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Abstract—In this paper,we propose a new adaptative Meshfree
Method applied in the boundary layer. Traditional methods such as
MEF (Finite Elements Method), VFM (Volume Finite Method), and
FD(Finite Difference Method) are based on the extraction of too
many parameters, that have an influence in the resulting accuracy
and also in time processing. Only one parameter is used in the
proposed method to compute Meshless nodes which is related to
a local RBF method. Generation of nodes is done using a so− called
”Prandtl equations”. Furthermore, by means of Radial Basis Function
in Finite Difference method(RBF-FD) the generated nodes will be
modeled into independent models: flat plate, and circular disk. This
last, will provide nodes and fluid flow velocity. Experimental results
demonstrate that the proposed Meshless method surpass traditional
methods.

Keywords—Mesh-Free, Meshless, Traditional methods, Prandtl
equation, local RBF, and RBF-FD.

I. INTRODUCTION

MESH-FREE or Meshless method is a new special
category of numerical simulation methods for physics

problems. The principal idea in this method is to treat the
problems without discretization of the domain, and use
only one parameter, which is the scattered-nodes. The main
characteristic and the object of this methods is to facilitate
the resolution of the problems in a large deformation or
with a complex geometry. Moreover, it avoid cumbersome
calculations and remeshing, than the traditional method
such as the Finite Difference method(FD), Volume Finite
method(VF), and the Finite Element methods(MEF).
The study showed the Meshless method to be very reliable
because they offer better approximations of physical problems.
The Meshless have used for the first time in order to solve
polynomial interpolation problems [2] and solve partial
differential equations [13], [12].

However, in our work, we will only present the methods
using the Basis Radial Functions in Finite Difference. The
Radial Basis Function (RBF) is the strongest formulation that
is known by the Kansa [5] method and it is very popular
in the Meshless community. It has different types of Radial
Basis Function (RBF). In this work, we are interested in the
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Multi-Quadric (MQ) functions. It is one type of Radial Basis
Functions (RBF).

The advantages of (RBF) are the simplicity of their
algorithm, implementation, precision, and efficiency.
Although, they have limitations in large-scale applications
because of the dense and bad conditioned coefficient method
when the number of nodes rises [2].

It is for this reason, to overcome the disadvantages of the
overall, the researchers have suggested to use local RBFs. The
local RBFs methods have been invented by different authors
and they have different types of local RBFs. For example,
the local Radial Basis Function Differential Quadrature
method (RBF-DQ), which was proposed by Shu [3], [4], and
the Radial Basis Function of Finite Differences (RBF-FD),
which was introduced by Tolstykh in 2000 [1] and Wright in
2006 [3], who found it very efficient to solve the fluid flow
problems, such as convection−diffusion equations [8], [7],
the incompressible Navier−Stokes equations [4], [6], elliptic
equations [14], Hamilton−Jacobi equations [9], and shallow
water equations [10].

In this paper is organized as follows: In the first part of this
work, we present the Meshless method such as (RBF-FD)
method. Next, in the second, we propose the problem which
will be treated later in the fourth and fifth part. In the fourth
part, they defined the Navier-Stokes where it considered the
laminar boundary layer, Newtonian fluids, incompressible
in (2D) flow over a flat plate and circular disk at zero
degree incidence, with these approximations we obtain the
Prandtl’s equation. After that, the numerical result obtained
will be treated by Matlab for Meshless and will be compared
by Ansys (Fluent) [16]. Finally, we finish my work by a
conclusion.

II. THE FORMULATION OF THE RBF METHOD IN FINITE
DIFFERENCE MODE (RBF-FD)

A. Definition

The RBF-FD method is to approximate the derivative of the
function at a point that is based on the linear combination.

B. The formulation of the Meshless method (RBF - FD) :

In the first order (1D), the classical finite difference method
for each node xi the function u which corresponds to this node
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can be written through the following equation:

dku(xi)

dxk
∼=

N∑
j=1

W k
i,ju(xj) . (1)

where: W k
i,j are the weights coefficients and are computed

by the polynomial interpolation or Taylor series. N are
numbers of nodes which are found in the domain and u(x)
is a function of node xi.

The standard RBF interpolation for a set of distinct points
xj ; j = 1, 2...N is given by [2]:

u(x) =
N∑
j=1

Wjφ(‖x− xj‖) + β (2)

where: φ(‖x − xj‖) is the radial basis function, ‖.‖ is the
euclidean norm between x = (xi, yi) and xj = (xj , yj); the
expension coefficients Wj and β are determined from the
interpolation conditions and the constraints.

