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Mathematical Modeling of the Rotating
Stratified Fluid in a Vicinity of the Bottom of
the Ocean

A. Giniatoulline

Abstract—We obtain the explicit form of the solutions for an
initial boundary value problem in a finite layer, which describes the
dynamics of the Ocean in case of rotating stratified viscous flows.
We study the asymptotical properties of the solutions. For large
values of t, we obtain uniform asymptotical decompositions, as well
as decompositions with respect of the small parameter 1/t on an
arbitrary compact set in the considered layer of the Ocean. For
inviscid fluid, we find the spectrum of normal inner waves and
establish its structure. We construct a Weyl sequence for the essential
spectrum, which is an explicit representation of non-uniqueness of
the solution. The localization of the essential spectrum may be used
for bifurcation points where small nonlinear flows arise. The results
may be applied in mathematical modeling of fluid dynamics of the
Atmosphere and the Ocean, particularly, in the construction of stable
numerical algorithms for the solutions of the studied models.

Keywords—Computational fluid dynamics, Fourier series and
Fourier transform, spectrum of inner vibrations, stratified fluid,
turbulence and multiphase flows.

. INTRODUCTION, CONSTRUSTION OF WEAK AND STRONG

SOLUTIONS, THEIR EXISTENCE AND UNIQUENESS

E consider the following system of differential
equations in partial derivatives

ov, op

— -V, —VAV, +—=0
ot X
%+a)vl—vAv2 +8_p=0
ot X,
6_p_Nv4:0 (l)
OX4
divw =0
ov,
—t+Nv3:0 xeQ, t>0
in the domain
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Q=Qx{t>0}, Q:{x:(x’,xg):(xl,xz,xs), X' eR?, 0<x, <h}.
Here V =(V,,V,,V,) is the velocity field of the fluid, p(x,t)

is the dynamic pressure, V, (X,t) is the dynamic density of the

fluid, @ is the Coriolis parameter which corresponds to the
rotation of the Earth over the vertical axis, and N is a positive
constant stratification parameter. For the kinematic viscosity
coefficient v ,we assume v >0.

The considered equations are deduced in [1]. The study of
mathematical properties of different systems of fluid dynamics
of rotating fluid was started in [2]-[4]. Various problems
involving the spectrum of normal vibrations for stratified and
rotating fluid were considered in [5]-[9]. For non-linear model
considered in bounded domains, the solution of similar
systems was studied in [10]. The system is deduced for the
cases when the horizontal dimensions are considerably larger
than vertical dimensions, ([11]) and describes the motion of
the Ocean flows near the bottom for the cases of rotating Earth
and exponentially decreasing initial distribution of density due
to the gravitational force.

We will consider the initial conditions

Vil =V (x)  i=124 2)
and boundary value conditions
Ml _0,i=12; wy0=0,i=34. (3
6X3 XS:E‘) Xg=h

We use the Laplace transform with respect to t, the Fourier
transform with respect to x’ and finite integral transforms
with respect to X, . We apply the Cosine-Fourier transform to
the first, the second and the fourth equations of (1), and the
Sine-Fourier transform to the rest of the equations. For that
purpose, we multiply the first, the second and the fourth
equations by cos 4, X, , the rest of the equations we multiply by

sinA,x, , and integrate with respect to x, on the interval
0 < x; <h. Letus introduce the following notations:
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= [ (i, P) (X', X5, 1) COS 2, X,0s, 1 =1,2,

= | (V3 V4, Vg ) (X', X, 1) SIN A, X50X5,

! )L:o :(

We assume that the initial conditions are sufficiently smooth
and rapidly decreasing functions for |x’|—>oo, which allows

50 ;0

V0,9, ve )(x n),i=12

us to apply the Fourier transform in x" and Laplace transform
in t.
Additionally, we introduce the notations

rfleeat,)
‘Po(f’,n,t):zeTsinz[

(P at )
2e ( [ At
¥, (¢'nt)= ———sin| — | ,
(&0t A, A [/IJ
(e eat
At
¥ n,t _—cos —1,
(é ) ﬂ'l‘l (ln j
A= 22 +v|eT.
For the following, we assume v{ eW,*(Q) , i=12,4,
h 0 0
j{%+%}dx3 -0,
oL 0% 0%,

We also suppose that the condition of consistency of the
initial data and boundary values is fulfilled.

