
 

 

 

Abstract— We develop a framework model for the development 

of multi-step quasi-Newton methods which utilizes values of the 

objective function. The model developed here is constructed using 

iteration genereted data from the m+1 most recent iterates/gradient 

evaluations. The model hosts double free parameters which introduce 

a certain degree of flexibility. This permits the interpolating 

polynomials to exploit available computed function values which are 

otherwise discarded and left unused. Two new algorithms are derived 

for which function values are incorporated in the update of the 

inverse Hessian approximation at each iteration, in an attempt to 

accelerate convergence. The idea of incorporating function values is 

not new within the context of quasi-Newton methods but the 

presentation made in this paper constitutes a new approach for such 

algorithms. It has been shown in several earlier works that Including 

function values data in the update of the Hessian approximation 

numerically improves the convergence of Secant-like methods. The 

numerical scores of the new methods are reported with promising 

performance results. 

 

Keywords— Unconstrained optimization, quasi-Newton 

methods, multi-step methods, function value algorithms, Newton 

Method.  

I. INTRODUCTION 

HE  “Newton Equation”, which may be regarded as a 

generalization of the “Secant Equation” (Dennis and 

Schnabel [3,4]), is usually employed in the construction of 

quasi-Newton methods for optimization. 

    Let 𝑓(𝑥) be the objective function, where 𝑥 𝜀 𝑅𝑛, and let 𝑔 

and 𝐺 denote the gradient and Hessian of 𝑓, respectively. Let 

𝑋 = {𝑥(𝜏)} denote a differentiable path in 𝑅𝑛, where 𝜏 𝜀 𝑅. 

Then, upon applying the Chain Rule to 𝑔(𝑥(𝜏)) in order to 

determine its derivative with respect to 𝜏, we obtain  

 

𝐺(𝑥(𝜏))𝑥′(𝜏) = 𝑔′(𝑥(𝜏)).                            (1) 

 

    In particular, if we choose for the path 𝑋 to pass through the 

most recent iterate 𝑥𝑖+1 (so that 𝑥(𝜏𝑚) = 𝑥𝑖+1, say), then 

equation (1) provides a condition (termed the “Newton 

Equation” in [1,3,4]) which the Hessian 𝐺(𝑥𝑖+1) must satisfy:  

 

𝐺(𝑥𝑖+1)𝑥′(𝜏𝑚) = 𝑔′(𝑥(𝜏𝑚)).                           (2) 

   

  Therefore, if 𝐵𝑖+1 denotes an approximation to 𝐺(𝑥𝑖+1), if  
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𝑟𝑖 =
def

𝑥′(𝜏𝑚) (3) 

 

and 𝑤𝑖 denotes an approximation to 𝑔′(𝑥(𝜏𝑚)), it is 

reasonable (by equation (2)) to require that 𝐵𝑖+1 should satisfy 

a similar relation such as  

 

𝐵𝑖+1𝑟𝑖 = 𝑤𝑖 . (4) 

 

(The derivation, in particular, of the Secant Equation from the 

Newton Equation is described in [2].) The relation in (4) 

defines the basis of the the Multi-step methods derived in 

[9,10,11]. In [9], it was proposed that 𝑋 should be the vector 

polynomial which interpolates the 𝑚 + 1 most recent iterates 

{𝑥𝑖−𝑚+𝑘+1}𝑘=0
𝑚  and that 𝑤𝑖 should be obtained by constructing 

and differentiating the corresponding vector polynomial (�̂�(𝜏), 

say) which interpolates the known gradient values 

{𝑔(𝑥𝑖−𝑚+𝑘+1)}𝑘=0
𝑚 . Thus, the following explicit expressions 

for 𝑟𝑖 and 𝑤𝑖 may be derived [8,9,10,11]:  

 

                           𝑟𝑖 = 𝑥′(𝜏𝑚) 

