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Abstract- Computational modelling of dam-
age in brittle and quasi-brittle materials needs
some coupling between micro- and macroscopic
crack initiation and evolution, up to their non-
negligible softening behaviour. Most such ap-
proaches contain ad hoc evaluations, with some
physical and engineering motivations, namely
those connected with massive application of steel
fibre-reinforced concrete and similar composites
in building projects, but without any proper
mathematical existence and convergence analysis
for the time development of damage. This paper
presents a possibility of such deterministic anal-
ysis on a selected model problem of structural
dynamics, supplied by comments to useful direc-
tions of generalization. Several application exam-
ples document the feasibility of such approach,
up to its software implementation and real data
validation.
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I. Introduction

Computational prediction of fracture and damage of
materials and structures under mechanical, thermal and
other loads belongs to serious problems in many en-
gineering applications. Most considerations on physi-
cal mechanisms of creation and propagation of micro-
fractured zones, macro-cracking, etc., give only quali-

tative results for idealized materials and processes, ob-
servable during well-considered laboratory experiments,
not reliable quantitative results for real materials and
composites, as bearing parts of buildings or engineering
structures. Usual manifestation of fracture are: i) dis-
crete crack discontinuities in brittle materials like glass or
welds in metal structures, ii) shear (localization) bands in
elasto-plastic ductile metals and similar materials, or iii)
fracture process zones with numerous particular micro-
and macro-cracks, typical for quasi-brittle materials, in
comparison with i); for the more detailed classification
see [1], for the attempt to develop a unified physical
and mathematical theory cf. [2]. Especially in iii) two
stages of damage can be recognized: iii-a) formation of
micro-fractured zones, reducing the stiffness of a struc-
ture, iii-b) creation of macro-cracks, whose later opening
and closing is conditioned by the cohesive characteristics
of new interfaces.

In general, from the point of view of computational
practice, in all cases i), ii), iii) the presence of some irreg-
ular boundaries and interfaces at several scales should be
respected. Namely in the probably most frequent build-
ing application of fibre-reinforced cementitious compos-
ites, containing fibres prepared from steel or some ad-
vanced materials, corresponding to iii), at least the fol-
lowing scales should be distinguished: 1) matrix parti-
cles (at 10−3 m), 2) hardening fibres (at 10−2 m) and
3) laboratory samples (at 10−1 m) or real structures
in situ (even greater). Thus any quantitative compu-
tational modelling or simulation of i), ii) or iii) is con-
ditioned by the reasonable identification of geometrical
parameters like volume fraction and fibre orientation by
1), 2), 3), together with a suitable aet of mechanical
characteristics of particular components and interfaces.
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In most cases some non-destructive or low-invasive test-
ing approaches are required, especially in the case of
fibre-reinforced composites a) X-ray (roentgenographic)
planar images, supplied by image processing, supported
by the FFT (Fast Fourier Transform) algorithm, b) 3-
dimensional images from computer tomography, c) in-
direct measurements of changes in a (nearly) stationary
magnetic field (applying e. g. the Hall probe), d) indirect
measurements of changes in a harmonic electromagnetic
field, etc., as demonstrated in [3], containing numerous
further references.

The extensive use of brittle matrix composite ma-
terials requires also appropriate computational models
to describe, with adequate accuracy, their mechanical
behaviour. From a micromechanical model some macro-
scopic constitutive equations are derived for intentionally
or random oriented fibres by [4], [5], [6] and [7], account-
ing for such physical processes as matrix / fibre debond-
ing and fibre rupture. One of possible ways is to adopt a
discontinuous-like finite element approach to the lattice
model by [8]. An alternative approach refers to special
constitutive relations, inspired by continuum mechanics,
where crack opening and contact surface sliding are in-
cluded into the model of plastic damage, using smeared
cracking by [9], [10] or [11], together with mesh objective
strain localization due to material softening, referring to
the thermodynamically irreversible continuum damage
mechanics by [12], in particular that leading to a smeared
representation of the crack path by [13]. At least for the
practically significant application of self-compacting con-
crete, supported by both experimental methods and nu-
merical simulations, smeared cracking can be combined
with Monte Carlo simulations, which results in the varia-
tional multiscale cohesive method by [14], whose various
implementations differs in the choice of basis functions.