It is proved in [12] that the Fourier coefficients of the
solution are expressed as follows

Vk(x',n,t)—

i(x.&") { 70eHt _ v§f+a)2/1§)\73‘1'0—

~(-1)" [12(0\1’ +( 1) EEW, W2, +
+/1n[i§k‘{’l—(—1) ig, 0¥, U5}de k=12,

A (0¥, -0, )+|
)=l [mw }df’
p(x',nt)= ) Oy (@, -U0,) -

~4, (0*¥, +‘P) J]de,
7, ( xnt)_ 'Xi[v°”‘+|§|\P( L)+

+N/1n(uf\yl—wug\{fo) ld¢&’,

where
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UP (&' n)=igW +i&0, , Ug (&' n)=igv; —i&0)
Ug (5’,n): NVAO )
H=—v (T +47).

In this way, the solution of the problem (1)-(3) can be
represented as follows ([12]):

(v, P)(x8) =3 (7 B)(X,0.) +

%i(\?i, P)(x',n,t)cos(4,%,),

n=1

i=12,
(x',n,t)sin(4,x,).

(4)
We denote Q, :Qx{0<t<r}
0° (.5) = (8 ) ). 111, =g
V(Q,)={v, C([0.7],L, () 2((o,f), 2(9)), =12,

v, el,

7 N\

(0,7),W; (Q)j ,diw =0,
v, eC([0.7],L,(Q))NL, ((0,1),V\721 (Q)J, i =4},

V(Q,)={(V.v,,vs)eV(Q,): Dy, e L,(Q,) , i=12,4}.
Let us define a strong solution of the problem (1)-(3) as a
system of the functions {V, p,v,} such that
v, eCH(Q)NC(Q) ,i=12,peC(Q),
Vs eCi‘y? (Q)ﬂC((j) Vi € Cftl(Q)ﬂC((j) =

satisfy (1) and the conditions (2), (3).
We define a weak solution of the problem (1)-(3) as a

system of the functions {V,v,,v;} €V (Q,) which satisfy the
condition (2) and the integral identity

8V ob
'(I) —4(13 4
[{Z " i Z“Z:,ax o, Z(ax ax ax ox, R
+o (v, @, —V,®, )+ N (v;®, —v,d, JJdxdt =0

for all t €[0,7]and for every vector function

®(x,1)=(®), <V (Q.).

In [12] it is proved that the relations (4) define both weak and
strong solutions, and that the strong solution is unique in the

class of functions V (Q, ) .

Our aim now is to study the velocity of the asymptotical decay
of the solution for large values of t , and obtain uniform
estimates of decreasing, as well as asymptotical
decomposition on an arbitrary compact set in the considered
layer of the Ocean.
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Il. PROBLEM SOLUTION
Let us establish first some helpful auxiliary statements.
Lemma 1 For the initial conditions VZ,vs, the
following relation is valid:

VO(x)dx=0,i=12.

[v? (x)d

Q

’) to the

(x)]=a(&)

}dx =0and thus obtain

Proof. We apply transform (FX,%,[go

ol ovy
{ +

relation
OX, OX,

éf P (&%) dxg +§2j (&',%)dx, =0 for all &'eR?

Suppose jvf (0,%,)dx; # 0. Then, there exist two numbers
0

1, p, such that for all &':|&| < py, the inequality holds:
f(
0

In this way, for all & from the circle |§'|<,01, we have

(&',%;)dxs| > p, .