                                   = ∑  𝑚−1
𝑗=0 𝑠𝑖−𝑗{∑  𝑚

𝑘=𝑚−𝑗 ℒ𝑘
′ (𝜏𝑚)};             (5) 

            𝑤𝑖 = �̂�′(𝜏𝑚) 

                 = ∑  𝑚−1
𝑗=0 𝑦𝑖−𝑗{∑  𝑚

𝑘=𝑚−𝑗 ℒ𝑘
′ (𝜏𝑚)}             (6) 

                 ≈ 𝑔′ (𝑥(𝜏𝑚)), 

where 

 

𝑠𝑖 =
Δ

𝑥𝑖+1 − 𝑥𝑖 , (7) 

 

𝑦𝑖 =
Δ

𝑔(𝑥𝑖+1) − 𝑔(𝑥𝑖) (8) 

 

and ℒ𝑗(𝜏) is the 𝑗𝑡ℎ Lagrange polynomial of degree 𝑚 

corresponding to the set of values {𝜏𝑘}𝑘=0
𝑚 , so that ℒ𝑗(𝜏𝑗) = 1 

and ℒ𝑗(𝜏𝑖) = 0 for 𝑖 ≠ 𝑗. The scalars {𝜏𝑘}𝑘=0
𝑚  are the values of 

𝜏 associated with the iterates {𝑥𝑖−𝑚+𝑘+1}𝑘=0
𝑚  on the path 

𝑋 = {𝑥(𝜏)}:  

 

𝑥(𝜏𝑘) = 𝑥𝑖−𝑚+𝑘+1,   𝑓𝑜𝑟   𝑘 = 0,1, … , 𝑚. )  (9) 

 

    We now stipulate, arbitrarily, that the set {𝜏𝑗}𝑗=0
2  has been 

chosen such that  

 

𝜏1 = 0, (10) 

 

and we write  

 

𝜏1 − 𝜏0 = −𝜏0 =
def

𝜌𝑖−1 > 0;  𝜏2 − 𝜏1 = 𝜏2 =
def

𝜌𝑖 > 0,    (11) 
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where, for example, the quantities 𝜌𝑖−1 and 𝜌𝑖 could be 

defined (as they are in method A1 ([1], where other ways of 

defining 𝜌𝑖−1 and 𝜌𝑖 are also discussed)) by  

 

𝜌𝑖−1 = ∥ 𝑠𝑖−1 ∥2;   𝜌𝑖 = ∥ 𝑠𝑖 ∥2. (12) 

 

    In this paper, we will investigate a class of parameterized 

models for the path 𝑋. The free parameters in such models can 

be viewed as providing a means by which more information 

can be employed in updating the Hessian approximation (or its 

inverse), as in the methods derived in [8]. We describe, in the 

next sections, the non-linear model and then the particular 

technique (which essentially involves making use of the 

function-values at our disposal from the 𝑚 + 1 most recent 

iterations) that will be used in determining the free parameters. 

we finally present the numerical test results conducted on the 

methods and evaluate those results followed by conclusions. 

II. THE NONLINEAR MODEL  

We investigate here a model that embodies two free 

parameters (namely, 𝜗1 and 𝜗2), which allow us to specify that 

the model satisfies, simultaneously, more than one property. 

For example, we may require that the parameters are 

determined such that 

 

𝜙(𝜏2, 𝜗1, 𝜗2) = 𝑓𝑖+1 (13) 

 

 and 

 

𝜙(𝜏1, 𝜗1, 𝜗2) = 𝑓𝑖 . (14) 

 

 hold simustaneously. 

    Our model is defined by 

 

𝜓𝑖(𝜏, 𝜗1, 𝜗2) =
Δ

𝑡𝑖/∝ (𝜏, 𝜗1, 𝜗2) (15) 

 

 for 𝑖 = 0,1,2, (for a 2-step method) and where 

 

∝ (𝜏, 𝜗1, 𝜗2) =
Δ

1 + 𝜗1𝜏 + 𝜗2𝜏2. 
 