Some authors refer to the non-negligible non-
deterministic both input data and relevant physical pro-
cesses, which leads them to the attempts to handle the
evolution of damage by switching to stochastic consid-
erations, genetic algorithms or other soft computing ap-
proaches like [15] or [16], to statistical physics by [17],
or to computational peridynamics, avoiding all gradient
evaluations, as discussed in [18], [19] and [20]. Unlike
such approaches, this paper tries to find a compromise
between an above sketched multidisciplinary group of
problems and the need to design and implement rather
simple computations. Coming out from the principle of
energy conservation from classical mechanics, incorpo-
rating the kinetic and deformation energy, together with
certain energy dissipation (structural and mass damp-
ing), the initiation of some micro-cracks will be incorpo-
rated using the approach of [21] and [9], utilizing numer-
ous ideas of [22], adopting the nonlocal model from [23].
This model was later reformulated by [24] and is fre-
quently referred as the Eringen one in the last 2 decades;
for more motivations and references to nonlocal models
in continuum mechanics cf. [25]. For the strain-stress
relations we shall start with the linearized viscoelastic
Kelvin law. Such a model problem will be discussed

in Section II. in details. Available generalizations, han-
dling the quasi-static case, discussed in [26] separately,
as well as composite structures and cohesive interfaces,
motivated by [27], [4], [28], [29] (for various types of fi-
bre composites), [30] (for ceramics) and [31] (for a rather
general class of damage propagation), will be sketched in
Section III.. Section IV. shows the possibility of devel-
opment of relevant software, including several numerical
examples. Section V. contains some ideas for more com-
plex formulations, not covered by Sections II. and III.
properly, involving open problems for future research.

Fig. 1: Creation and propagation of a crack using XFEM
in a cement paste without any stiffening fibres.
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II. A model problem

Due to the limited extent of this conference paper,
to save its reader-friendliness, we shall start with the
formulation of a rather simple model problem on a (at
least macroscopically) one-component material, whose
solvability, convergence of approximate solutions derived
from Rothe sequences, etc., could be handled by stan-
dard arguments on linear parabolic and hyperbolic equa-
tions of evolution by [32], with just one exception: stiff-
ness weakening due to certain damage factor, derived
from the nonlocal stress evaluation. More complicated
both geometrical and physical configurations will be
mentioned in Section III. and implemented in Section
IV..

A. Mathematical preliminaries
Let us consider a domain Ω in the 3-dimensional

Euclidean space R3, whose exterior Lipschitz bound-
ary ∂Ω consists of 2 disjoint parts Θ (for homoge-
neous Dirichlet boundary conditions) and Γ (for non-
homogeneous Neumann boundary conditions), Θ having
a non-zero measure on ∂Ω (to avoid insufficient support).
Let R3 be supplied by a Cartesian coordinate system
x = (x1, x2, x3). Moreover we shall work with the time
t ∈ I, I = [0, T ] for some final time value T , assumed
as finite here. For the brevity of notation we shall work
with the Hamilton operator ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3),
with upper dots instead of ∂/∂t. Moreover any comma
followed by k ∈ {1, 2, 3} will be seen as ∂/∂xk applied
to the preceding variable: e. g. 2 εij(v) = vi,j + vj,i with
i, j ∈ {1, 2, 3} can be understood as the definition of
linearized strain, applicable to any differentiable virtual
displacement v(x) = (v1(x), v2(x), v3(x)), related to an
initial configuration. The Einstein summation rule for
indices i, j, k, l ∈ {1, 2, 3} will be active, too.

The introduction of Lebesgue, Sobolev and Bochner
spaces of functions on Ω and ∂Ω and abstract functions
mapping I to them is compatible with [33]. Namely
we shall work with the Hilbert spaces H = L2(Ω)3,
Z = L2(∂Ω)3, ZΓ = L2(Γ)3 and V = {v ∈ W 1,2(Ω)3 :
v = ∅ on Θ}, supplied with norms | . | both in H and
H ×H, | . |Γ in ZΓ and ‖ . ‖ in V , as well as with scalar
products ( . , . ) both in H and H × H, together with
〈 . , . 〉Γ in ZΓ. We shall also utilize upper star symbols
for dual spaces, ⊂ for continuous embeddings, b for com-
pact embeddings, ∼= for identification of a space with its
dual in the sense of the Riesz representation theorem.

