
 

 

 
Abstract—Our research describes the optimization of car 

door hinges. The model we are considering is a pair of 

upper and lower hinges of car doors and cases of their 

loading. Optimization of this part of the vehicle consists in 

reducing the mass of the product, which is taken as the 

target function, while maintaining the mechanical 

characteristics within acceptable values. The 

characteristics of various types of manufacturing, such as 

milling, casting, and additive manufacturing, were also 

used as optimization criteria. During the research the 

authors have undertaken the task of using the most 

advanced approaches for calculation, optimization and 

analysis of their results, which are the use of special 

calculation systems, calculations that are performed on the 

GPU, what is the way much reduces the required 

optimization time, methods of generative design to achieve 

the required criteria and consideration of possible methods 

of manufacture of the workpiece in terms of additive 

manufacturing. The result of our research is the concept of 

optimizing vehicle door hinges and selecting the 

appropriate production method. As a test of the positive 

effect of the applied method, a repeated static calculation 

of the structure was made, based on the optimized 

geometry. 

 

Keywords—Door hinge, generative design, GPU, parallel 

computing. 

I. INTRODUCTION 
HERE is currently no precise, well-established definition 
of “generative design”. In various resources, you can find 

information about where generative design is called “an 
approach to design in which a person delegates part of the 
processes to computer technologies and platforms”. You can 
also find similar statements: "Newest software based on 

artificial intelligence, which is able to generate structures and 
parts according to the specified parameters almost without the 
participation of engineers." These statements are  
fundamentally incorrect, starting from the fact that engineers 
have been delegating part of the processes to software 
packages for more than a quarter of a century, including 
strength calculations and optimization, which does not exclude  
the engineer from the process in any way, because a certain set 
of skills and knowledge is needed for a competent task 
 statement, even using engineering software. To the fact that 
the results will be “generated” by the computer the generated 
results obviously have to be checked by the compliance of the 
mechanical characteristics of the received detail and a process 
engineer who must assess the possibility and economic 
feasibility of manufacturing the part.  

So, generative design differs from topological optimization 
in the presence of algorithms used based on the framework to 
redefine the area remaining after optimization calculation for 
the required tasks. For example, we know the parameters of 
the cutting tool that we will use to manufacture the product, as 
well as how many axes our milling machine can use. The 
program will consider the possible path of the cutter in order 
to interpret the model in such a way that it can be produced 
without much difficulty on the equipment we have. 

Due to the circumstances described above, we will try to 
give the definition of generative design.  

Generative design is an optimization process based on the 
use of various additional, auxiliary, algorithms that serve to 
generate the optimization domain (including algorithms that 
consider the manufacturing process). For example, the path 
along which the cutting tool of a milling machine goes) and 
has a functional that can, as a result, output a ready-made 
solid-state model. For the proposed approach to design, 
different terms are also used: there are "heavy", - for example, 
the "generative design" introduced by Autodesk, i.e. the 
structure is generated during design, and often in automatic 
mode, without the participation of the designer, due to 
algorithms. These algorithms are based on machine learning 
techniques for training artificial intelligence, the so-called 
“engineering intuition”, due to which the neural network 
simultaneously serves as an assistant both in the construction 
of a mathematical model of the optimized product and in the 
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process of its interpretation, taking into account, for example, 
manufacturing parameters.  

This article contributes to the body of engineering 
knowledge, and specifically to the field of optimization in the 
mechanics of a deformable solid in which the authors turn to 
the use of new techniques in the approach to optimization. 

The paper describes the approach to optimization described 
above and compares the results obtained on the same model in 
one of the most widely used Ansys optimizer and the 
generative design program. 

