
 

 

 
Abstract— Performance of any system is identified 

through the observation of significant system parameters. 

Required parameters have to be measured using suitable 

sensors. But in some scenarios, it is difficult to measure 

some of the parameters due to issues in the placement of 

sensors. In such cases, estimators are developed to 

measure the parameters indirectly. In this paper, an 

attempt is made to develop an estimator to monitor the 

value of pitch and yaw of a twin-rotor multi input multi 

output system. The observer is developed using two 

methods one using Luenberger’s equations and the other 

using an Artificial Neural Network (ANN). For training 

the neural network model, the backpropagation algorithm 

is used. Tests have been conducted to analyze and compare 

the behavior of both observers. From the results, it is 

evident that a Luenberger observer performs better when 

sufficient system information is available and ANN 

observer performs better when inadequate system 

information is available. 

 

Keywords—Artificial Neural Network, Estimator, 

Observer, soft sensor, TMRS.  

I. INTRODUCTION 
NVENTION of helicopters were considered as the 

evolutionary step towards vertical lift vehicles. Study of 
helicopter system is vital in many ways to understand the 
behavior of aircrafts. Since, design and implementation of the 
helicopter will not be viable solutions for many institutes, a 
TRMS as shown in Figure 1 is implemented to mimic the 
operation of the same. Several researchers have reported 
works on understanding this vital component of an aircraft 
system.  

  
A lot of work have been reported for measurement and 

control of a TRMS system like in [1], a technique is reported 
for control of pitch channel in a TRMS using nonlinear 
inversion control model programmed using ANN and genetic 

algorithms. Design of a neural Proportional+ Integral+ 
Differentiator (PID) controller for control of pitch and yaw in 
TRMS was developed in [2]. PID controller was tuned using 
real value genetic algorithm. Paper [3] discusses the design of 
controller for stabilizing the TRMS using a radial basis 
function neural network algorithm. In [4], a setup is 
implemented for virtual and remote control practices in a three 
Degree of Freedom (DOF) quadrotor. TwinCAT 
Programmable Logic Controller (PLC) are used as the 
controllers and applet as remote laboratory front-end. Paper 
[5] discusses a robust tracking system developed using an 
integral sliding mode controller for a TRMS. Simultaneous 
estimation of system fault and sensor fault is discussed in [6]. 
The method discussed reduces the exogenous disturbances to a 
predefined level apart from the ability to perform 
simultaneous estimation. Paper [7] explored the concept of 
shifting linear quadratic control which considered the 
existence of constraints in the system. Two constraints 
namely, algebraic constraints between variables of the system 
and constraints depending on the input and state variables 
were considered.  In [8], a hybrid controller containing a 
second order data driven Model Free Control (MFC) and 
Takagi-Sugeno Fuzzy (TSF) logic controller for nonlinear 
Multi Input-Multi Output twin rotor aerodynamic systems was 
reported.  

 
A comparison of the performance of the Control System 

Structure (CSS) using the second order MFC-TSF controller 
and CSS using the MFC controller was performed. Paper [9] 
discusses the Integral Quadratic Constraints (IQC) approach, 
for effective systematic analysis of robust stability. To make 
IQC analysis tools easily accessible, an overview of three 
measures namely (i) general setup and basic IQC theorem, (ii) 
a survey of multipliers based on the linear matrix inequality 
constraints and (iii) an explanation on application of the tools 
is done. An analytical method for based on Bode’s ideal 
transfer function for tuning the parameters of fractional order 
PI controllers (FOPI) is discussed in [10]. In [10], to attain the 
closed loop transfer function the factors of the FOPI controller 
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were tuned. It was found that for low and medium frequency 
ranges, the robustness of the system is better in FOPI 
controller with compared to the PI controller with similar 
configuration. 

  
Paper [11] reports a design and experimental of robust 

controller for multi input multi output plants. External 
disturbances and parametric uncertainties were the factors 
considered for measuring the quantized output. A control 
strategy for TRMS is discussed in [12], to reach preferred 
positions in two degrees of freedom, a control strategy built on 
the coupling of a fuzzy logic control using sliding mode 
controller. In [13], identification, modeling and control of  
TRMS for a quasi linear parameter is reported. Nonlinear 
model is converted in to a quasi LPV system. Paper [14] 
reported a different nonlinear internal model control approach. 
The performance and robustness can be improved by varying 
the control based on flatness property. This enables the model 
to work in a closed loop structure. Two nonlinear model 
predictive control algorithms are projected in [15] based on 
neural networks intensified reactors. One control algorithm is 
by means of nonlinear-optimization and the other using local 
linearization. 

