CHR method yield, respectively: Far
A,=0.1734 0.0679, 4, ,=0.085% 0.2344. For the EM,
one gets the following value$, =0.09214, = 14.5727, and

A, ,=0.0882+ 0.2762. The pair{T,,T,} cannot be compared ] ‘ . ‘ . : .
' 0 10 20 30 40 50 60 70

due to the linear dependence of equations. Time (s)

Similarly to Example 1, neither compensation controllers naig. 7 Step response of (27) vs. control responses
PID controller tuned by the EM satisfy (14). It was found by
simulations that this condition holds for = A, = A, = 0.326E In Table 1V, selected corresponding nominal performance
(ITAE = ITAD = 61.66). Corresponding control responses arfi€asures are given, along with the result for the PIQ controller
controlled system step response are displayed in Fig. 7. TH8ed by the EM and the CHR method. The selection can be
option 4 =0.3265 yields almost identical response to thedone sincem (s) has only a single nonzero real parameter. The

plant step response. control responses are further displayed fqr(s) in Fig. 8,

and those fom, (s) in Fig. 9.

Plant step response
e A= 0.0882
—-—-A=0.2526
— = A=73324 i
7)\] =0.0921, A, = 14.5727

e )\] ,=0.088240.2762j

—-— PID-EM
—— A=0.3265

Table IV. Performance measures — the nominal case — Example 2

A A, Ne Toss IAE, IAID, De, Toss IAE, IAID,
0.088: 0 0.165:
0.189: 0 29.5 | 14.626. | 0.1667 | 0.462: 37.¢ 8.745. | 0.166:
0.2526 0 228 | 11.9677] 0.1712]  0.4408 32.7 7.1506  0.1667
0.326¢ 0 185 | 10.175¢ | 0.215¢ | 0.421¢ 29.4 6.075: | 0.166:
7.332- 111164 |47 4323, ||20M0I8l 0.287: 19.4 25637 | 0.166¢
0.0921,14.5727| 0 36.6 | 14.9659| 4.5211]  0.425% 42.5 8.9478  0.1665
0.0882 + 0.2762/ | JONGO0GN 315 | 121113 05898  0.4137 29.4 5.10
0.0851 + 0.234« | 0.319¢ 35.6 | 12.642¢ | 0.46° | 0.427; 32.€ 5.785: | 0.260:
0.1734+0.067¢ | 3.28-1¢* | 26.€ | 14.059' | 0.16i | 0.462: 36.2 8.4017 | 0.166"
PID-CHR 0.1118 33 127818  0.234  0.4514 27.9 7.005  0.1917
PID-EM 0 252 | 10.981 | 5.923¢ | 0.401: 33.E 6.558¢ | 0.166:
0.6 T T 1.2
—om AN
' —=-A=0.2526
- — A=03265 &
0.4 — A =73324{+ 0.8
—PID-CHR
_ — — PID-EM _
=03 1 =061 1
- - —A=10.0882
o A=10.1891
0.2 1 04} —=-A=0.2526|
e = —— A=0.3265
W v e
— — PID-EM
0 + * 0 + +
0 50 100 150 0 50 100 150
Time (s) Time (s)
(a) (b)

Fig. 8 Selected nominal control responsgs (a), y(t) (b) — Example 2m(s)
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= 0.0021, /\] =14.5727
B )\] L= 0.08824+0.2762]
——- A = 0.0851+0.2344]

— = A, =01734200679 |1 It

A

—PID-CHR
— — PID-EM >
= —— A, =0.0021, A = 145727
) osh 1 A, = 0.0882:£0.2762]
i ' —me X, = 0.0851£0.2344]
W — A, = 01734200679
—PID-CHR
— — PID-EM
0 . ‘ 0 : .
0 50 100 150 0 50 100 150
Time (s) Time (5)
(@) (b)

Fig. 9 Selected nominal control responsg} (a), y(t) (b) — Example 2ng(s)

The higher value ofd is, the more aggressive the controlvhere a, =a. The corresponding results are given in Table V
response is obtained. The usean(s) brings about a slow or a gnq Figs. 10 and 11 fonl(s) and m, (5) respectively.
periodic response that can improve the disturbance attenuatio;\pparently, a value lying between the EM resiilt 0.2526
yet suffers from a reference-response overshoot.40.3265,  ang the balanced tunind = 0.3265 represents a very good
the control action is almost constant. Pure PID controllers giyging choice in the case of perturbation (38). For the option
comparable results to the userof (s); the controller designed m, (s) and for the use of standard PID controllers, the same
by the EM is more aggressive than that tuned by the CHigstements as in the nominal case hold true. Note that the value

method with a very high initial control action. 1 =7.3324 causes an unstable feedback.
Let us now perturb the controlled plant such that the model

differs from the real plant. The perturbation is analogous to (38)