     Alternatively, if we express this polynomial in its 

Lagrangian form, we obtain 

 

        𝑢(𝜏, 𝜗1, 𝜗2) =
Δ 1

∝(𝜏,𝜗1,𝜗2)
                                                (16) 

{
𝜏(𝜏 + 𝜌𝑖−1)

𝜌𝑖(𝜌𝑖−1 + 𝜌𝑖)
[1 + 𝜗1𝜌𝑖 + 𝜗2𝜌𝑖

2]𝑢𝑖+1 −
𝜏 + 𝜌𝑖−1

𝜌𝑖−1𝜌𝑖

(𝜏 − 𝜌𝑖)𝑢𝑖 

 +
𝜏(𝜏−𝜌𝑖)

𝜌𝑖−1(𝜌𝑖−1+𝜌𝑖)
[1 − 𝜗1𝜌𝑖−1 + 𝜗2𝜌𝑖−1

2 ]𝑢𝑖−1} 

=
Δ

𝑞(𝜏, 𝜗1, 𝜗2)/∝ (𝜏, 𝜗1, 𝜗2). 

  

 

 Now from (16), we obtain 

        𝑢′(𝜏, 𝜗1, 𝜗2) =
Δ 1

∝(𝜏,𝜗1,𝜗2)
[𝑔′(𝜏, 𝜗1, 𝜗2) ∝ (𝜏, 𝜗1, 𝜗2) −

                               𝑞(𝜏, 𝜗1, 𝜗2)(𝜗1 + 2𝜗2𝜏)] (17) 

 

 

 = [𝑔′(𝜏, 𝜗1, 𝜗2) − (𝜗1 + 2𝜗2𝜏)𝑢(𝜏, 𝜗1, 𝜗2)]/∝
(𝜏, 𝜗1, 𝜗2) 

 

 From (17), it follows that 𝑢′(𝜏, 𝜃1, 𝜃2) at the three points, 

𝜏0 = −𝜌𝑖−1, 𝜏1 = 0 and 𝜏2 = 𝜌𝑖 (see (11) and (12)), is given 

by the following expressions 

 

𝑢′(−𝜌𝑖−1, 𝜗1, 𝜗2) =
𝑞′(−𝜌𝑖−1,𝜗1,𝜗2)−(𝜗1−2𝜗2𝜌𝑖−1)𝑢𝑖−1

1−𝜗1𝜌𝑖−1+𝜗2𝜌𝑖−1
2 ,            (18) 

 

 

𝑢′(0, 𝜗1, 𝜗2) = 𝑞′(0, 𝜗1, 𝜗2) − 𝜗1𝑢𝑖 , (19) 

 

 and 

 

𝑢′(𝜌𝑖 , 𝜗1, 𝜗2) =
𝑞′(𝜌𝑖,𝜗1,𝜗2)−(𝜗1+2𝜗2𝜌𝑖)𝑢𝑖+1

1+𝜗1𝜌𝑖+𝜗2𝜌𝑖
2 .      (20) 

 

    Using (16), we derive 

 

𝑞′(𝜏, 𝜗1, 𝜗2) = {
2𝜏 + 𝜌𝑖−1

𝜌𝑖−1

(1 + 𝜗1𝜌𝑖 + 𝜗2𝜌𝑖
2)𝑢𝑖+1

−
(2𝜏 + 𝜌𝑖−1 − 𝜌𝑖)𝜇

𝜌𝑖−1𝜌𝑖

𝑢𝑖} 

+
2𝜏−𝜌𝑖

𝜌𝑖−1
[1 − 𝜗1𝜌𝑖−1 + 𝜗2𝜌𝑖−1

2 ]𝑢𝑖−1}𝜇−1,   (21) 

