
 

 

  
Abstract—In this paper, an improved technique of a mobile 

robot’s motion control, which is based on a hyperchaotic system, is 
studied. The proposed motion control strategy of the mobile robot is 
based on a chaotic path planning generator in order to cover a terrain 
faster, in regard to other previous works, and also with unpredictable 
way. The simulation results for the proposed motion control strategy 
prove that greater terrain coverage can be achieved. 
 

Keywords—Coverage rate, hyperchaotic system, mobile robot, 
motion controller.  

I. INTRODUCTION 
N the last decades the research field of autonomous mobile 
robots has become a topic of great interest because of its 

ever-increasing applications in various activities. Floor-
cleaning devices, robots for space missions, industrial 
transportation, and fire fighting devices have been developed 
accenting autonomous mobile robots as very useful tools in 
industrial and civil life [1], [2]. Also, many military activities, 
which put human integrity in risk, such as the surveillance of 
terrains, the terrain exploration for explosives or dangerous 
materials and the patrolling for intrusion in military facilities, 
have driven to the development of intelligent robotic systems 
[3]-[5]. 

In all the aforementioned missions robotic systems must 
have some very important features such as the perception and 
identification of the target, the positioning of the robot on the 
terrain and the updating of the terrain’s map. However, the 
most useful feature, determining the success of these military 
missions, is the path planning. For this reason many research 
teams try to find out the way to generate a trajectory, which 
will guarantee that the robot will cover the entire terrain. 

Furthermore, in some cases, such as the case of patrolling 
for intrusion, the path of the robot must be as much difficult to 
be predicted by the intruder as possible. So, the mission of 
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patrolling a terrain with a mobile robot is an issue that has to 
do with finding a plan which must satisfy three major targets: 
the unpredictability of the trajectory, the scan of the entire 
terrain and the fast scanning of the robot’s workplace. These 
are the basic requirements for selecting the most suitable 
autonomous mobile robots for the specific kind of missions.            

These characteristics were the beginning of using nonlinear 
dynamical systems in the development of autonomous mobile 
robots, especially in the last two decades [6]-[8]. As it is 
known, nonlinear systems have a very rich dynamic behavior, 
showing a variety of chaotic phenomena. This chaotic 
behavior is the reason for which nonlinear systems have been 
used in many other engineering fields, such as 
communications, cryptography, random bits generators and 
neuronal networks [9]-[12].  

The aim of using nonlinear systems in autonomous robots is 
achieved by designing controllers, which ensure chaotic 
motion. Signals, which are produced by chaotic systems or 
circuits, are used to guide autonomous robots for exploration 
of a terrain for vigilance, search or de-mining tasks. The main 
feature of chaotic systems, which is the unpredictability, is a 
necessary condition in the previous mentioned tasks. In 
literature well-known chaotic systems, such as Arnold 
dynamical system, Standard or Taylor-Chirikov map, Lorenz 
system, Chua circuit, Logistic map, and other, have been used 
[3], [4], [13]-[18].    

In this work, an improved motion control strategy of a 
mobile robot is studied, in order to generate the most 
unpredictable trajectory as well as the fast covering of the 
whole terrain. This is implemented by using a hyperchaotic 
dynamical system. By sampling signals that are produced from 
the system in various time periods better results can be 
produced in regard to other published relative works.  
The rest of the paper is organized as follows. In the next 
section the basic features of the chosen hyperchaotic system 
are presented. The mobile robot model, which is adopted, is 
described in Section 3. The simulation results of the proposed 
motion control scheme and its analysis are presented in 
Section 4. Finally, Section 5 includes the conclusions of this 
work. 

II. THE SYSTEM 
In 2014, Li and Sprott proposed the 4-D simplified Lorenz 

system (1) with coexisting hidden attractors [19].  
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Also, according to Ref. [19], system (1) has a maximum 

hyperchaotic behavior for a = 2.6 and b = 0.44, where the 
Lyapunov exponents are (LE1, LE2, LE3, LE4) = (0.0704, 
0.0128, 0, −1.0832) and the Kaplan–Yorke dimension is            
DKY = 3.0768. 