Table V. Performance measures — perturbation (38) — Example 2

A A Ae Tos, IAE, IAID e, Tos IAE IAID
0.0882 0.0034 0.1523 0.1521
0.189: 0.024¢ 23 13.991< | 0.165¢ | 0.519: 34.7 8.993¢ | 0.156¢
0.252¢ 0.045¢ 17.€ 11.906! | 0.18¢ 0.498¢ 30.2 7.427: | 0.161
0.3265 0.0723| 17.8 | 10.6117 | 0.2606 | 0.4805 27.1 | 6.3525 | 0.1669
7.3324

0.0921, 14.57Z 13.618!

0.0882 * 0.276; 69.1 | 18.818 0.460: 55 8.21 0.400¢

0.0851 + 0.2344j  0.5275 646 183313  0.6709  0.5C SO0 ©9.1611 | 0.3661

0.1734 + 0.067¢ | 0.041¢ 217 | 13.905' | 0.173¢ | 0.51¢ 33.F 8.826! | 0.160:
PID-CHR 0.231: | 465 [ 14.999( | 0.283: | 0.510¢ | 43.7 8.615¢ | 0.210¢
PID-EM 0.1349 376 | 121762  0.291 0.49  26.5 6.8744 | 0.1959

— A =0.0882]
= A =0.1891
—-—=- A =0.2526
—— A=0.3265]
—PID-CHR
— — PID-EM

— A =0.0882
----- A=0.18911 |
—-=-A=0.2526
—— A=0.3265
—PID-CHR | |
— — PID-EM

0.05

0 50 100 150 0 50 100 150

Time (s) Time (s)
(a) (b)
Fig. 10 Selected perturbed control responggga), y(t) (b) according to (38) — Exampler#y(s)
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— %, = 00921, A = 145727 161

A, = 00882002762 | | 14t
—omiAp, = 0.085140.2344]
— = A, = 01734£0.0679]

——PID-CHR 1 Lt
= — - PID-EM =

—A

, =0.0921, )\l = 14.5727
..... A

5 = 0.038240.2762]
—im A, = 0.0851402344]
— = A, = 01734:£0.0679]

—PID-CHR
— — PID-EM
100

0 50

100 150 0 50 150

Time (s)

(@)

Fig. 11 Selected perturbed control responggga), y(t) (b) according to (38) — Examplery(s)

Time (s)

(b)

Table VI along with Figs. 12 and 13 provide the reader witbe proved thatm(s) as in (29) is stable fot/3< A< 0.564,
results fqr perturbatlpn (39)', . see [32] for more details, and it has a minimum abscissa
For this perturbation, similar statements to perturbation (38& _ B ; i
can be formulated. Moreover, the periodic e(soym) =-0.079438 A =0.3548678¢ This

solutionsd, , = 0.0882+ 0.2762, A ,=0.0851 0.2344 quasipolynomial root is simultaneously real and double;

would be good options as well, especially when rejection tfiaerefore, the triple real feedback pole is reached when
disturbance; however, there is a significant overshoot (i.ely =0.3548678¢ Let us set4, =1 in (35) to get a double real
control error) here. It is also interesting to see the differendeminant pole, due to a less dominancy of the real gote-1.
between these two close settings. Namely, the former optiRsuits for both the settings compared to another trial
provides a relatively fast reference tracking; whereas, the latiBgriodic) setting, in the nominal case, are given to the reader
one reduces the error due to input disturbance more effectivgy.Taple VIl and Fig. 14. Perturbations (38) and (39) are
If one compares data in Table VI, it can be observed thaty@nchmarked in Tables VIl and IX, and in Figs. 15 and 16,
complex conjugate pair, , with a small non-zero imaginary respectively. Note that it is set thal = ,7(.[_125) (the

part can enhance performance measuresAse6.1891 versus and d :/7(t _200) (for both the

A, ,=0.1734+ 0.067€). Last but not least, it is worth noting ) ] )
' . . perturbations). The value for ITAE is computed by using (14)
that the PID controller designed by the CHR method Yyiel Sr the disturbance-free case

acceptable performance for this perturbation.