The equation (2) was written in the Lagrange by following
form:

u(x) =
N∑
j=1

χ(‖x− xj‖)u(xj) (3)

where the conditions satisfies :

χ(‖x− xj‖) =

 1, if k = j
k = 1, 2, ..., N

0, if k 6= j

The differential operator L at node x1 is given by the
following form:

Lu(x1) =
N∑
j=1

Lχ(‖x1 − xj‖)u(xj) (4)

The RBF−FD weights are obtained by using the equa-
tions(1) and (6):

W
(L)
1,j = Lχ(‖x1 − xj‖) (5)

In the case(2D), the weights are obtained by solving the
following linear system [2], [11] and [10]:

[
φ e
eT 0

] [
W
β

]
=

[
Lφ1
0

]
(6)

where: φ(i,j) = φ(||x1 − xj ||), i, j = 1, 2, .., N , ei =
1, 2, .., N , L corresponding of differential operator, and Lφ1
represents the column vector, Lφ1 = [Lφ||x − x1||||x −
x2||...||x − xN ||]T at node x1 and β is a scalar parameter
whose imposes the condition:

N∑
i=1

WL
1,j = 0 (7)

The linear system can be written by the following equation:

[A][u] = [F ] (8)

The objective is to calculate the matrix, u is the vector
of the unknown function at all the interior nodes, the ma-
trix [A] (must be invertible) which depends on the type of

function(RBF), where the [A] =

[
φ e
eT 0

]
, [u] =

[
W
β

]
and[F ] =

[
Lφ1
0

]
.

III. PROBLEM OF POSITION

Consider the laminar flow of a fluid, the boundary layer
over a flat plate at zero degree incidence with a speed at U∞
and the boundary layer over the circular disk. The Prandtl′s
equation reduced by the Navier−Stokes in the Cartesian
coordinate and in the cylindrical coordinates. Then, try to
solve these equations by the Meshless methods(RBF-FD).

IV. PRANDTL′S EQUATION

A. The boundary Layer

Consider the flow of a fluid with a speed at U∞, and a
temperature T∞ over a flat plate at a temperature Tp. In
the vicinity of the wall where the effects of viscosity have
important and cannot be neglected in all regions. The values of
speed and temperature are different from those of the potential
flow and vary depending on the distance to the wall y. The
zone gradients of speed and temperature is called the boundary
layer. It results from an exchange of momentum and heat
between the fluid and the wall. The thickness is usually small
compared to the entire flow. They have two types of boundary
layer: the dynamic boundary layer and the boundary layer
thermal. In this article, they worked on the dynamic boundary
layer and they nommed Prandtl equation′. It never changed
with the temperature; and as shown in Fig.1.

Fig. 1. Laminar Boundary Layer For Flow over a flat plate
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B. Prandtl′s equation

1) Prandtl′s equation flow over a flat plate: The
fundamental concept of the boundary layer was suggested by
L. Prandtl (1904) [15], it was defined the boundary layer of
fluid developing in flows with very high Reynolds numbers
Re.
Navier−Stokes equations in Cartesian Coordinates (2D):

Continuity equation:

∂u

∂x
+
∂v

∂y
= 0 (9)

Momentum in direction(Ox):

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν(

∂2u

∂x2
+
∂2u

∂y2
) . (10)

Momentum in direction(Oy):

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν(

∂2v

∂x2
+
∂2v

∂y2
) . (11)

where (x, y) are the Cartesian coordinates with the
associated fluid velocities u, v and ρ is the fluid density, p is
the fluid pressure and ν is the kinematic viscosity.
This important assumption reduces the Navier-Stokes
equations yet again. Prandtl used the concept of dimensional
analysis from which he found the similarity parameters.
The Prandtl’s hypotheses are:
•In the boundary layer region the geometric and kinematic
distortions are of the similar order.
•For the longitudinal momentum, pressure and viscosity
forces are of the same order in the boundary layer region
when plotted against nondimensional coordinates.

The Prandtl equation for the 2D of stationary and
incompressible flow are:


∂u
∂x + ∂v

∂y = 0

u∂u∂x + v ∂u∂y = − 1
ρ
∂p
∂x + ν ∂

2u
∂y2

∂p
∂y = 0

. (12)

In the application of the Prandtl model and since the
longitudinal of pressure is constant at the edge of the boundary
layer. The speed for the boundary layer is governed by the
equations : {

∂u
∂x + ∂v

∂y = 0

u∂u∂x + v ∂u∂y = ν ∂
2u
∂y2

. (13)

with the boundary conditions are: u = U∞ , for x = 0
u = v = 0 , for y = 0, x � 0
u = U∞ , for y →∞, all x