In this work a modification of system (1) has been used. The 
new system (2) has been produced by replacing the nonlinear 
term x1x2 in the third equation of system (1) with x1sinh(x2). 
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It can be found that system (2) has no real solutions and thus 

no equilibrium points, when a and b are nonzero. Therefore, 
any attractors of the system are hidden. This means that the 
system has a basin of attraction that does not intersect with 
small neighborhoods of any equilibrium point. This feature 
makes this kind of systems very useful in applications like 
chaotic cryptography or chaotic path planning because it 
increases the system’s unpredictability. 

The bifurcation diagram of the variable x1, for a = 2.6, when 
the trajectories cut the plane x2 = 0 with dx2/dt < 0, as well as 
the spectrum of system’s Lyapunov, by changing the value of 
the parameter b, in order to investigate the dynamics of system 
(2), while keeping the initial conditions as (x1, x2, x3, x4)0 = 
(0.1, 0.2, 0.5, 0.2), are depicted in Fig. (1). So, the proposed 
system (2) is integrated numerically using the classical fourth-
order Runge–Kutta integration algorithm. For each set of 
parameters used in this work, the calculations are performed 
using variables and parameters in extended precision mode. 
Also, the Lyapunov exponents are calculated by using the 
Wolf’s algorithm [20]. 

As it can be seen from the bifurcation diagram (Fig. 1(a)) 
the system has a rich dynamical behavior. There are some 
small windows of limit cycles and big regions of chaos when 
varying the parameter b. Also, other interesting phenomena 
related with chaos, such as quasiperiodic route to chaos as well 
as crisis phenomena are observed. 

The spectrum of the three largest Lyanpunov exponents 
(Fig. 1(b)) confirms the system’s dynamical behavior as it was 
discovered from the bifurcation diagram. Furthermore, system 
(2) exhibits the maximum hyperchaotic attractor, for                
b = 0.144 (Fig. 2), where the Lyapunov exponents are               
(LE1, LE2, LE3, LE4) = (0.3401, 0.0220, 0, −1.8040) and the 
Kaplan–Yorke dimension is DKY = 3.2003, which is greater 
than system’s (1). 
 
 

 
     

 

 
     

Fig. 1 (a) Bifurcation diagram and (b) the spectrum of the three 
largest Lyapunov exponents, of the system (2), for a = 2.6, when 

varying the value of the bifurcation parameter b from 0 to 1.8 

 

 
Fig. 2 System’s (2) hyperchaotic attractor for a = 2.6 and b = 0.144 

in x1-x2 plane 
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III. THE MOBILE ROBOT MODEL 
Many works on kinematic control of chaotic robots are 

based on a typical differential motion with two degrees of 
freedom, composed by two active, parallel and independent 
wheels and a third passive wheel [21]. The active wheels are 
independently controlled on velocity and rotation sense. 

In this work the aforementioned mechanism has been 
adopted for the kinematic control of the robot. So, the 
proposed mobile robot’s motion is described by the linear 
velocity v(t) [m/s], the angle θ(t) [rad] describing the 
orientation of the robot, and the angular velocity w(t) [rad/s]. 
The linear velocity provides a linear motion of the medium 
point of the wheels axis, while the direction velocity provides 
a rotational motion of the robot’s over the same point. In Fig. 3 
the description of the robot motion on a plane is shown. The 
robot’s motion control is described by the following system 
equations: 
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where, {X(t), Y(t)} is the robot’s position on the plane. Also, 
v(t) = 1/2(vr(t) + vl(t)) is the linear velocity of the robot, vr(t) is 
the linear velocity of the right wheel, vl(t) is the linear velocity 
of the left wheel, w(t) = (vr(t) − vl(t))/L is the angular velocity 
and L is the distance between the two wheels. Furthermore, it 
must be mentioned that in the case in which the robot reaches 
the borders of the terrain, the robot stops and waits the next 
direction order to move. 

The mobile robot navigation equations were solved 
numerically by using the fourth order Runge-Kutta algorithm. 
In the equations of linear velocity and angular velocity of the 
robot, linear velocity of right wheel (vr(t)) and linear velocity 
of left wheel (vl(t)) are replaced by chaotic signals x3(t) and 
x4(t), respectively. Then the mobile robot’s equations become: 

 

 
Fig. 3 The description of the robot motion on a plane 
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By combining systems (2) and (3), the following dynamics 

is obtained. 
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The system (6) describes the mobile robot navigation based 

on the new hyperchaotic system (2). 