&, <|&] <|§2|"V "

Jhlvf (&%, )dx,
0
On the other hand, the inequality |&| 0, < |§2|{||vf||+||v2 "} is

false for those points of the circle |£'| < o, which belong to
<&l el

h
Therefore, I\7f (0,%,)dx, =0.
0

the cone & p?

For vg, the proof is analogous and thus the Proposition is

proved.
Now, let us consider the integrals of the type
ﬂ2k+1

0<k,j,s<1, a>0,0>0,y >0.
Lemma 2 For t—oo, the
decompositions are valid:

s , cos(oyt (ks
'k,j(t)z ( ) +O(t " 2))’

J tk+1
where the constants A, , By, do not dependont.

©

le;(t)=|e

0

—aff 2t

following asymptotical

sin(oyt)

tk+l

+ Bks,j

Proof. We consider first the case s =k =0. After integrating
by parts in the integral 17, (t), we obtain

ISSN: 1998-4448

151

Volume 13, 2019

o ()= cos(oyt)

ool 2at
o T -q
_Zle ﬂt(}/ +ﬂ) sm(at«/y + )d,B. (5)
We use the representation of (7/2 + ﬁz)% as Taylor series
with the residual term in integral form
1 & & 1
(72+ﬂ2)%:__J‘ gdé / +O(,Bz), (6)
roo(riep)t

and thus obtain the relation (5) for t>t,>0 as follows:

cos(oyt) o >
10,(t) Z—M——lgvl(t)m(t ). (7)

Now, we integrate by parts in the representation of the integral
51 (t) and proceed as we did for (7):

2o (t)+0(t?) .

sin(oyt

|gl(t):ﬂ+i|°
' 2at 2ay

In this way, from (7), (8) we have

(8)

1,()= 257 T o0 (c?).

and, consequently, we obtain the asymptotical decomposition
for 19, (t), where

A, =2ay? /(4052}/2 + 0'2)
By, =—oy/ (4a2;/2 + 0'2)

The decomposition for |§,1(t) can be obtained analogously.

2
42200

Now, let s=0, k=1. We integrate by parts in the integrals
I7;(t) , j=0,1 and proceed in the similar way as we did for

the case k =0
+ 1 2\ s
19, ()= (-1 flj(t)+a'é"j(t)+0(t2) J=0.1.

Using the last relation, as well as the obtained decompositions
for Ig,j (t) j=0,1, we obtain the asymptotical
decompositions for the integrals 17, (t), j=0,1.

Finally, let s=1. From (6) we have

I1,() =212, (0)+0(t ), 0 jk <1,

and thus we obtain the asymptotical decompositions for the
integrals I, (t), 0< j,k <1, which concludes the proof.

Now, let us study the integrals of the type
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1

ES{ G —
i (x01) —(Zn)ZD
i0.2) -l (14 )H |<§'|2I (Z - 2 ,2)
DR[e e —(72+|§'|2)% cos| ] ot\y? +|&] dé

k=12;0<j,l,s<1; a>0,y>0,0>0.

Lemma 3 For t — oo, on an arbitrary compact setK — R?,
the following asymptotical decompositions are valid:

. sl /. COS(Oyt o sonSin(oyt 1+|x[’
£ (0= () 2 s oy ()21 )+o[ "],

t3

where the coefficients C;\ , D¢\ do not depend on't .

Proof. Let 1 =1. We use the integral representation of the
Bessel function J,(z)

z( 1
Jo(2) :1—£J'Usin(zysina)dyjsin ada
2 0\ 0

as well as the following Bochner formula for Fourier integrals

([13])

I eIX £

Therefore, we can represent the integral E,fﬁ(x’,t) in the

f(|&)e = ZﬂIﬁJ (x|B)f(BYB.  (9)

form:
sy t) =L
Ek,j(x,t)_(Z”)D
D]Ce‘“ﬁz‘ﬂ—s/cos(—j—at\/y + p? jdﬂ+
o ()
+G, ; (x',1),