C. Example3
Assume (16) witha=-0.2, b=0.6, 7=4, §=0.8. It can

at

nominal case),

Table VI. Performance measures — perturbation (39) — Example 2

A A Ae Tos, IAE, IAID e, Tos IAE IAID
0.0882 0 0.1812
0.189: 0 37.¢ 16.229° | 0.185. [ 0.408¢ 41.7 8.738: 0.18¢
0.252¢ 0 30.€ 13.28¢ | 0.1897 [ 0.386: 36.1 7.148. | 0.185:
0.3265 0 26.1 11.3 0.2478|  0.3664 32.4 6.0745  0.1852
7.3324

0.0921, 14.57Z

16.561¢

0.0882 + 0.276: | 0.160¢ 18.€ | 8779¢ | 0.453¢ | 0.356¢ | 20.€ 6.553: | 0.227:

0.0851 + 0.2344j  0.1389 22.3 9.6231  0.3513 0.3 218 | 43283 | 0.2186

0.1734 + 0.067¢ 0 35.4 | 15.598. | 0.185. | 0.408. | 39.¢ 8.395. | 0.185:
PID-CHR 0.027: 19.€ 11.83¢ | 0.205¢ | 0.396: | 29.2 6.178: | 0.190¢
PID-EM 0 33.6 | 12.1768] 0.3696  0.3805% 34.9 6.55
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0.1 f:

ull)

0.05

— A =0.0882
= A=10.1891
—-—-A=0.2526] |
—— A=0.3265
—PID-CHR
— — PID-EM

50

100 150
Time (s)

(a)
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1k
0.8
=06}
L —A=0.0882] |
04 o A=10.1891
—-—-A=10.2526
0.2 — = A=0.3265] ]
—PID-CHR
— — PID-EM
0 A A
0 50 100 150
Time (5)
(b)

Fig. 12 Selected perturbed control responggga), y(t) (b) according to (39) — Exampler#y(s)

0.7 T 1.2
_)\1 =0.0921, )\] = 14.5727
06 e A, = 0.0882:£0.2762] 1t
05 _._.A]_E—D,DESIiO,BM_]
' R )\”—OI734:EO.0679J 0.8
_ 0.4 —PID-CHR _ .
z — - PID-EM Z 06 X, 00921 A - 145727 2
0.3 ,-'.,- . A] ~ 0.08824+0.2762)
AN o 04r Cos A, = 008512023445
i 7 L}f"’ — = A, = DIT340.0679]
0.1 021§ |—piDcHR
A — — PID-EM
0 t t 0-F * )
0 50 100 150 0 50 100 150
Time (s) Time (s)
(a) (b)
Fig. 13 Selected perturbed control responggga), y(t) (b) according to (39) — Exampler2y(s)
Table VII. Performance measures — the nominal case — Example 3
A A Ae Tos, IAE, IAID, Ae, Tosg IAE IAID ITAE
0.3549, 0.354 .
0.3549, 1 2.3946 91.1 86.48 6.0743 0.6785 719 23.] 1.0142 2517.5
04,1 2.3505 75.6 50.85 0.5888 50.7 11.717 1.1404 | 1101.2
T T 4.5 T T
r —— A=A, = 035486789 al — A= 4,-035486789 | |
—.—.A=035486789, A =1| | .. A=035486789, A =1
L5y o 35 o
__,1—0.4.,\D—I . ——A=04 ,10—I

uld)

Time (s)

(a)

Fig. 14 Selected nominal control respong@s(a), y(t) (b) — Example 3
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Table VIII. Performance measures — perturbation (38) — Example 3

A, IAID ITAE
0.3549, 0.354 7.841; 1.789. | 4013.

0.3549, 3.424¢ 14.878: | 0.855¢ 91.1 23.072:

04,1 3.7061 99.05 0.8219 113 21.2443

— A= ,\0* 0.35486789
—.—. A=0.35486789, ,\0— 11
——A=04, AD— 1

200 250 300 350
Time (s)

(a)

100 150

0 50

400

A=A, = 035486789
S A= 035486789, A =1
——A=04.2,=1

200 250 300 350 400

Time (s5)

(b)

150

Fig. 15 Selected perturbed control responggga), y(t) (b) according to (38) — Example 3

Table IX. Performance measures — perturbation (38) — Example 3

— A= /\0— 0.35486789
——. A=0.35486789, /\0* 14
——A=04, ’lo_ 1

Time (s)

(a)

A2 Ae Toss IAE, IAID, Ae, Toss IAE, IAID , ITAE
0.3549, 0.3549 5.8094

0.3549, : 2.665¢ | 173.i | 125.76: | 10.040¢ | 0.701: | 116. | 31.9775 | 1.228f | 5346.¢