The following properties of the above introduced
spaces (for all notations and proofs see [33] again) will
be needed:

P1) The Bochner - Sobolev space L2(I, V )∗ ∼= L2(I, V ∗)
is reflexive; consequently from any bounded se-
quence in L2(I, V ) a weakly convergent subsequence
can be selected (the Eberlein - Shmul’yan theorem).

P2) H b V (the Sobolev embedding theorem).

P3) Z b V ; thus |v|2Γ ≤ T‖v‖2 for any v ∈ V with a
positive T independent of v (the trace theorem).

P4) In addition to the standard norm ‖v‖2 = |v|2+|∇v|2
for any v ∈ V , an alternative norm in V is gener-
ated by |ε(v)|2 because |ε(v)|2 ≤ |∇v|2 ≤ ‖v‖2 and
|ε(v)|2 ≥ K‖v‖2 with a positive K independent of v
(the Korn inequality).

Fig. 2: Results comparable with Fig. 1 for 1 and 2 stiff-
ening fibres.

B. Dynamics of a viscoelastic body
Let us introduce an displacement in a deformable

body (a priori uknown), occupying the domain Ω,
u(x, t) = (u1(x, t), u2(x, t), u3(x, t)), related to the refer-
ence initial configuration (at t = 0), such that the homo-
geneous Cauchy initial conditions u1(x, 0) = u2(x, 0) =
u3(x, 0) = 0 and u̇1(x, 0) = u̇2(x, 0) = u̇3(x, 0) = 0 are
satisfied for almost every x ∈ Ω. We shall assume that
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u ∈ W 1,2,2(I, V, V ); both initial conditions can be writ-
ten as

u(. , 0) = ∅ , u̇(. , 0) = ∅ on Ω . (1)

Analogous simplified notations will be used for further
functions, too.

For an arbitrary v ∈ V the energy conservation for
our model problem can be presented in its weak (inte-
gral) formulation

(v, ρu̇) + β(v, ρu) + α(ε(v), σ) (2)

+ [(ε(v), (1−D)σ)] = [(v, f)] + [〈v, g〉Γ] on I

where

[φ, ψ](t) =

∫ t

0

φ(ξ)ψ(ξ) dξ

is introduced for arbitrary functions φ, ψ ∈ L2(I) over
[0, t] (t in 2 and later is not emphasized explicitly for
brevity). Here ρ ∈ L∞(Ω) is the material density and
σ ∈ L2(I,H3×3

sym ) refers to all stress components. Its sym-
metry comes from the assumptions on Boltzmann contin-
uum; for much more general considerations of this type,
including constitutive laws, cf. [34], p. 18, and [35]. The
energy dissipation in (2), driven by the prescribed body
forces f ∈ L2(I,H3) and surface forces g ∈ L2(I, Z3

Γ),
is taken into account using the positive damping factors
α for structural damping due to the parallel Kelvin vis-
coelastic model, and the real non-negative factor β for
mass damping, compatible with the Rayleigh damping
model by [36]. We shall assume that ρ ≥ ρ0 on Ω for
some positive constant ρ0. Finally D can be presented
as some damage factor with values between 0, assumed
always for t = 0, and 1− ς, using an additional positive
constant ς.

Let us remind that the strong (differential) formula-
tion corresponding to (2) can be derived, at least in the
sense of distributions, from integration of by parts. Fol-
lowing the approach of [26] (where the quasi-static case
is discussed in all details), for each i we receive

ρ(üi + βu̇i) (3)

− (ασ̇ij + (1−D)σij),j = fi on Ω× I ,
(ασ̇ij + (1−D)σij)νj = gi on Γ× I ,

ui = ∅ on Θ× I

where ν = (ν1, ν2, ν3) means the local unit normal vec-
tor associated with Γ. In addition to the 1st evolution
equation of (3), referring to the classical Cauchy equi-
librium condition, we can see both an explicit Neumann
boundary condition in the 2nd equation and a Dirichlet
one in the 3rd equation.