 

from which we obtain the following quantities (for 𝜇 =
Δ

𝜌𝑖 +

𝜌𝑖−1, 𝛿 =
Δ

− 𝜌𝑖/𝜌𝑖−1 and Δ𝑢𝑗 =
Δ

𝑢𝑗+1 − 𝑢𝑗): 

 

𝑞′(0, 𝜗1, 𝜗2) = 

𝜇−1{−𝛿−1(1 + 𝜗1𝜌𝑖 + 𝜗2𝜌𝑖
2)𝑢𝑖+1 + (𝛿−1 − 𝛿)𝑢𝑖) 

 +[1 − 𝜗1𝜌𝑖−1 + 𝜗2𝜌𝑖−1
2 ]𝛿𝑢𝑖−1                

  

= 𝜇−1{−𝛿−1Δ𝑢𝑖 − 𝛿Δ𝑢𝑖−1 + 𝜗2𝜌𝑖−1𝜌𝑖(Δ𝑢𝑖−1 + Δ𝑢𝑖) 

 +𝜗1𝜌𝑖−1𝑢𝑖+1 + 𝜗1𝜌𝑖𝑢𝑖−1},   (22) 

 

𝑞′(𝜌𝑖 , 𝜗1, 𝜗2) = 

𝜇−1{(2 − 𝛿−1)(1 + 𝜗1𝜌𝑖 + 𝜗2𝜌𝑖
2)𝑢𝑖+1 + (𝛿 − 2 + 𝛿−1)𝑢𝑖  

         −𝛿(1 − 𝜗1𝜌𝑖−1 + 𝜗2𝜌𝑖−1
2 )𝑢𝑖−1 

= 𝜇−1{2Δ𝑢𝑖 − 𝛿−1Δ𝑢𝑖 + 𝛿Δ𝑢𝑖−1 − 𝜗1𝜌𝑖−1𝑢𝑖−1 − 𝜗1𝜌𝑖𝑢𝑖+1 

+𝜗2𝜌𝑖−1𝜌𝑖[Δ𝑢𝑖−1 + Δ𝑢𝑖] + 2𝜗1𝜌𝑖𝑢𝑖+1 + 2𝜗2𝜌𝑖
2𝑢𝑖+1 + 

𝜗1𝜌𝑖−1𝑢𝑖+1 − 𝜗1𝜌𝑖𝑢𝑖−1},                                  (23) 

 

 and 

 

𝑞′(−𝜌𝑖−1, 𝜗1, 𝜗2) = 

𝜇−1{𝛿−1(1 + 𝜗1𝜌𝑖 + 𝜗2𝜌𝑖
2)𝑢𝑖+1 + (𝛿 − 2 + 𝛿−1)𝑢𝑖  

         +(𝛿 − 2)(1 − 𝜗1𝜌𝑖−1 + 𝜗2𝜌𝑖−1
2 )𝑢𝑖−1 

= 𝜇−1{𝛿−1Δ𝑢𝑖 + (2 − 𝛿)Δ𝑢𝑖−1 − 𝜗1𝜌𝑖−1[Δ𝑢𝑖−1 + Δ𝑢𝑖] −
𝜗2𝜌𝑖−1𝜌𝑖𝑢𝑖+1 + 𝜗1𝜌𝑖−1𝑢𝑖−1 − 2𝜗2𝜌𝑖−1

2 𝑢𝑖−1 + 𝜗1𝜌𝑖𝑢𝑖−1 −
𝜗2𝜌𝑖−1𝜌𝑖𝑢𝑖−1                                                                       (24) 

 

We are, now. able to determine the quantities in (18), (19) and 

(20) 
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𝑞′(0, 𝜗1, 𝜗2) − 𝜗1𝑢𝑖 = 