G, (x\t)< Const(l+ |x’|2)t‘3
We obtain the asymptotical decomposition of the last integral

directly from the Lemma 2. The coefficients C’, , D;; are

By, ., divided

,0<j,5<1,

equal to the corresponding coefficients Af‘j ,

by 2r.
The case | =0 can be considered analogously, with the use of
the Lemma 2, the integral representation of the Bessel

7 (1
Usin (Z}/Sina)d)/jcosada :
[VANY]

and the following corollary of the Bochner formula ([13]):

[ ie £ (g =

2

. z z
function J(2)=———
2

(10)
X % i
=_2ﬂmjﬂ231( X|g) (B =12
0
In this way, the Lemma is proved.
Now we can state our first main result.
Theorem 1 Let the initial data satisfy |x|v] e L, (Q),i=12.
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Then, for t>t, >0, the solution of the problem (1)-(3)

satisfies the following estimates uniformly with respect to
xeQ

vi (x.1)) <Ct2i=12; v (x.t)| <Ct 2 v,
Ip(xt)<Ct, v, (xt)|<Ct e, 4, =(x/h),

and the constants depend on the norms of the initial data.
If, additionally, |x'|v; e L,(€2)and for some fixed integer

k >1 the condition holds: |x| eL(Q),i=12;

then, for t — oo, the solution of the problem (1)-(3) has the
following asymptotical decomposition on an arbitrary compact
set KcQ:

k-1

() =) ML ()00) " G (x8)

n=0

vs(x,t):(vt sin(4%,)e V‘l‘ZM cos( j—a)t)+GB(x,t)

)=( ZM +G,(x,t)
v, (xt)=(1)" sm(ﬂlxs>e'%2‘+65(x,t),

2k+2 0

=12

where the residual terms satisfy the estimates for t >t; >0 :
G, (xt)| < (L+]x]) " () T i=1,2,4;
30 <
G;(xt)|<C! (1+|x’|)3t7(lﬂ>3"')
the constants C', C’depend on the norms of the initial data

and the coefficients of the decomposition are continuous with
respect to X and are expressed only in terms of the initial data.

Proof. Let us study the component v,(x,t) from (4).

Using the Taylor formula with the residual term in
integral form, we decompose the Fourier coefficient

e—wﬁt'j ::3,5,

V)(£,0)in a vicinity of the point ¢&'=0:
7 (£,0)=7(0,0)-
_Zzllgj {”“ -i(9¢'X) x3)dx}d,9dx3}.(11)

By virtue of Lemma 1 we have V; (0,0)=0. Therefore,
from (11) we obtain the estimate
|\7f (§',0)| < C|||X’|vf |||§'| Now, for the function

v;(X,t) we estimate the Fourier coefficient V(x',0,t).
From the last estimate and (4), we have

[0, (x0.t)| <C| [ e g (&7,0)d & <
RZ

(12)

<c bl e e S
]

152
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Let us estimate the terms of the series
2& . .
le“vl(x’,n,t)cosinxs. Evidently, for t>t, >0 and
n=

n>1the estimate for the derivatives is valid:

§r|“’/‘ z |\7(J)|d§!s
=L2,4

_utll a2
|Da\71(xf,n,t)COSﬂhx3|SCOnaSJ‘e n(|e+22)
RZ

ol
<Cn"’3t ( ] - HUO“<C naae—vinto
In this way, for V,(x',n,t)we obtain the inequality:

|\71(x’,n,t)|SC“UOHt‘le’Mﬂzt. Now, from the integral

criterion of Cauchy-McLaurin ([14]), we have that for
t >t > 0 the estimate holds:

> 2,
<CtHy e <
n=1

i"\7l(x’,n,t)cos/1nx3
n=1

(13)

7T \e2

<Ctle™ + crlT e_v(ﬁjg dE<C e
1

From (12), (13) we obtain the first statement of the
Theorem for v, (X,t). For the rest of the components of

the solution, the asymptotic estimates can be obtained
similarly.