0.4, 1 2.152¢ 16C 79.22¢ 0.49¢ 94.c | 17.671 | 1.28¢ | 3231

— A= /10— (.35486789
—.—. A =10.35486789, /10* 1 |
——A=04, ,\0— 1

200
Time (s)

(b)

Fig. 16 Selected perturbed control responggga), y(t) (b) according to (39) — Example 3

In the nominal case, advantages of the triple dominant rootin the sense of selected performance measures, perturbation
setting (minimizing the spectral abscissa, in addition) have n@9) yields results similar to the nominal case.
been proofed. A complex conjugate pair of dominant poles,
contrariwise, gives the best results; except for the smoothness

of the control action when reference tracking. . A comparative study on algebraic-based controller PID-like
Under perturbation (38), the double real pole with thgesign for time-delay systems followed by the application of

solution. The periodic solution is effective to reject th@ontrollers have a predictor-compensation structure. Three
disturbance, yet it is rather aggressive.

V. CONCLUSION
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prototypal controlled plants with input-output and internall4] A. Roy and K. Igbal, “PID controller design for first-order-plus-

: s : deadtime model via Hermite-Biehler theorem,” Hroc. American
delays have been considered. Explicit controller tuning rules Control Conference, Denver, Colorado, USA, 2003, pp. 5286-5291.

have been derived for a stable first-order plant using a simple; p. postal, F. Gazdos, and V. Bobal, “Design of controllers for processes
approximation and two well-established tuning principles; with time delay by polynomial method,” irEuropean Control

namely, via the Chien-Hrones-Reswick and the balanc(f&EJ Conference (ECC) 2007, Kos, Greece, 2007, pp. 4540-4545.
t

. L . R. Prokop and J.-P. Corriou, “Design and analysis of simple robust
(equalization) ones. The same principles have been applied 0 ¢ontroliers, int. J. Control, vol. 66, no. 6, pp. 905-921, 1997.

a second order stable plant; however, tuning formulas coyld] F. Castafios, E. Estrada, S. Mondié, and A. Ramirez, “Passivity-based PI
not be obtained by analytic means. A quasi-continuous shifting control of first-order systems with /O communication delays: a

. . frequency domain analysidjit. J. Control, in press.
procedure has been introduced to tune poles loci for th%] P. Zitek, J. FiSer, and T. Vyhlidal, “IAE optimization of PID control

feedback loop with an unstable first-order delayed system. For loop with delay in pole assignment spacHrAC-PapersOnLine, vol.
all these three cases, extensive numerical examples have been49. no. 10, pp. 177-181, 2016.

. . ] S. Srivastava, A. Misra, S. K. Thakur, and V. S. Pandit, “An optimal
presented. Tuning rules for compensation controllers ha(;eg PID controller via LQR for standard second order plus time delay

been applied to the nominal case and two selected systems,15ATrans, vol. 60, no. 1, pp. 244-253, 2016.
perturbations, and compared to the direct use of standard P[28t K. Sundaravadivu, S. Sivakumar, and N. Hariprasad, “2DOF PID

; controller design for a class of FOPTD models — An analysis with
PIQ controllers. These examples have showp that algebralpally heuristic algorithms.” ifProcedia Computer Science, vol. 48, 2015, pp.
derived controllers are more robust against perturbations gg.g5

compared to standard PI(D) rules. Amazingly, more degrees[af] O. J. M. Smith, “Closer control of loops with dead tim€iem. Eng.
freedom might not bring better control responses. By USir(E;?Z] Prog., vol. 53, no. 5, pp. 217-219, 1957.
n

| f iud that M. R. Matausek and A. D. Micic, “A modified Smith predictor for
severa performance measures, Wwe judge a controlling a process with integrator and long dead-tifi#eEE Trans.

experimentally found balanced tuning (satisfying the equality  Autom. Contral, vol. 41, no. 8, pp. 1199-1203, 1996.
of some integral criteria) represents the best option for staldl A. Z. Manitius and A. W. Olbrot, “Finite spectrum assignment problem

control plants. For the unstable case, the triple real dominant I)OK: ?ﬁe_'gszw'ltg?%elays"EEE Trans. Autom. Control, vol. 24, no. 4,

roots setting has not proved to be a suitable one; howevena4 K. L. Chien, J. A. Hrones, and J. B. Reswick, “On the automatic control
double real pole with the minimized spectral abscissa has of generalized passive system$rans. Am. Soc. Mech. Eng., vol. 74,

. . no. 2, pp. 175-185, 1952.
given a robust performance in some sense. [25] R. Gorez, and P. Klan, “Nonmodel-based explicit design relations for

PID controllers,”FAC Proc. Val., vol. 33, no. 4, pp. 133-140, 2000.
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