𝜇−1{−𝛿−1Δ𝑢𝑖 − 𝛿Δ𝑢𝑖−1 + 𝜗2𝜌𝑖−1𝜌𝑖[Δ𝑢𝑖−1 + Δ𝑢𝑖] +
𝜗1(𝜌𝑖−1Δ𝑢𝑖 − 𝜌𝑖Δ𝑢𝑖−1)}      (25) 

 

and 

 

𝑞′(𝜌𝑖 , 𝜗1, 𝜗2) − (𝜗1 + 2𝜗2𝜌𝑖)𝑢𝑖+1 

= 𝜇−1{(2 − 𝛿−1)Δ𝑢𝑖 + 𝛿Δ𝑢𝑖−1  

+𝜗2𝜌𝑖−1𝜌𝑖[Δ𝑢𝑖−1 + Δ𝑢𝑖] + 𝜗1𝜌𝑖[Δ𝑢𝑖−1 + Δ𝑢𝑖]}                (26) 

 

and 

 

𝑞′(−𝜌𝑖−1, 𝜗1, 𝜗2) − (𝜗1 − 2𝜗2𝜌𝑖−1)𝑢𝑖−1 

= 𝜇−1{𝛿−1Δ𝑢𝑖 + (2 − 𝛿)Δ𝑢𝑖−1 − 𝜗1𝜌𝑖−1[Δ𝑢𝑖−1 + Δ𝑢𝑖] 
−𝜗2𝜌𝑖−1𝜌𝑖[Δ𝑢𝑖−1 + Δ𝑢𝑖]}.                     (27) 

III.   FUNCTION VALUE-BASED ALGORITHMS 

A. Algorithm Df1 

For this algorithm, the free parameters 𝜃1 and 𝜃2 and are 

determined via requiring the following relations 

 

𝜙′(0, 𝜃1, 𝜃2)[𝜏2 − 𝜏0] = 𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖−1)         (28) 

 

(for 𝜙′(0, 𝜃1, 𝜃2) =
Δ

𝑥′(0, 𝜃1, 𝜃2)𝑇𝑔𝑖) and 

 

𝑥′(𝜏0, 𝜃1, 𝜃2)𝑇𝑔𝑖−1 = 𝜔′(𝜏0)                               (29) 

 

to hold simultanously and where 𝜔(𝜏) is the quadratic 

polynomial which interpolates the three most recent function 

values, 𝑓𝑖−1 , 𝑓𝑖 and 𝑓𝑖+1. That is, 

 

𝜔(𝜏) = 𝛼𝜏2 + 𝛽𝜏 + 𝛾. 
  

The coefficients 𝛼, 𝛽, and 𝛾 are given by 

 

 𝛾 = 𝑓𝑖, 
 𝛽 = ((𝛿−1 − 𝛿)𝑓𝑖 − 𝛿−1𝑓𝑖+1 + 𝛿𝑓𝑖−1)/𝜇, 
 𝛼 = (𝑓𝑖+1 + (𝛿 − 1)𝑓𝑖 − 𝛿𝑓𝑖−1)/𝜇𝜏2. 

 

Now from (28), we obtain (using (25) and (28)) 

 

−𝛿−1𝜎𝑖𝑖 − 𝛿𝜎𝑖−1,𝑖 + 𝜗2𝜌𝑖𝜌𝑖−1(𝜎𝑖𝑖 + 𝜎𝑖−1,𝑖) + 𝜗1(𝜌𝑖−1𝜎𝑖𝑖 −

𝜌𝑖𝜎𝑖−1,𝑖) = 𝑓𝑖+1 − 𝑓𝑖−1.                                                        (30) 

 

 Also using (29) we obtain 

 

𝜗1{𝜌𝑖−1(𝜎𝑖,𝑖−1 + 𝜎𝑖−1,𝑖−1 − 𝜇𝜔′(−𝜌𝑖−1))} +

𝜗2{𝜌𝑖−1𝜇𝜔′(−𝜌𝑖−1) +𝜌𝑖𝜌𝑖−1(𝜎𝑖,𝑖−1 + 𝜎𝑖−1,𝑖−1)} 

= (2 − 𝛿)𝜎𝑖−1,𝑖−1 + 𝛿−1𝜎𝑖,𝑖−1 − 𝜇𝜔′(−𝜌𝑖−1)         (31) 