The local stress-strain relation can be taken in the
simple form

σ = Cε(u) (4)

with C ∈ L∞(Ω)
(3×3)×(3×3)
sym , containing (in general) 21

material parameters, C(x) being positive definite in the
sense Cijkl(x)aijakl ≥ C0aijaij , involving some positive
constant C0. In particular, for an isotropic homogeneous

medium, using the Kronecker symbol δij = 1 for i = j,
0 otherwise, we have

σij = 2λ1εij(u) + λ2δijεkk(u)

with only 2 positive Lamé factors λ1 and λ2; frequently
they are expressed as

λ1 = µE/(1 + µ)/(1− 2µ) , 2λ2 = E/(1 + µ) ,

utilizing the well-known Young modulus E and the Pois-
son ratio µ (cf. Section IV.).

C. Nonlocal damage factor
Our final aim is to derive u ∈W 1,2,2(I, V, V ) from (2).

Since σ can be inserted from (4) into (2), the remaining
step is to express D as an appropriate function of σ, with
certain regularizing properties. This can be done using
some kernel (typically radial basis or similar) operator
K ∈ L2(Ω× Ω), introduced as

A(w(x)) =

∫
Ω

K(x, x̃)w(x̃) dx̃ (5)

for x ∈ Ω and w ∈ H by [24]. The needed general-
ization for w ∈ H3×3

sym , as introduced by [37], or that
for effective mean stresses (for the sake of objectivity)
by [38], is straightforward. Namely [37] works with
K(x, x̃) = K(|x − x̃|3) where | . |3 means the norm in
R3 and K(|x− x̃|3) is obtained using Green functions of
the bi-Helmholtz equation

(1− c21∆)(1− c22∆)K(|x− x̃|3) = δ(x− x̃) ;

δ here refers to the Dirac distribution and ∆ = ∂2/∂x2
1 +

∂2/∂x2
2 + ∂2/∂x2

3 to the Laplace operator. Thus

K(ξ) =
1

4π
· 1

c21 − c22
· 1

ξ
(exp(−|ξ|3/c1)

− exp(−|ξ|3/c2))

for a positive ξ and

K(0) =
1

4π
· 1

c1c2(c1 + c2)
,

assuming c1 6= c2. Here c1 and c2 are 2 material length
scales, which can be traced up to atomistic consider-
ations, working with dislocation and disclination de-
fects. Limit cases as c1 → c2 and c2 → 0 (referring to
the standard Helmholtz equations) can be adopted eas-
ily. However, for more complicated material structures
such transparent theory is not available; e. g. for prac-
tical computational simulations of behaviour of fibre-
reinforced concrete structures under mechanical loads
[39] recommends the “generalized Mazars model” with
several heuristic parameters, respecting anisotropy to-
gether with different behaviour under tension and pres-
sure like [9] and [40], inspired by [41], [42] and [21].

Fortunately the recent result [43] on the ill-possedness
of the nonlocal approach [24], referring to the existence
analysis [44], for boundary conditions significant in prac-
tical applications is not addressed to our formulation, as
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explained in [26]. Therefore we are ready to work with
σ̃ = A(σ) with values from R3×3

sym (or its natural modifi-
cation, as mentioned above) and to compute

D = max
ξ∈[0,t]

ω(σ̃(ξ)) (6)

where ω is some real continuous non-decreasing function
(containing additional experimentally validated parame-
ters typically) defined on R3×3

sym with all values lesser of
equal to 1− ς; the maximization forces the irreversibility
of damage. Clearly D depends on u from (2) (in a rather
complicated way), which will not be highlighted in the
rest of this paper formally. Nevertheless, the definition
(6) together with (5) enables us to exploit the results on
Nemytyskǐı mappings by [45], p. 134: if some sequence
converges weakly to u ∈ V for a fixed t ∈ I, thanks
to (4), transforms it to a weakly convergent sequence to
σ ∈ H, after the regularization σ̃ = A(σ) the same, up to
a subsequence, converges strongly to σ̃ ∈ H, etc. Conse-
quently, thanks to the continuity of ω, we are allowed to
come to the strong limit of the corresponding sequence
induced by (6), which may be helpful to overcome the
nonlinearity of our model problem. However, the design
of a sufficiently general class of functions ω admitting all
above sketched mathematical considerations and appli-
cable in engineering practice (regardless of both physical
and geometrical linearizations, together with the exis-
tence of a positive ς) cannot be seen as a closed problem;
for some particular examples cf. [9] and [26].

Fig. 3: Effect of nonlocal stress evaluation at the crack
tip.