II. MATERIALS AND METHODS 
The most studied and developed mathematical model of 

optimization is SIMP optimization method, and this approach 
is used in most software for implementing topological 
optimization [1]. As in the homogenization approach, the 
volume of material to be optimized is divided into a grid of N 
elements (isotropic solid microstructures). Each element is 
mapped to a relative density of ρe. The target function is the 
strain energy. Restrictions are imposed on the volume of the 
material. Thus, the problem of topology optimization using the 
SIMP method can be formulated as follows: 
 

Minimize: 
1

( ) ( ) ;N p T

e e e e ee
SE u k u 
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Restrictions: 
0

( ) ;V x
f

V
  (2) 
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min0 1,e     (4) 
 
Where U –  the global displacement vector; F – global 

vector of forces; ue and ke – displacement vector and the 
stiffness matrix of the element; ρe – vector of design 
parameters (vector of the relative densities of the elements), 
and ρmin –minimum density value (for empty elements), non-
zero for stability of finite-element analysis; N is the number of 
elements in the model; V(x) – current volume of the structure; 
V0 - initial volume of the structure; f – given in advance the 
ratio of change of volume, that is, selection of the necessary 
amount of material for disposal; p - penalty parameter; x - 
vector of constructive variables. 

The objective function and constraints variables that can be 
obtained through finite element analysis. The choice of the 
vector of constructive variables x depends on the type of 
optimization being performed. For topological optimization, 
the design variables are element densities. When optimizing 
the size, design variables are properties of structural elements. 
In topographic optimization, design variables are represented 
as a linear combination of a modified shape. 

The value of the material density of each finite element is 
dimensionless and varies between 0 and 1, where 1 indicates 
the need to preserve this element, and 0, conversely, means 
that it must be removed. Unfortunately, optimization over a 

large number of discrete variables cannot be implemented 
numerically. Consequently, the problem of material 
distribution is posed in continuous variables. The stiffness of 
the material is assumed to be linearly dependent on the 
thickness. To reduce the density of the material distribution to 
the interval [0;1], the formula is used: 

,p pK K  (5) 
 
ρ - density of the element (the reduced thickness of the 

material), and p is the resulting coefficient, which is always 
greater than one. 

In this mathematical method, additional restrictions may be 
imposed, for example, you can change the algorithm when 
optimizing a part that will later be obtained by casting. In this 
case, all elements on the line k parallel to the casting direction 
must be assigned increasing densities [2]: 

 

1 2 1...(0 ... 1) .k K       (6) 
 
The results obtained using finite element analysis at the first 

step of each iteration are used to calculate the sensitivity of 
each element. Sensitivity is called the impulse, or the effect 
that a variation in the density of an element has on the target 
function. The expression for sensitivity can be written as 
follows: 

 

1( ) .p T

e e e e

SE
p u k u

P






   (7) 

 
The discrete parameter corresponds to (p-1). By default, the 

discrete parameter is 1 for shell elements and 2 for solid-state 
elements.  

The tools of structural optimization include the variability of 
topology and size. In setting optimization problems, 
parameters can be volume, mass, moment of inertia, centre of 
gravity, speed, acceleration, stresses, displacements, forces, 
and external functions. These values can also be used as 
optimization criteria (for example, the goal is to reduce the 
mass of the part). The result of topological optimization is the 
distribution of material on a given geometry with a specific set 
of loads and fixations. 

The optimization tools include variety of topologies and 
sizes. In setting optimization problems, parameters can be 
volume, mass, moment of inertia, centre of gravity, speed, 
acceleration, stresses, displacements, forces, and external 
functions. These values can also be used as optimization 
criteria (the purpose of this work is to reduce the mass of the 
part). The result of topological optimization is the distribution 
of material on a given geometry with a certain set of loads and 
anchors. From an engineering point of view, the most desirable 
goal is to get a solution in which the porous regions are largely 
suppressed and then also in the design stage to get a solution 
consisting only of solid and empty regions [3]. 
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The mathematical model for calculations was chosen as 
follows in Fig.1.  

The model is made from solid finite elements. The holes are 
directly attached to the car body are fitted with seals they are 
subject to the displacement condition. And on the holes that 
belong to the door mounting, there are concentrated masses, 
based on the calculation that the door weight is 200 N. 