 

If we define the quantities 

             𝜂 =
Δ

𝜌𝑖−1𝜎𝑖,𝑖 − 𝜌𝑖𝜎𝑖−1,𝑖 , 

             𝜁 =
Δ

𝜌𝑖−1[𝜎𝑖,𝑖−1 + 𝜎𝑖−1,𝑖−1 − 𝜇𝜔′(−𝜌𝑖−1)] 

             𝜈 =
Δ

𝜌𝑖𝜌𝑖−1(𝜎𝑖𝑖 + 𝜎𝑖−1,𝑖) 

   𝜀 =
Δ

𝜌𝑖−1𝜇𝜔′(−𝜌𝑖−1) + 𝜌𝑖𝜌𝑖−1(𝜎𝑖,𝑖−1 + 𝜎𝑖−1,𝑖−1) 

              𝜋 =
Δ

𝑓𝑖+1 − 𝑓𝑖−1 + 𝛿−1𝜎𝑖𝑖 + 𝛿𝜎𝑖−1,𝑖 

 

and 

𝜆 =
Δ

(2 − 𝛿)𝜎𝑖−1,𝑖−1 + 𝛿−1𝜎𝑖,𝑖−1 − 𝜇𝜔′(−𝜌𝑖−1) 

 

 and solve, simultaneously equations (28) and (29) for the 

unknowns and , we obtain the following expressions for the 

two parameters 𝜃1 and 𝜃2 

 

𝜗1 = (𝜀𝜋 − 𝜆𝜐)/(𝜂𝜀 − 𝜁𝜐)                                  (32) 

 

 and 

 

𝜗2 = (𝜂𝜆 − 𝜁𝜋)/(𝜀𝜂 − 𝜆𝜁), (33) 

 

for a denominator that must be safeguarded numerically 

against vanishing. For this algorithm, we update the Hessian 

approximation to satisfy 

 

𝐵𝑖+1{(2 − 𝛿−1 − 𝜗2𝜌𝑖𝜌𝑖−1 + 𝜗1𝜌𝑖)𝑠𝑖 + (𝜗1𝜌𝑖 − 𝜗2𝜌𝑖𝜌𝑖−1

+ 𝛿)𝑠𝑖−1} 

           = (2 − 𝛿−1 − 𝜗2𝜌𝑖𝜌𝑖−1 + 𝜗1𝜌𝑖)𝑠𝑖 

+(𝜗1𝜌𝑖 − 𝜗2𝜌𝑖𝜌𝑖−1 + 𝛿)𝑠𝑖−1.    (34) 

 

B. Algorithm Df2 

 

For this algorithm, the free parameters are determined by 

applying both 

 

∫  
𝜏2

𝜏0
𝜙′(𝜏, 𝜃1, 𝜃2) = 𝜙(𝜏2, 𝜃1, 𝜃2) − 𝜙(𝜏0, 𝜃1, 𝜃2)                 (35) 

  

and 

 

𝑥′(𝜏2, 𝜃1, 𝜃2)𝑇𝑔𝑖+1 = 𝜔′(𝜏2)                         (36) 

 

 (where 𝜔 is as defined in (29)) and requiring them to hold 

simultaneously. However, in order to reduce the complexity of 

the derivations. we will use 

 

∫  
𝜏2

𝜏0
𝜙′(𝜏, 𝜃1, 𝜃2) ≅ 𝑥′(0, 𝜃1, 𝜃2)𝑇𝑔𝑖][𝜏2 − 𝜏0].      (37) 

 

 Now using (26), equation (36) takes the form 

 