 
Paper [16], reports a multi variable nonlinear control 

oriented model for a twin rotor aerodynamic system. Using 
Lagrange’s equations, a mathematical description for a 
multibody system is derived. A multi-variable integral sliding 
mode control using the resulting state-space representation is 
designed which tracks the preferred trajectories for azimuth 
angle and pitch angle. Paper [17] describes data-driven 
techniques which are applied on a single MIMO controller and 
two separately designed single-input-single-output controllers. 
The data driven techniques projected are model-free adaptive 
control, model-free control and virtual reference feedback 
tuning techniques. A model predictive control strategy 
designed for drinking water networks is discussed in [18] 
which considers the system and component reliability. In [19], 
an observer centered control method for a two input two 
output plant is reported. The plant is affected by lumped 
disturbance which consists of undesired effect of cross 
couplings, parametric uncertainties and external disturbances. 

 
Paper [20] discusses the development of a model predictive 

control approach built on a neural network Wiener model. The 
paper also discusses its application on an intensified 
continuous reactor. The Wiener model can be grouped into 
two parts: a linear state space identified model and a local 
linearization of a neural network model. A laboratory model 
of a Twin Rotor MIMO system is described in [21] which was 
created by Feedback Instruments Ltd. The system which looks 
like a helicopter is made up of two rotors. In [22], a model of 
the Mamdani type fuzzy two input, two output proportional 
integral or proportional differentiator controller is reported. 
The fuzzy controller consists of two fuzzy sets for each input 
variables, five fuzzy set for each output variable, five linear 
control rules, AND operator, OR operator and height 

defuzzification strategy. Paper [23] talks about two model free 
sliding mode control structures. On comparison with a model 
free intelligent proportional integral control system structure 
in regard to performance improved performance is found. 
Paper [24] describes the design of passivity-based controllers 
which makes use of memristor. Making use of the passive 
property of memristor incorporated in the target dynamics. In 
[25], a linear parameter varying model is reported meant for 
fixed-wing unmanned aerial vehicles. The objects obtained 
includes its agility and high performance. 

 
From the literature survey it is clear that a lot of study is 

reported on TRMS systems, with the focus mainly on the 
control aspect. A few literature also reports design of sensing 
technique for measurement of variables like pitch, yaw and 
roll. Few literature have also focused on the fault tolerant 
control system, the proposed work makes an attempt to design 
estimator to measure parameters like pitch yaw in TRMS 
under the condition of faulty sensors.  

 
The work is organized such that the background study is 

carried out in first section followed by description of the 
practical system in Section-II. Section-III reports the 
methodology of the proposed work. Section-IV discusses the 
results obtained by the ANN based and observer based 
techniques. Finally, Section-V discusses the conclusion of the 
work. 

II. SYSTEM DESCRIPTION 
Twin rotor multi input and multi output system from 

feedback instrument Pvt ltd is used for carrying the 
experiment in the proposed work. Schematic of the proposed 
system is shown in Figure 1 [26], the TRMS model similar to 
the helicopter model. The experimental model consists of 
beam pivoting on its base at both of its end. The beam is 
connected with two propeller which are driven by two DC 
motors. The beam is fabricated in a way such that the beam 
can traverse in a circular pattern along the axis. A counter 
weight is provided at the center, to keep the system in the state 
of equilibrium. The system is designed in a way such that 
when motors are switched off the end with main rotor in 
lowered. 

 
Fig. 1 Schematic of the proposed system 

 
Supply voltage of 230 V AC is used to drive the motor to so 
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as to control the TRMS parameters. Position angles and 
angular velocity of the rotor are the two signals which are 
measured. Software codes are used to reconstruct the angular 
velocities from the position angles of the beam by 
differentiation and filtering. Fixed angle of attack of a rotor 
and aerodynamics are controlled by varying speed of the 
motor. Cross coupling is observed in the movement of the 
rotors, with each rotor affecting both angle positions. The two 
propellers are driven by DC motors and control of the system 
are the supply voltages for the motor. Measured signals are 
positioned in the beam in the space that is two position angles 
which are measured by rotary optical encoders, mounted on 
each of the rotor shaft. The optical encoder to measure the 
rotation of the rotor is of incremental type. Figure 2 shows the 
laboratory model used in the proposed work.  

 
Fig. 2 TRMS Model from Feedback Instruments 

 
Instrument specifications 
Line voltage: 230 V @ 50 Hz 
Consumption: 100 VA.  
Weight and Dimensions: 80 cm x 35 cm x 75 cm  
Weight: 11 kg. 
 
The objectives of the proposed project work are as follows: 

a. To Estimate the Pitch and Yaw angular positions from 
the noisy and distorted sensor data obtained from the two 
optical encoders of the tail and main rotors of the TRMS. 

b. Secondary objective is to come up with a comparative 
study of the various estimation algorithm, in terms of 
error functions: Integral of Absolute Error (IAE), Integral 
of Square of Error (ISE) and Integral of Absolute Time 
error (IATE). 