The material properties of this FE model are defined as a 
linear-elastic material with a yield strength [4]. 

III. RESULTS 
One of the most modern optimization methods in the field of 

applied mechanics is semi-automatic product development 
(generative design), which allows the engineer to get a ready-
made solution based on a single optimization calculation, 
rather than multiple iterations, as it was before. Automation of 
the process is achieved by machine learning, used in modern 
software, which allows you to get not just a concept, but a 
ready-to-manufacture part, in the shortest possible time, the 
production parameters of which are already taken into account 
in the calculations. 

Software products that take into account the type of 
production (milling, 3D printing, casting, etc.) were used. The 
calculation process used machine learning, which is trained 
using special algorithms, parallel computing and cloud 
technologies to speed up the solution of tasks [5]  ̶[12]. 

The most breakthrough technologies in the field of semi-
automatic product development software are use of cloud 
technologies and parallel computing. 

The cloud technologies are allowing to create a huge 
database of results of optimization calculations for the purpose 
of training the neural network. Another important feature is the 
ability not to use the initial geometry in the calculation, 
because only 2 types of areas are required to start 
optimization: areas that we want to leave in the future 
geometry (such as holes, mounting pads, etc.) and areas that 
should not contain any material (for example, the area inside 
the hole where the fastener should be located). This function is 
achieved using machine learning in cloud programs. 

Parallel computing, for his part, can significantly reduce 
the speed of optimization calculations and visualization. Most 
of modern scientific software use power of NVIDIA GPUs and 
parallel computing CUDA, so we decided to use it in our 
research. 

In GPU-accelerated applications, the sequential part of the 
workload runs on the CPU – which is optimized for single-
threaded performance – while the compute intensive portion of 
the application runs on thousands of GPU cores in parallel. 
When using CUDA, developers program in popular languages 
such as C, C++, Fortran, Python and MATLAB and express 
parallelism through extensions in the form of a few basic 
keywords [13] ̶ [15]. 

In this paper, CUDA uses the resources of the computer's 
video card to speed up the optimization process and interpret 
its results by circumscribing the neural network, since we have 
a finite element grid at the exit from the optimization process, 
and interpreting the grid using surfaces is quite resource-
intensive. 

The block-diagram of generative design method using 
cloud-based technologies and parallel computing using CUDA 
are provided (Fig.2-3). 

 
Fig. 2. Block diagram of the generative design process 

 
Fig. 3. Block diagram of the CUDA parallel computing 

 

 
Fig. 1. The mathematical model and finite-element mesh of door hinge 
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Using generative design technology, an engineer can get a 
ready-to-manufacture model that may have some shape defects 
if the mathematical model is set incorrectly during post-
processing. After setting the task, we launched an optimization 
analysis. Figures 4-5 shows the result of optimization car door 
hinges. 

 

 
Fig. 6. Result of generative design optimization of upper hinges of a 
door (left - starting shape, central - 2nd step, right – final result) 

 

 
Fig.5. Result of generative design optimization of lower hinges of a 
door (left - starting shape, central - 2nd step, right – final result) 
 

During the optimization, thanks to the algorithm described 
above, the neural network was trained to search for the optimal 
option based on similar calculations performed by us in the 
laboratory earlier. As a result, a solid-state model was obtained 
using the interpretation of the finite element grid obtained in 
the program. 

After optimization the data of the volume change in each 
iteration was uploaded and graphs of the volume dependence 
on the optimization iteration were constructed (Fig.6). 

 

 
Fig.6. Graph of volume reduction depending on the optimization 
number (Red – cloud-based software, Blue – Parallel computing) 

From Fig. 6, you can see that the use of a neuro network 
technologies has a noticeable advantage in optimization speed 
compared to classical optimizers based on parallel computing. 

After optimization, verification static calculations were 
performed, which resulted in stress and strain fields for both 
the initial geometry and the two optimized variants. 

The strain and stress fields of the initial geometry are shown 
in (Fig.7-8). 
 