. (14)

2) Prandtl′s equation laminar flow over a Circular disk: :
The circular plate of radius to the axial symmetry. The flow
due to a continuous circular disk which associated system of
coordinates.
The Navier-Stokes in Cylindrical Coordinates:
Continuity equation:

1

r

(r∂u)

∂r
+

1

r

(∂v)

∂θ
+
∂w

∂z
= 0 (15)

Momentum in direction(Or):

u
∂u

∂r
+
v

r

∂u

∂θ
+ w

∂u

∂z
− v2

r
= −1

ρ

∂p

∂r
+ ν(

∂2u

∂r2
+

1

r

∂u

∂r

− u

r2
+

1

r2
(∂2u)

∂θ2
+
∂2u

∂z2
− 2

r2
∂v

∂θ
) . (16)

Momentum in direction(Oθ):

u
∂v

∂r
+
uv

r
+
v

r

∂v

∂θ
+ w

∂v

∂z
= −1

r

1

ρ

∂p

∂θ
+ ν(

∂2v

∂r2
+

1

r

∂v

∂r

− v

r2
+

1

r2
(∂2v)

∂θ2
+
∂2v

∂z2
+

2

r2
∂u

∂θ
) . (17)

Momentum in direction(Oz):

u
∂w

∂r
+
v

r

∂w

∂θ
+w

∂w

∂z
= −1

ρ

∂p

∂z
+ν(

∂2w

∂r2
+
1

r

∂w

∂r
+

1

r2
(∂2w)

∂θ2
+
∂2w

∂z2
) .

(18)

where (r, , θ, z) are the Cylindrical Coordinates with the
associated fluid velocities u, v,w and ρ is the fluid density, p
is the fluid pressure and ν is the kinematic viscosity.

Boundary Layer in Cylindrical coordinates:

Consider the flow of a fluid with a speed at U0. In the
vicinity of the wall where the effects of viscosity have im-
portant and cannot be neglected in all regions. The potential
flow and vary depending on the distance to the wall z. The
zone gradients of speed and temperature is called the boundary
layer. It results from an exchange of momentum and heat
between the fluid and the wall. The thickness is usually small
compared to the entire flow. In this article, they worked on the
dynamic boundary layer and they nommed Prandtl equation′

in the circular plate and as shown in Fig.2.
The circular plate of radius to the axial symmetry. The flow

due to a continuous circular plate which associated system of
coordinates.

For the 2D of stationary and incompressible flow are:{
∂(rur)
∂z + ∂(ruθ)

∂z = 0

ur
∂ur
∂z + ν ∂ur∂r = ν 1

r
∂
∂r (r

∂ur
∂r )

. (19)

Let R be the radius of the disk and u0 be the velocity in the
flow. The boundary-layer equations in the case of a circular
plate and where the axymetric ∂

∂θ = 0. The longitudinal
pressure is constant at the edge of the boundary layer. The
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Fig. 2. representative scheme1:circular plate

speed for the boundary layer is governed by the system takes
the form: {

∂(rur)
∂r + ∂(ruz)

∂z = 0

ur
∂ur
∂r + uz

∂ur
∂z = ν ∂

2ur
∂z2

. (20)

The circular disk geometry is shown in Fig.3.

Fig. 3. Flow structure over a Circular Disk

where x = Rcosθ , z = Rsinθ and R =
√
x2 + z2. Since

we are dealing with an axisymmetric flow the problem can be
further simplified by focusing only on the radius of the shape.

V. ADAPTATIVE MESHLESS METHOD (RFD-FD) BASED
ON PRANDTL’S EQUATION

A. Adaptative Meshless method (RFD-FD) based on
Prandtl′s equation flow over a flat plate:

For to solve the equation (9) by Meshless method (RBF-FD)
on Prandtl’s equation is given by:

N∑
j=1

W
(x)
i,j uj +

N∑
j=1

W
(y)
i,j vj = 0 . (21)

where: N is the total number of nodes and boundaries
in the support region for the node xi and W

(x)
i,j , W (y)

i,j , are
the weights coefficients of the RBF-FD; u and v are the
components of the velocity field.

which can be written in matrix form:
W

(x)
1,1 · · · W

(x)
1,N

...
. . .

...
W

(x)
N,1 · · · W

(x)
N,1


u1...
uN

+


W

(y)
1,1 · · · W

(y)
1,N

...
. . .