(2 − 𝛿−1)𝜎𝑖,𝑖+1 + 𝛿𝜎𝑖−1,𝑖+1 − 𝜗2𝜌𝑖𝜌𝑖−1(𝜎𝑖,𝑖+1 + 𝜎𝑖−1,𝑖+1) +

𝜃1𝜌𝑖(𝜎𝑖,𝑖+1 + 𝜎𝑖−1,𝑖+1) = (1 + 𝜃1𝜌𝑖 + 𝜗2𝜌𝑖
2)𝜇𝜔′(𝜌𝑖)         

                                                                                       (38) 

 

Solving the equations (36) and (37) for the parameters gives 

expressions (32) and (33). The update Hessian approximation 

matrix for this algorithm satisfies condition (34) as well. 

 

 

IV. NUMERICAL EXPERIMENTS 

The algorithms Df1 and Df2 developed above were first 

compared to one another. The results are reported in Table I. 

The better of the two algorithms is then compared to the 

standard BFGS and the best reported multi-step quasi-Newton 
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algorithm in [10]. The results are presented in Table II. Eleven 

test functions were used, each with either one or two starting-

points, giving a total of twenty problems. (Full details of the 

test functions and starting points may be found in [12].) Many 

of the functions employed in the tests may be used with 

varying dimensions. For variable dimension problems, the 

tests have been carried out on a range of suitably chosen 

dimensions that ensure the inclusion of different categories of 

problem sizes. The results are summed up since space 

precludes a tabulation of the individual figures for each 

dimension. The results reported are thus subtotals for each 

problem on a variety of dimensions and using two different 

starting points for each such dimension. 

In all the methods considered here, the new point 𝑥𝑖+1 was 

computed from 𝑥𝑖 via a line-search algorithm which accepted 

the predicted point if the two standard stability conditions 

(Fletcher [5,6,7]) given below were satisfied and which, 

otherwise, used step-doubling and safeguarded cubic 

interpolation, as appropriate. A new iterate , 𝑥𝑖+1 is accepted if 

it satisfies the following conditions [15]:-  

 

 𝑓(𝑥𝑖+1) ≤ 𝑓(𝑥𝑖) + 10−4𝑠𝑖
𝑇𝑔(𝑥𝑖); 

 𝑠𝑖
𝑇𝑔(𝑥𝑖+1) ≥ 0.9{𝑠𝑖

𝑇𝑔(𝑥𝑖)}. 
 

It is easy to show (by analogy with standard theory for the 

BFGS method) that a necessary and sufficient condition for 

preserving positive-definiteness in the successive matrices 

{𝐻𝑖} is that 𝑟𝑖
𝑇𝑤𝑖 > 0. In practice, we have imposed (in the 

implementations) the following requirement:-  

 

𝑟𝑖
𝑇𝑤𝑖 > 10−4 ∥ 𝑟𝑖 ∥2  ∥ 𝑤𝑖 ∥2, 

 

 in order to ensure that 𝑟𝑖
𝑇𝑤𝑖 is “sufficiently” positive and thus 

avoid possible numerical instability in computing 𝐻𝑖+1. If this 

condition on 𝑟𝑖
𝑇𝑤𝑖 was not satisfied, the algorithm reverted to 

the choice 𝜃1 = 𝜃2 = 0. The initial inverse Hessian 

approximation was scaled using the scaling methods in 

[13,14]. 

The results of the numerical experiments presented in 

Tables I and II, show for each problem, the number of 

function/gradient evaluations required to solve the problem is 

given, followed (in brackets) by the number of iterations. A 

“† " is used to indicate the best score reported on a specific 

problem, for a given algorithm. 