D. Convergence of Rothe sequences
The computational algorithm for the analysis of (2),

with inserted σ from (4), assuming D (also dependent of
u) evaluated from (6), i. e.

(v, ρu̇) + β(v, ρu) (7)

+ α(ε(v), Cε(u))

+ [(ε(v), (1−D)Cε(u))]

= [(v, f)] + [〈v, g〉Γ] on I ,

will rely on the evaluation of 3 special types of Rothe
sequences. Let I be divided into a finite number m of
subsets

Ims = {t ∈ I : (s− 1)τ < t ≤ sτ} , s ∈ {1, . . . ,m} ,

with the final aim m → ∞; τ(m) = T/m is considered
(the argument m will be omitted formally). We are able
to work with the Clément quasi-interpolation fm of f
in L2(I,H) and gm of g in L2(I, ZΛ), assuming t ∈ Ims ,
s ∈ {1, . . . ,m}, i. e.

fm(t) =
1

τ

∫ sτ

(s−1)τ

f(ξ) dξ ,

gm(t) =
1

τ

∫ sτ

(s−1)τ

g(ξ) dξ .

For any unknown um we have to set some linear Lagrange
splines

um(t) = ums−1 + (t− (s− 1)τ)(ums − ums−1) (8)

and standard and retarded simple functions

ūm(t) = ums , ŭm(t) = ums−1 , (9)

taking um0 = ∅. Later we shall nead also the 1st and 2nd
differences Dums = ums −ums−1 and D2ums = Dums −Dums−1

with s = {1, . . . ,m), taking um0 = ∅ and Dum0 = ∅.
The discrete variant of (7) reads

(v, ρu̇m) + β(v, ρūm) (10)

+ α(ε(v), Cε(ūm))

+ [(ε(v), (1− D̆m)Cε(ūm))]

= [(v, fm)] + [〈v, gm〉Γ] on Ims ;

here D̆m refers to D calculated for ŭm instead of u. In
terms of the values um1 , . . . , u

m
m, taking r ∈ {1, . . . , s}

as the Einstein summation index (and δrr as the ‘ecker
symbol formally) for each s ∈ {1, . . . ,m} (7) gives

1

h
(v, ρDums ) + β(v, ρums ) (11)

+ (ε(v), αCε(ums ))

+ hδrr(ε(v), (1−Dm
r−1)Cε(umr ))

= hδrr(v, f
m
r ) + hδrr〈v, gmr 〉Γ ;

here Dm
s−1 refers to D calculated for ums−1 instead of u,

too. Subtracting s-th and (s − 1)-th equations (11), we
obtain

1

h
(v, ρD2ums ) + β(v, ρDums ) (12)

+ α(ε(v), Cε(Dums ))

+ h(ε(v), (1−Dm
s−1)Cε(ums ))

= h(v, fms ) + h〈v, gms 〉Γ ,

which is the desired formula for the step-by-step evalua-
tion of ums .

Now we shall exploit (12) to derive some a priori
bounds for all sequences {um}∞m=1, {u̇m}∞m=1, {ūm}∞m=1

and {ŭm}∞m=1. Choosing v = Dums /h in (12), we have

1

h2
(Dums , ρD2ums ) +

β

h
(Dums , ρD2ums ) (13)

+
α

h
(ε(Dums ), Cε(Dums ))

+ (ε(Dus), (1−Dm
s−1)Cε(us))

= (Dus, fms ) + 〈Dus, gms 〉Γ .
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The same results remains true with arbitrary r ∈
{1, . . . , s} instead of s. Using the obvious relation
2a(a− b) = a2− b2 + (a− b)2, valid for any real a and b,
the sum of all such equations derived from (13) is then

1

2h2
(Dums , ρDums ) (14)

+
1

2h2
δrr(D2umr , ρD2umr )

+
β

h
(Dumr , ρDumr ) +

α

h
(ε(Dumr ), Cε(Dumr ))

+
1

2
(ε(ums ), (1−Dm

s )Cε(ums ))

+
1

2
(ε(umr ), (Dm

r −Dm
r−1)ε(umr ))

+
1

2
(ε(Dumr ), (1−Dm

r−1)Cε(Dumr ))

= (Dumr , fmr ) + 〈Dumr , gmr 〉Γ .