...
W

(y)
N,1 · · · W

(y)
N,1


 v1...
vN

 =

0...
0

 . (22)

The equation (13) was solving by the Meshless method by:

ui

N∑
j=1

W
(x)
i,j uj + vi

N∑
j=1

W
(y)
i,j vj = ν

N∑
j=1

W
(yy)
i,j uj . (23)

Storing the vector u and v, are given by:

−ui
N∑
j=1

W
(x)
i,j u(xj)+ν

N∑
j=1

W
(yy)
i,j u(xj) = vi

N∑
j=1

W
(y)
i,j v(xj) .

(24)
By writing the preceding equation in matrix as the following

forms:

−


u1W

(x)
1,1 · · · u1W

(x)
1,N

...
. . .

...
uNW

(x)
N,1 · · · uNW

(x)
N,1


u1...
uN

+ ν


W

(yy)
1,1 · · · W

(yy)
1,N

...
. . .

...
W

(yy)
N,1 · · · W

(yy)
N,1


u1...
uN

 =


v1W

(y)
1,1 · · · v1W

(y)
1,N

...
. . .

...
vNW

(y)
N,1 · · · vNW

(y)
N,1


 v1...
vN

 .

(25)

The previous equation is given by :
−u1W (x)

1,1 + νW
(yy)
1,1 · · · −u1W (x)

1,N + νW
(yy)
1,N

...
. . .

...
−uNW (x)

N,1 + νW
(yy)
N,1 · · · −uNW (x)

N,1 + νW
(yy)
N,1


u1...
uN



v1W

(y)
1,1 · · · v1W

(y)
1,N

...
. . .

...
vNW

(y)
N,1 · · · vNW

(y)
N,1


−1

=

 v1...
vN

 . (26)

where: N is the total number of nodes and boundaries
in the support region for the node xi and W

(x)
i,j , W (y)

i,j ,
W

(xx)
i,j andW (yy)

i,j are the weights coefficients of the RBF-FD;
u and v are the components of the velocity field.

B. Adaptative Meshless method (RFD-FD) based on
Prandtl′s equation flow over a Circular Disk:

For to solve the equation (20) by Meshless method (RBF-
FD) on Prandtl’s equation is given by:

ui
r

+
N∑
j=1

W
(r)
i,j uj +

N∑
j=1

W
(z)
i,j wj = 0 . (27)

where: N is the total number of nodes and boundaries
in the support region for the node xi and W

(x)
i,j , W (y)

i,j , are
the weights coefficients of the RBF-FD; u and w are the
components of the velocity field.
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which can be written in matrix form:

1

r

u1...
uN

+


W

(r)
1,1 · · · W

(r)
1,N

...
. . .

...
W

(r)
N,1 · · · W

(r)
N,1


u1...
uN

+


W

(z)
1,1 · · · W

(z)
1,N

...
. . .

...
W

(z)
N,1 · · · W

(z)
N,1


w1

...
wN

 =

0...
0

 . (28)

The second equation of (20) was solving by the Meshless
method by:

ui

N∑
j=1

W
(r)
i,j uj + wi

N∑
j=1

W
(r)
i,j wj = ν

N∑
j=1

W
(zz)
i,j uj . (29)

Storing the vector u and w, are given by:

−ui
N∑
j=1

W
(x)
i,j u(xj)+ν

N∑
j=1

W
(yy)
i,j u(xj) = wi

N∑
j=1

W
(y)
i,j u(xj) .

(30)
By writing the preceding equation in matrix as the following

forms:

−


u1W

(r)
1,1 · · · u1W

(r)
1,N

...
. . .

...
uNW

(r)
N,1 · · · uNW

(r)
N,1


u1...
uN

+ ν


W

(yy)
1,1 · · · W

(yy)
1,N

...
. . .

...
W

(yy)
N,1 · · · W

(yy)
N,1


u1...
uN


=w1

...
wN



W

(z)
1,1 · · · W

(z)
1,N

...
. . .

...
W

(z)
N,1 · · · W

(z)
N,1


u1...
uN

 . (31)

The previous equation is given by :
−u1W (r)

1,1 + νW
(zz)
1,1 · · · −u1W (x)

1,N + νW
(zz)
1,N

...
. . .

...
−uNW (r)

N,1 + νW
(zz)
N,1 · · · −uNW (x)

N,1 + νW
(zz)
N,1


u1...
uN



u1W

(z)
1,1 · · · u1W

(z)
1,N

...
. . .

...
uNW

(z)
N,1 · · · uNW

(z)
N,1


−1

=

w1

...
wN

 . (32)

where: N is the total number of nodes and boundaries
in the support region for the node xi and W

(r)
i,j , W (z)

i,j ,
W

(rr)
i,j andW (zz)

i,j are the weights coefficients of the RBF-FD;
u and v are the components of the velocity field.