 

Table  I. Comparison of Df1 and Df2 

    

  Problem   Df1   Df2  

Watson (a)   463(446)   443(429)†  

(b)   1992(1127)   1411(983)  

Rosenbrock (a)   392(373)†   475(444)  

(b)   444(422)†   672(634)  

Ext. Powell (a)   345(134)   201(124)  

(b)   320(105)   124(89)†  

Penalty fn. (a)   773(344)   765(342)  

(b)   505(384)†   577(450)  

Trigonometric (a)   103(76)†   390(330)  

(b)   153(139)†   733(668)  

Broyden (a)   2291(1258)   1479(860)†  

(b)   1814(1131)   1208(1050)  

Wolfe (a)   398(281)   287(241)†  

(b)   1941(639)†   2043(975)  

Tridiagonal (a)   3214(2350)†   4918(1939)  

(b)   2606(2247)†   3075(1974)  

Powell (a)   1341(791)   780(667)†  
(b)   2926(1618)   1735(1382)†  

Sphere (a)  787(241)   155(136)†  

(b)  256(181)†   532(391)  

TOTALS   23064(14287)   22003(14108)  

 

 

Table  II. Comparison of Df2 with BFGS and A1F  

   

  Problem   Df2   BFGS   A1F  

Watson (a)   443(429)   542(530)   443(429)  

(b)   1411(983)   1653(1293)   1487(1101)  

Rosenbrock (a)   475(444)   631(612)   485(465)  

(b)   672(634)   825(806)   679(652)  

Ext. Powell (a)   201(124)   159(122)   174(129)  

(b)   124(89)   162(156)   108(97)  

Penalty fn. (a)   765(342)   807(386)   765(344)  

(b)   577(450)   637(507)   569(463)  

Trigonometric (a)   390(330)   634(596)   549(485)  

(b)   733(668)   2390(2331)   1973(1877)  

Broyden (a)   1479(860)   2300(1786)   1912(1092)  

(b)   1208(1050)   2136(2001)   1772(1607)  

Wolfe (a)   287(241)   280(226)   266(225)  

(b)   2043(975)   1967(965)   1936(917)  

Tridiagonal (a)   4918(1939)   5099(2272)   4696(1892)  

(b)   3075(1974)   2822(1969)   2765(1819)  

Powell (a)   780(667)   1034(987)   735(680)  
(b)   1735(1382)   1779(1559)   1623(1379)  

Sphere (a)  155(136)   132(126)   130(124)  

(b)  532(391)   1505(1262)   1050(718)  

TOTALS   22003(14108)   27494(20492)   24117(16495)  

 

V. CONCLUSION 

 A new model for the interpolating polynomial in multi-

step methods is presented in this work. The model is used in 

constructing multi-step quasi-Newton methods which exploit 

iteration readily available data. The model includes two free 

parameters and it has been proven how those parameters may 

be determined by using available values of the objective 

function from the latest three iterates. It has been argued that 

much of the information computed at each version is 

renounced without making use of it [8]. Two algorithms are 

derived here that introduce a significant improvement, in 

numerical terms, over the standard (single-step) BFGS method 

and earlier successful quasi-Newton methods. The idea 

presented here is new in terms of the incorporation of free 

parameters that provide a tool to make use of any desired 

available data in the update of the Hessian (or its inverse) 

approximation to enhance the numerical performance of 

Secant-like methods. 

INTERNATIONAL JOURNAL OF MECHANICS Volume 13, 2019

ISSN: 1998-4448 67



 

 

In the new method for determining the parameterization of 

the interpolating curves in the two-step quasi-Newton 

methods, the parameters that influence the structure of the 

interpolating curve are obtained by minimizing a nonlinear 

equation at each iteration for algorithm Df2. The numerical 

results showed that such a price is justified by the significant 

improvement in numerical performance over the standard 

BFGS method. The method Df2 improves slightly over Df1.  

    Future research might focus on issues like: 

 Is there an optimal choice for the model and/or the 

curve parameters τ? 

 Can these methods introduce similar improvements 

when applied to solving systems of non-linear 

equations? 

 Further Study of the convergence properties of the 

methods. 
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