All left-hand-side additive terms are non-negative,
thus the 2nd, 3rd, 6th (thanks to the careful introduction
of (6)) and 7th ones can be seen as bounded from below
by zero, whereas the 1st, 3rd and 5th ones together with
P4) (see Part A above) admit the more careful estimates

1

2h2
(Dums , ρDums ) ≥ ρ0

2h2
|Dums |2 , (15)

α

h
(ε(Dumr ), αCε(Dumr )) ≥ αC0K

h
δrr‖Dumr ‖2 ,

1

2
(ε(ums ), (1−Dm

s )Cε(ums )) ≥ ςC0K

2
‖ums ‖2 .

Using the Cauchy - Schwarz and the Young inequalities,
the 1st and 2nd right-hand-side terms can be estimated
with help of P3) as

(Dumr , fmr ) ≤ |Dumr ||fmr | (16)

≤ ε

2h
δrr|Dumr |2 +

h

2ε
δrr|fmr |2

≤ ε

2h
δrr‖Dumr ‖2 +

h

2ε
δrr|fmr |2 ,

〈Dumr , gmr 〉Γ ≤ |Dumr |Γ|gmr |Γ

≤ ε

2h
δrr|Dumr |2Γ +

h

2ε
δrr|gmr |2Γ

≤ εT

2h
δrr‖Dumr ‖2 +

h

2ε
δrr|gmr |2Γ ,

where ε is an arbitrary positive constant. From (14), (16)
and (15) we can conclude

1

h2
|Dus|2 +

1

h
δrr‖Dur‖2 + ‖us‖2 ≤ c (17)

with some positive constant c independent of h (as well as
of m, s, etc.). This guarantees the following boundedness
for the Rothe sequences:

{u̇m}∞m=1 is bounded in L2(I, V ) ,

{u̇m(t)}∞m=1 is bounded in H for any t ∈ I ,
{ūm(t)}∞m=1 is bounded in V for any t ∈ I ,
{ŭm(t)}∞m=1 is bounded in V for any t ∈ I .

Consequently P1) yields, up to subsequences, using →
instead of “converges strongly to” and ⇀ for “converges
weakly to” for brevity,

{u̇m}∞m=1 → û in L2(I, V ) , (18)

{u̇m(t)}∞m=1 ⇀ u′ in H for any t ∈ I ,
{ūm(t)}∞m=1 ⇀ ū in V for any t ∈ I ,
{ŭm(t)}∞m=1 ⇀ ŭ in V for any t ∈ I ,
{u̇m}∞m=1 → û in L2(I,H) ,

{ŭm(t)}∞m=1 → ŭ in H for any t ∈ I ,

etc., where u′, ū, ŭ and û are some elements of corre-
sponding spaces; the 5th and 6th proposition (18) (and
similar ones) need also P2). The strong convergence of

D̆m occurring in (10), corresponding to the 6th propo-
sition, must then rely (6), as discussed in Part C. The
1st and 2nd propositions manifest the weak convergence
of the same sequence both to û and to u′ in e. g. in
L2(I,H), thus û = u′. The estimate

max (|um(t)− ūm(t)|, |um(t)− ŭm(t)|) (19)

≤ max
s∈{1,...,m}

|Dus| ≤
√
ch =

√
cT

m

implies u = ū = ŭ and u̇ = u′ where

u(t) =

∫ t

0

u′(ξ) dξ

for any t ∈ I. This guarantees the possibility of limit
passage with m→∞ from (10) to (2).

III. Available generalizations

Some generalizations of Section II. seem to be
straightforward, but bring non-negligible technical dif-
ficulties. Namely H in P2) could be replaced by some
Lp(Ω)3 with p = 6 − ε where 0 < ε ≤ 4, as well as
ZΓ in P3) by Lq(Γ)3 with q = 4 − ε̃ where 0 < ε̃ ≤ 2;
therefore the assumptions f ∈ L2(I, Lp/(p−1)(Ω)) and
g ∈ L2(I, Lq/(q−1)(Γ)) could be sufficient in (7), in-
stead of those with ε = 4 and ε̃ = 2, which gives
p = q = 2). Even the assumption on Lipschitz bound-
ary can be weakened, as discussed by [46], [47] and [48].
However, such spaces are not Hilbert ones, simple ana-
lytical tools like the Riesz representation theorem are not
available, scalar products must be substituted by more
general dualities, the less transparent convergence analy-
sis in dual spaces is required, etc. As the first step, useful
in some following applications, the following propositions
can be added to P1), P2), P3) and P4):

P5) In the Gelfand triple V ⊂ H ∼= H∗ ⊂ V ∗ both
inclusions are dense; W 1,2,2(I, V, V ∗) ⊂ C(I,H).