 
Fig.7. Result of static analysis of lower hinges of a door starting 
shape (Left-deformation, Right-Stress) 
 

 
Fig.8. Result of static analysis of upper hinges of a door starting 
shape (Left-deformation, Right-Stress) 

 
As we can see, the results of the verification calculation of 

the geometry obtained with parallel computing tools (Fig.9-10) 
differ slightly from the results of the initial geometry. The 
upper hinge has even better indicators than the base one. 
 

 
Fig.9. Result of static analysis of lower hinges of a door optimized 
with parallel computing (Left-deformation, Right-Stress) 
 

 
Fig.10. Result of static analysis of upper hinges of a door optimized 
with parallel computing (Left-deformation, Right-Stress) 
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The results of the geometry obtained by optimized with 
cloud-based technologies (Fig.11-12), despite good indicators 
of mass reduction and accurate interpretation of the geometry, 
are an order of magnitude lower than the results of 
deformation and stresses of the base geometry. 

There is a stress concentrator point on the upper hinge. 
Based on the stress values at this point, we can conclude that it 
poses a greater threat of failure (Fig.13). 

This problem can be solved by "manually fine-tune" this 
part by increasing the thickness of the stiffeners. 
 

 
Fig.11. Result of static analysis of lower hinges of a door optimized 
with cloud-based technologies (Left-deformation, Right-Stress) 
 

 
Fig.12. Result of static analysis of upper hinges of a door optimized 
with cloud-based technologies (Left-deformation, Right-Stress) 
 

 
Fig.13. Result of static analysis of upper hinges of a door optimized 
with cloud-based technologies (Left-deformation, Right-Stress) 

 
Similar challenge in this area was carried out by General 

motors. In this article the company not only shows the 
optimized car seat bracket but also gives information about its 
strategy to support and implement the generative design and 
additive manufacturing in company [2]. 

Generative design helps solving challenges not only in 
automotive industry but also in wide range of engineering 
cases. As an example, generative design is quite popular in 
architecture. Generative design was used by researchers in 
Lisboan technical University to design a Market building. As 
the researches claims it becomes possible to save a significant 
amount of time and effort by defining a library containing 
generalized implementations of the corresponding algorithms 
[16]. 

IV. RESULTS AND DISCUSSION 
The results of strength calculations showed that the software 

that used the generative design approach facilitates the 
construction of door hinges by a greater percentage, but at the 
same time loses to ANSYS according to the results of the 
verification calculation - it has large deformations and stresses. 
This means that the mathematical model for software with 
generative design requires further work and comparative 
calculations with other similar solutions on the market. 

V. CONCLUSION 
Optimization of vehicle door hinges with maintaining 

mechanical characteristics was the main goal of our research. 
We also wanted to show the most modern approaches for 
calculating and optimizing parts based on generative design. 
The generative design itself has an advantage over 
conventional topological optimization in the accuracy of the 
result and automatic interpretation of the analysis results. In 
addition, the time that takes up the optimization process, both 
when using cloud-based technologies and parallel computing 
using GPU. 

We presented the original geometric model of electric car 
door hinges together with the block diagram of the optimizer. 
For N = 22, where N is the average number of calculated 
iterations with cloud-based software, and N2 = 13 is the 
average number of calculated iterations with parallel 
computing.  

During optimization, we were able to reduce the volume by 
30% and create a part that meets the criteria for mechanical 
characteristics. To confirm the positive result of the 
calculation, we used an optimized geometry and performed 
static structural calculations. For this part, the type of 
manufacturing was selected - die casting as its cost in the 
automotive industry is much cheaper than additive 
manufacturing or milling. 

As mentioned earlier, software with a generative design 
loses to ANSYS based on the results of the verification 
calculation, so the use of ANSYS in this task is optimal 
because it allows you to preserve the mechanical 
characteristics while reducing the material used for production. 

A prototype was made, and experimental studies were 
conducted. The prototype is a modified CAD model of the 
original design. The properties of the prototype and the 
developed optimized hinges are compared. 
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