Now, let us prove the second part of the Theorem. We
will use the values of the integrals from [15]:

va+le—ax2JV (ﬂX)dX _
0

Bt
g 4a
(Za)1+v

Ie ] cx)dx_{ K }

We also use (9), (10), and thus obtain the following
representation for the considered Fourier coefficients:
Ix=y

¥, (x,0,t) :—je vy (y)y L i=12,

x-yf?
ﬁ(X’,O,t)ZQJ 1—-e 4vt %D
& =1

[[(Xl_W)Vg(Y)_(Xz_YZ)Vlo(y)]dY- (14)

Let us study the function v,(x,t). We decompose the

function exp{—|x’—y’|2/(4vt)} according to Taylor

formula with the residual term in integral form and use
the estimates (13).
In this way, we have

ISSN: 1998-4448
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n(xt 47rvthnZ::§ |(4 t) “ vi(y)+
(-1 kﬂ t 1_ Klyr oy r[2ke2 J; vl dvd
7Z'k|(4 t)kﬂ'([;_[ 5) |X y € ( ) yde +
+0 (t’le’”“‘). (15)

From Lemma 1, it follows that the first term in (15) is
zero. The double integral in (15) can be easily estimated

by C(L+[x])""
required asymptotical decomposition for vl(x,t). The

p(x,t) is

vt)ﬁk*z, and thus we obtain the

procedure for the components V,(X,t),

analogous.
Let us obtain the asymptotical decompositions for the

components V,(X,t), v, (X,t).

Proceeding from (4) and making calculations which are
similar to (13), we obtain:

Va(X,t)ngB(x',l,t)sin A Xs +O(t’%e’”ﬂz‘),

2 (16)
V4(X,t)—ﬁv (x',1,t)sin A,x, +O( - *%‘)
We consider the function v, (x,t) . It can be easily seen

that it is sufficient to study the Fourier coefficient
V5 (x,1,t) . Similarly to (11), we decompose the

V7 (£',1),i=1,2,4 inavicinity of the point

E'=0. For t — oo we will have

Vi(x,t) = smﬂi;: J'ei(x’.f’){jl[a)ljg(O,l)‘I’l(éf’,l,t)_
UL (0.0) W, (£, L)1+
+|§,|2L]3(‘)(0’1)qj1(§,!1!t)}d§,+0(weVlﬁzt].

From the explicit form of U?,‘PJ.(4), and also from

functions V

Lemma 3, we obtain the
decomposition for the component V3(X

required asymptotical
). Finally, let
us consider the function V4(x,t). Repeating the
previous calculations, we can represent it as

sin(AX;)
() -G

eyf?
Djv (ye * S|nﬂly3dy+0( e ‘“ﬂ‘)

_|x-=y1
Once again, we decompose the function e “t from
(17) according to Taylor formula with the residual term
in integral form and thus, we obtain the required

(17)

2
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asymptotical decomposition for the function v4(x,t). In
this way, the Theorem is proved.

Il. THE SPECTRUM OF THE INNER VIBRATIONS

Now, let us consider the initial system of fluid dynamics for
the corresponding inviscid fluid

& u2+a—p—0
ot 0%,
%+a)u1+6—p:0
ot OX,
(18)
%+@+Np:0
ot OX,
divi=0
P Ny, =0 xeQ, t>0,
ot

in the same layer domain € with the same boundary

conditions (3).

Let us consider the problem of normal vibrations
0(x,t)=v(x)e™

p(xt)=v,(x)e”

(19)

t)=v
)=v
(Vv

p(x.t)=vs(x)e® , AeC.
We denote V= 5) and write the system (5) in the
matrix form
Lv=0, (20)
where L=M — 11, and
0 -o 0 O 9
X,
w 0 0 O i
OX,
M=o 0o o N &
OX,q
0 0 -N 0 O
92 9 9
OX, OX, OXg

Let us define the domain of the differential operator M with
the boundary condition (3) as follows.