P6) W 1,2,2(I, V, V ∗) b L2(I,X) with X ∈ {H,Z} (the
Aubin - Lions lemma).

A. Macroscopic cracks
Instead of one domain Ω, as introduced by Section

II., we can consider a union of a finit number of adjacent
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domains, denoted by Ω again, whose boundary ∂Ω con-
sists of 3 parts: of 2 exterior ones, analogical to Γ and
Θ, and of a set of internal interfaces Λ. Such notion of
interfaces can cover both potential locations of macro-
cracks, as well as existing interfaces between particular
components of a composite, e. g. between a cementitious
matrix and stiffening fibres in building applications.

Fig. 4: Nonlocal damage model Mises stress with the
evaluation of damage factor by [21], applying the expo-
nential formula from [41], close to 2 fibres.

The contacts on Λ could be seemingly handled sim-
ilarly to the surface loads on Γ, except their a priori
knowledge, but such approach is not realistic. The be-
haviour of Λ must be seen as result of mutual interaction
of parts of Ω, which requires some deeper physical anal-
ysis. However, we can introduce the space ZΛ, the norm
| . |Λ and the scalar product 〈 . , .〉Λ quite analogically to
ZΓ, | . |Γ and 〈 . , .〉Γ. Such approach offers a possibility of

coupling micro-fracture (using the damage factor) with
opening and propagation of macroscopic cracks.

B. Cohesive interfaces
Quantification of the phenomena connected with Λ

can be performed utilizing the cohesive model by [29] and
[31]. Opening and closing of interfaces can be expressed
using the relation

T = λ(δu) on Λ× I , (20)

as certain analogue of (4); δu here refer to the jumps in
values of u on Λ, the same notation will be applied to v,
T denotes the related contact stress. Appropriate forms
of a just introduced function λ can be found in [28] and
[30]. Consequently [〈δv, τ〉Γ] is allowed to be joined as an
additional right-hand-side term to (2), with the obvious
modification of (3), too. In particular, λ(δu) = λ0 δu
with a real constant λ0 → ∞ forces δu → ∅ on Λ, i. e.
the continuity of u without no active macro-cracking.
We can see that (20) brings a new type of nonlinearity
to our problem in all other cases.

Let us suppose that λ is a Lipschitz continuous map-
ping from ZΛ to ZΛ. For some positive constant λ? this
yields

|λ(δv)|2Λ ≤ λ?|δv|2Λ ≤ λ?L‖v‖2 (21)

for any v ∈ V ; L here can be seen as an analogy of T in
P1) in Section II., multiplied by certain factor depending
on geometrical configuration, interpretable as the max-
imal number of parts of Λ creating an interface of one
fixed part of Ω.

Following the approach of Section II. completely, we
come to the trailing additional term 〈δDumr , λ(δumr−1)〉Λ
of (14); a seemingly better choice δumr instead of δumr−1

here would force nonlinear algebraic computations. How-
ever, this can be overcome using the estimate

〈δDur, λ(δur−1)〉Λ ≤ λ?|δDur|Λ|δur−1|Λ

≤ ελ?
2h
δrr|δDur|2λ +

hλ?
2ε

δrr|δur|2Λ

≤ ελ?L

2h
δrr‖Dur‖2 +

hλ?L

2ε
δrr‖ur‖2 ,

joined to (15). Consequently (17) gets the form

1

h2
|Dus|2 +

1

h
δrr‖Dur‖2 + ‖us‖2 ≤ c+ c?hδrr‖ur‖2

with a new real non-negative constant c?. The required
boundedness for the case c? > 0 must be then verified
using the discrete Gronwall lemma – cf. [33], p. 26, and
[45], p. 99. All needed existence and convergence results,
analogous to Section II., can be then derived without
substantial difficulties.