VI. NUMERICAL RESULTS

A. Example1

1) Data: Consider the plate length L = 40cm, width l =
10cm. The fluid chosen is air at a temperature of T = 15C
with ρ = 1.225kg.m−3, Uinf = U(initial) = U = 1m/s and
µ = 1.7894∗10−5Pa.s. The speed of airflow around the plate
is chosen so that the Reynolds number inferior of 106(laminar
flow).

Fig. 4. representative scheme

2) Mesh.: The Meshless method is given by the Fig.3 with
the following data :

Number of node (ox): nx = 15, Number of node (oy):
ny = 15, Number of node: N = 225, Density: ρ =
1.225 kg.m−3, initial Vitesse: U = 1 m/s, dynamic viscosity
of the fluid: µ = 1.7894 ∗ 10−5 kg/ms, Reynolds’ Number
: Re = 2.7383 ∗ 104, the plate length L = 0.4 m, width
l = 0.1 m, step of mesh according to the x direction:
dx = L/(nx − 1), step of mesh according to the y direction
dy = l/(ny − 1).

3) Comparing of Results.: Comparing the result between
the Meshless method and the Finite Element Mehod(MEF).

Finite element methods(MEF) results:

In the first Fig.5 the line has inclined in the middle and
in the edge have small elements. In this case, the Node=400
and Elements:360. In the second Fig.5, by remeshing , the
elements have equal, the Node=256 Element=225.
In this work, the Finite Element Method (MEF) have pro-
gramming in ANSYS(Fluent). For mesh, we need remeshing
as shown in Fig.5.

To solve the momentum equation, the Finite Element
Method by Ansys [16] is obtained by the Fig.6.

Meshless results:

The resolution of the meshless method by the continuity
equation is shown in the Fig.7 and Fig.8, and the node is a
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Fig. 5. Mesh of the plate in MEF

Fig. 6. Ecoulement velocity ANSYS

divised uniform.

Fig. 7. mesh of the plate Node number N = 225

By the Meshless method, the momentum equation is pro-
grammed in Matlab, the result obtained is shown in the Fig.9.

Discussion:
The Meshless method proves to be frugal in terms of time

and node, as well as it avoids remeshing compared by a finite

Fig. 8. mesh of the plate Node number N = 225

Fig. 9. Ecoulement velocity by Meshless.

element method which shows errors. The Meshless method
provides precision comparing to the two methods.

B. Example2

1) Data.: Consider fluid flowing through a circular disk
of constant radius as illustrated below. The radius D = 2m.
Consider the inlet velocity to be constant over the cross-section
and equal to u0 = 1m/s. Take density ρ = 1.225 kg.m−3, dy-
namic viscosity of the fluid: µ = 1.7894 ∗ 10−5 kg/ms.Show
Fig.10.

Fig. 10. representative scheme: numerical circular disk

2) Comparing of Results.: Comparing the result between
the Meshless method and the Finite Element Method(MEF).

Finite element methods(MEF) results:
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In this case, the Node=3392 and Elements:2842.
In this work, the Finite Element Method (MEF) have
programmed in ANSYS(Fluent). For mesh, we need
remeshing as shown in Fig.11.

Fig. 11. Mesh of the circular disk in MEF

To solve the mumentum equation, the Finite Element
Method by Ansys [16] are obtained by the Fig.12.

Fig. 12. Ecoulement velocity ANSYS of circular disk

Meshless results:

The resolution of the meshless method by the continuity
equation is shown in the Fig.13, and the node N = 88 is a
divised uniform.

By the Meshless method, the mumentum equation is pro-
grammed in Matlab, the result obtained is shown in the Fig.14
.

Discussion:
The Meshless method proves to be frugal in terms of

time and node, as well as it reduced number of nodes
shown especially in the circular disk compared by a finite
element method which shows more errors in figure 11.

Fig. 13. mesh of circular disk node number N = 88

Fig. 14. Ecoulement velocity circular disk by Meshless

The Meshless method is the method which specifies more
precision comparing of the two methods.

VII. CONCLUSION

In this paper, we presented a new Mesh-Free method based
on Prandtl’s equation and a local RBF method. The main
objectif is to extract nodes with less parameters. In our
case, we use only one parameter. In one hand, Prandtl’s
equation was responsible to extract the raw nodes. In the
other hand, RBF−FD modeled these equations in order to
compute scattered nodes and fluid flow velocity, which ensure
a low complexity and good precision. The obtained average
velocity was v = 0.9 m/s ' 1 m/s, which considered a good
performance. Simulation results showed that the proposed
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Meshless Method exceed others compared the conventional
methods as well as MEF.
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