IV. NUMERICAL SIMULATIONS 
To test the proposed control strategy of a mobile robot the 

results of the numerical simulations are presented in details in 
this paragraph. For this reason the terrain coverage, using the 
known coverage rate (C), which represents the effectiveness, 
as the amount of the total surface covered by the robot running 
the algorithm, is used.  

The coverage rate (C) is given by the following equation: 
 

1

1
( )

M

i
C I i

M =
= ⋅∑         (7) 

 
where, I(i) is the coverage situation for each cell in which the 
terrain has been divided [22]. This is defined by the following 
equation: 

1,    when the cell  is covered
( )

0,    when the cell  is not covered

i
I i

i

= 


       (8) 

 
where, i = 1, 2, ..., M. The robot’s workplace is supposed to be 
a square terrain with dimensions 210m 10m 100m× = . The 
dimension of each cell is 20.25m 0.25m 0.0625m× = . 
Furthermore, a second interesting evaluation criterion is the 
coverage time of the terrain, which is the time or the minimum 
number of robot’s motion commands, in order the entire 
terrain to be covered. 

The chaotic mobile robot trajectories shown in Fig. 4 can be 
obtained by solving the system dynamics (6) by using the 
fourth order Runge-Kutta algorithm, for N = 10,000 iterations 
with step Δt = 0.01 and by taking the parameter values and 
initial conditions as: a = 2.6 and b = 0.144, (x1, x2, x3, x4)0 = 
(0.1, 0.2, 0.5, 0.2), (X, Y, θ)0 = (5, 5, 0) and L = 0.08m. 
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A more clear view in this figure revealed the basic problem, 
which this approach introduces to the robot motion. The robot 
makes many spiral movements, consuming a lot of energy and 
delaying the achievement of its mission, which is to cover as 
much surface as possible in a less time. This problem has also 
been presented in a number of related works [4], [14], [18].  

In this work a relative simple solution to this problem is 
proposed. In order to avoid the autocorrelation of the chaotic 
signals (x3 and x4), which is in fact responsible for this kind of 
motion, the sampling of the signals in various time periods has 
been done. So, in Fig. 5 the color scale maps of the terrain’s 
40 40 1600× = cells versus the number of visiting times for M 
= 10,000 motion commands and for various normalized 
sampling times (every 1, 100, 200, 300, 400, 500 points) are 
presented. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 The mobile robot’s motion path for M = 10,000                        

motion commands 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5 Color scale maps of the terrain’s cells versus the time of visiting for M = 10,000 motion commands and for various sampling times  

(a) 1, (b) 100, (c) 200, (d) 300, (e) 400, and (f) 500 points. White color corresponds to the uncovered cells. 
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The number of the uncovered cells as well as the coverage 
rate after M = 10,000 motion commands, for the chosen 
sampling times, is presented in Table 1. Also, the coverage 
rate versus the number of motion commands, for the robot with 
the proposed chaotic motion controller, is presented in Fig. 6. 
 

Table 1. The number of uncovered cells and the coverage rate in the 
chosen sampling times. 

Sampling 
Time  
(no. of 
points) 

Uncovered 
Cells 

Coverage 
Rate (%) 

1 1,533 4.19 

100 194 87.88 

200 132 91.75 

300 57 96.44 

400 35 97.81 

500 16 99.00 
 

 
Fig. 6 Coverage rate versus the number of motion commands, for the 

various sampling number of points 

V.   CONCLUSION 
In this work an improved chaotic motion controller for a 

mobile robot was presented. For the aim of this approach a 4D 
hyperchaotic dynamical system was chosen. This approach is 
followed in order to generate the most unpredictable 
trajectory, as well as the trajectory with the higher coverage 
rate of a specific terrain. The results of the comparative study 
for various sampling times prove that for the same motion 
commands the coverage rate increases with the increase of the 
sampling time. As a consequence when the sampling time is 
large (the sampling was done every 500 points) almost the 
whole terrain was covered. As a future work the experimental 
study of the specific approach has been planned.  
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