III. PROBLEM SOLUTION 
The noisy sensor data obtained from the optical sensors of 

the two rotors are obtained as the input to the estimation 
block. This initial value of the sensor outputs as well as the 
control input is used to estimate the next pitch and yaw angles 

with an appropriate system model. The reference model is 
used to give the nominal outputs as shown in Figure 3. The 
first phase of achieving the objective mentioned is by 
designing estimators for the TRMS model. In the proposed 
work two different techniques are used for the same. Firstly a 
model based technique of observer based estimator is designed 
and later an ANN based estimator is designed. 

 
A. Luenberger Estimator 

The modeling of the system is done using two separate state 
space representation, one is the pitch model and the other is 
yaw model. The state space representation of the TRMS 
system is given by: 

 
ẋ =  𝐴𝑥 +  𝐵𝑢;  𝑦 =  𝐶𝑥 +  𝐷𝑢          (1) 

 
Fig. 3 Block diagram of proposed methodology 

 
                                                           
The matrices for Pitch Model: 
 

𝐴 = (
−1.4389 −3.1862  1.6706
0.0803 −4.9874  −29.1821

−0.0376  0.0474 −5.5737
); 𝐵 = (

1
0
0
);  

 
𝐶 =  (0.0166 0.4194 2.454 ); D=0         (2) 
 
The matrices for Yaw Model: 
 

𝐴 = (
−1.38 −1.6456 −14.7611
0.9244 −2.5724 −31.1124

−0.0196 0.3346 −8.0476
); 𝐵 = (

1
0
0
);  

 
𝐶 =  (0.001 0.0336 0.4065); D=0          (3) 
 
The system equation is given as given by equation (1) 
The observer equation is given by: 
 
𝑥̂′ = 𝐴𝑥̂ + 𝐵𝑢 + 𝐿 ∗ (𝑦 − 𝑦̂)             (4)   
                                                                                                        
𝑥̂′ = 𝐴𝑥̂ + 𝐵𝑢 + 𝐿 ∗ (𝑦 −  𝐶𝑥̂)           (5) 
 
𝑥̂′ = (𝐴 − 𝐿 ∗ 𝐶)𝑥̂ + 𝐵𝑢 + 𝐿 ∗ 𝑦          (6) 
 
𝑥̂′ = 𝐴̃𝑥̂ + 𝐵𝑢 + 𝐿 ∗ 𝑦              (7) 
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Where, 𝐴̃ = 𝐴 − 𝐿 ∗ 𝐶, and the Eigen values of Ã control the 
error dynamics of the observer. 
 
L is the Luenberger gain and 𝑥̂ is the estimate of the state 𝑥 at 
time t. 
The poles for the observer for both pitch and yaw are chosen 
to be at -1,-2 and -3 
These are the Eigen values of the matrix𝐴̃ = 𝐴 − 𝐿 ∗ 𝐶.  
By using Ackermann’s Formula 
 
|( 𝑠𝐼 −  Ã)| =  (𝑠 + 1) ∗ (𝑠 + 2) ∗ (𝑠 + 3)   
|( 𝑠𝐼 − (𝐴 –  𝐿 ∗  𝐶))| = (𝑠 + 1) ∗ (𝑠 + 2) ∗ (𝑠 + 3)   (8) 
 
Where I is an Identity matrix. 
 
Thus by equating LHS to RHS in equation (8), the Luenberger 
gain L is calculated for both the pitch and the yaw and is given 
below. 

The Luenberger gain L for Pitch is: 𝐿 =  (
−2.9012
11.8917
2.2713

)  

 

The Luenberger gain L for Yaw is: 𝐿 =  (
35.3716
76.5373
19.7974

)       (9) 

 
A. Neural Network Estimator 

To design the estimator for finding the yaw and pitch neural 
network algorithms are made use. Neural network algorithm is 
process of finding the unknown yaw and pitch by using a 
predetermined output. The set these predetermined data is 
called training data and the method is called training. Training 
data consist of input data and target data, in the proposed work 
signal to the main rotor and tail rotor is called the input data 
and the yaw and pitch corresponding to the signal is called 
target data. For training 150 x 2 samples were used, these were 
further divided into training data, validation and testing data 
with the ratio of 70%, 15% and 15% corresponding.   
Estimation based on ANN is based on a time series correlation 
between the input and the output, also called as the targets. 
This assumes a black body model, where the dynamics of the 
system are not known and the forecasting is done only from 
the input output relationship of the system. In the proposed 
work back propagation based neural network algorithm 
consisting of two hidden layers with 6x2 and 4x2 neurons 
respectively as shown in Figure 4 [27], [28]. Network 
parameter of the proposed neural network is given in Table 1.   
 