0 3
€ [Wzl (Q)]
. 5
Vs e L, (Q): MV e(L,(Q))
The consideration of the separated variables of the form (19)
allows to consider every non-stationary process as a linear
superposition of the normal oscillations. The spectrum of
normal vibrations may be used for studying the properties of

the stability of the flows. As well, the spectral properties of
M may be used in the investigation of weakly non-linear

0

v, W(Q),

D(M)=1"
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flows, since the bifurcation points are exactly the points of the
spectrum of the operator M .

Let us denote by o, (M ) the essential spectrum of a closed

linear operator M. We recall that, according to the definition of
the essential spectrum [16],

Ous (M) = {/1 eC:(M—-21)" is not of Fredholm type},

it consists of the points of the continuous spectrum,
eigenvalues of infinite multiplicity, and limit points of the
point spectrum.

Therefore, the spectral points outside of the essential
spectrum, are eigenvalues of finite multiplicity. For
calculating the essential spectrum of M, we would like to use
the property which is attributed to Weyl [16], [17]: a
necessary and sufficient condition for an imaginary finite
value A to be a point of the essential spectrum of a skew-
selfadjoint operator M is that there exist a sequence of

elements v, eD(M) such that
[v.] =1.v, > 0 weakly, and |(M -4l ), |- 0.

Evidently, the operator M is skew-selfadjoint and its spectrum
belongs to the imaginary axis.

Theorem 2 Let b=min{w,N}, B=max{w,N}. Then, the
essential spectrum of M is the symmetrical set of the
imaginary axis: o, (M) =[-iB,—ib]U{0} U[ib,iB].

Proof. For the operator L we observe that its main symbol
L(&) is represented by

-2 - 0 0 ¢
o -1 0 0 &
L&=l0 0 -2 N ¢
0 0 -N -2 0
6 & ¢ 0 0
and thus

detE(f):/i[(ﬂz +N2)(&+ &)+ (A2 +w2)§;]
In this way we can see that if the spectral parameter A does
not belong to [—iB,—ib]w {0} U[ib,iB], then the operator L
is elliptic in sense of Douglis-Nirenberg.
Now, we consider 4, € +(ib,iB)\{0}and choose a vector

£#0 such that (202 +N 2)(512 +§22)+(/102 +w2)§32 =0.
Therefore, there exists the vector 7 such that L(&)n=0.

After solving the obtained system with respect to 77, we can
represent one of the solutions in the form:

n = A&y — S, wégz _ A&y + 0
oot T et
17, = /1053 _N§3 1.

/10+N2'774 }L[)JrNZ'T75

Let us observe that 77, # 0 forall i . We choose a function
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v, €Cy(Q), J wo(x)dx=1.

<t

Let us fix X, € 2 and put

3
v ()= K20 (K(x=%,))  k=1.2,...
Now, we can define the Weyl sequence as follows:

~ '3)(, 6 H ~ iax’

v = Vit iag =123 O=nye
J J

_ i ik3(x,&

A :_F/,ke“ DK E) =X+ % Xy k=12,

It is easy to see that the above sequence satisfies the Weyl
conditions.

Since the essential spectrum of a linear operator is always a
closed set, the points

{0},£{ib},+{-iB}, also belong to it and thus the Theorem is
proved.

IV. CONCLUSION

The explicit form of the solution of three-dimensional rotating
stratified flows in the Ocean, as well as the obtained exact
estimates of vanishing of the amplitude for large values of t
can be wused directly for numerical calculations and
programming. The constructed Weyl sequence is an explicit
example of non-unique solutions for the case when the
frequency of internal vibrations belongs to the spectrum. Since
the bifurcation points belong to the essential spectrum, it can
be used for investigation of the small nonlinear solutions. The
practical case of a layer in the Ocean suggests that the
obtained results may find their applications in nonlinear
dynamic modeling, computational fluid dynamics and weather
forecasting, since the obtained results are also valid for the
Atmosphere.
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