 
Fig. 4 Structure of neural network model 

 

 
Fig. 5 Plot of fit graph for pitch 

 

 
Fig. 6 Regression graph for pitch training 
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Fig. 7 Plot of fit graph for yaw 

 

 
Fig. 8 Regression graph for pitch training. 

 
TABLE I.  Neural network parameters 

OPTIMIZED PARAMETERS OF THE NEURAL NETWORKS 
MODEL 

Database 
Training base 105x2 
Validation base 30 
Test base 30 

No of 
neurons in  

1st layer 6x2 
2nd layer 4x2 

Activation 
function 

1st layer tansig 
2nd layer tansig 
Output layer Linear 

Learning rate 0.2 
MSE 0.005 
epoch 16 

 
Here the neurons are trained to replicate the behavior of the 

system by using the given set of data. The back propagation 
model with a size of 20 neurons are used to predict the output.  
The plot fit graph and regression graph obtained after training 
for pitch and yaw is shown in Figure 5, Figure 6, Figure 7 and 
Figure 8 respectively.  

IV. RESULTS AND ANALYSIS 
Once the estimators are designed using Luenberger and 

ANN, it is subjected to test individually to analysis the 
performance. For analyzing the performance it is subjected to 
test with unit input condition and then with disturbance. 
Further the error constant analysis is carried on for evaluation 
of performance based on standard error constants.   

 

 
Fig. 9 Plot of tracking pitch by designed observer for  unit input. 

 

 
Fig. 10 Plot of tracking pitch by designed observer for disturbance. 
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Fig. 11 Plot of tracking yaw by designed observer for unit input. 

 

 
Fig. 12 Plot of tracking yaw by designed observer for unit input. 

 

 
Fig. 13 Plot of tracking yaw by designed observer for unit input. 

 

 
Fig. 14 Plot of tracking yaw by designed observer for unit input. 
 
Response of designed observer based system is plot in 

Figure 9, Figure 10, Figure 11, Figure 12, Figure 13and Figure 
14 for step input. Response shows that the system was able to 
track the actual pitch and yaw accurately. Tracking response 
with disturbance is also plot. From Figure 9 to and Figure 14 it 
is clear that the observer based estimator was able to track 
accurately. Similarly, tracking output for ANN based 
estimator is shown in Figure 15 and Figure 16, the output 
shows the ANN based estimator was also able to track the 
pitch and yaw accurately. To analyze the complete behavior in 
terms of error the IAE, ISE, and ITAE values are computed.  

 
𝐼𝑆𝐸 =  ∫ 𝑒2𝑑𝑡                          (10) 
 
𝐼𝐴𝐸 =  ∫ |𝑒|𝑑𝑡                          (11) 
 
𝐼𝑇𝐴𝐸 =  ∫ 𝑡|𝑒|𝑑𝑡                         (12) 
Where   e - error 
 t – Time taken 

 

 
Fig. 15 Comparison for ISE, IAE, and ISTE for Pitch estimation 
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Fig. 14 Comparison for ISE, IAE, and ISTE for Yaw estimation 
 
Overall performance can be checked from IAE since this 

penalizes all kinds of error. ISE penalizes large errors more 
heavily hence this can be used to check transient errors or 
errors during oscillatory phase. ITAE penalizes errors that 
occur after certain time more heavily, hence the errors in 
steady state are more amplified than the errors in transient 
phase. The comparative results of all these errors for pitch and 
yaw are shown in Figure 15 and Figure 16 respectively and 
Table 2. 
 
TABLE II.  Computation of error for yaw and pitch estimation at 
time=50 seconds 

 Pitch estimation Yaw  estimation 

Observer ANN Observer ANN 

IAE 0.5086 1.18 0.69 1.28 

ISE 0.005 0.11 0.04 0.22 

IATE 11.745 13.35 9 10.3 

V. CONCLUSION 
Twin rotor multi input multi output system consists of a 

coupled system, mimicking the behavior of helicopter. The 
model helps us to understand the control behavior so as to 
maintain parameters like pitch yaw and roll. To analyze the 
behavior it is primarily essential to monitor the system, for 
monitoring we need to install the sensory system. The paper 
reported a technique for design and comparison of designed 
estimator for computation of pitch and yaw in case of TRMS. 
In the reported work two technique were one with 
computation of estimator based on observer and other based 
on ANN. From the graphs shown in Figure 9 to Figure 16 it is 
seen that both the estimators were able to track pitch and yaw 
accurately. But it was seen that the observer based technique 
was giving high error during transients and very low errors 
when it settled. But in case of ANN though the error during 
transients was low as compared to that of observer its error 
during static conditions was high. 

  
The analysis helps to understand the dynamic behavior of 

the TRMS system for yaw and pitch variation, which can be 
further extended for roll monitoring as well. The work 

presented would help to diagnose the fault in monitoring the 
variables using physical system.  
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