C. Quasi-static case
Many computational tools in fracture mechanics ig-

nore the 1st and 2nd additional terms in (2), which
switches to a quasi-static problem. Clearly the 2nd con-
dition (1) is not applicable. Some estimates from Sec-
tion II. degenerate, e. g. the 1st inequality (15) to 0 = 0.
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Thus that less regular results in comparison with the
above discussed dynamic case can be expected and their
derivation cannot be repeated following Section II. easily.

The remedy is to seek for u ∈ W 1,2,2(I, V, V ?), in-
stead of u ∈ W 1,2,2(I, V,H). As demonstrated by [26]
and [49], some convergence properties must be studied
in dual spaces exploiting selected results of [50], instead
of estimates like (19). Both propositions P5) and P6)
are applicable here. Moreover, the inequality connected
with the trace theorem P3) can be used in its more pre-
cise form following [51]. However, the convergence of the
above introduced 3 types of Rothe sequences (8) and (9)
to the solution of (2) (after obvious slight modifications,
ignoring the 2nd condition (1), etc.) is not violated.

D. A stronger result for dynamic case
Some experience from the analysis of the quasi-static

case can be helpful to upgrade even the results for the
dynamic one. One can observe that the weak formulation
(7) of (3), crucial for the convergence of Rothe sequences
in Section II., can be replaced by its slightly stronger
variant

(v, ρü) + β(v, ρu̇) (22)

‘ + α(ε(v), Cε(u̇))

+ (ε(v), (1−D)Cε(u))

= (v, f) + 〈v, g〉Γ on I ,

avoiding all integrals [., .] in (7). This seems to be
supported by the discrete formulation (12), containing
the 2nd time differences, corresponding to the 2nd time
derivatives in (22), naturally. Nevertheless, one cannot
guarantee any reasonable convergence of the sequences of
2nd differences to u ∈W 1,2,2(I, V, V ), suffering from the
lack of information on ü: we have only u, u̇ ∈ L2(I, V )
here.

The remedy for such case is to search for u ∈
W 1,2,2,2(I, V, V, V ∗), to reach at least ü ∈ L2(I, V ∗).
One additional type of Rothe sequence is then needed
to construct the analogy of the 1st additive term of (10)
properly. The verification of its convergence in V ∗, as
well as the identification of limits analogous to (19),
brings certain technical difficulties, referring to the prop-
erties of spaces of distributions (cf. [50] again), but most
results from Section II. remain true. The authors con-
sider to publish all details of (rather extensive) proofs in
a separate mathematical paper.

IV. Software implementation

The computational scheme (11) for the evaluation of
ums , s ∈ {1, . . . ,m}, by Section II. and its variants in-
duced by Section III. refers to the numerical analysis
of m elliptic problems of infinite dimension. In practi-
cal calculations, instead of v in (11) from an infinite-
dimensional space V we consider a finite number n of
test functions vn; the approximation unms of ums from
(11) with n unknown parameters can be constructed as
their linear combinations. Consequently, step-by-step,
we choose vn = φi where functions φi with i ∈ {1, . . . , n}

generate a basis of certain finite-dimensional space V n,
approximating V (which can be a subspace of V in a
special case), and

unms = unmis φi (23)

holds with unknown parameters unmis , applying the Ein-
stein summation rule with i ∈ {1, . . . , n}.

Let us remark that an concurrent approach can be
based on the implementation of adaptive finite element
(or similar) discretization on Ω as the 1st step, switch-
ing the original problem of initial and boundary problem
for an hyperbolic system of partial differential equations
to a large system of nonlinear ordinary differential equa-
tions of evolution on I, which must be solved in the 2nd
step. Although the methods of analysis of existence and
convergence properties and arguments of relevant proofs
differ substantially, the resulting fully discretized com-
putational schemes coming from both approaches may
coincide.

A. Adaptive discretization
Typically φi are functions with small compact sup-

port, applicable in Ω, as well as on Θ, Γ and Λ, to cre-
ate a sparse system of linear algebraic equations, and
unmis by (23) refer to nodal displacement values. The
guarantee of solvability of such system, together with
the convergence properties for n → ∞, depend on cer-
tain (semi-)regularity of such decomposition due to the
XFEM-based (using the so-called eXtended Finite El-
ement Method) adaptive enrichment functions, namely
near geometric singularities.

The benefit of XFEM is the increase of precision of
numerical approximations of engineering problems with
cracks for a wide class of utilizes functions. Another
advantage of this method is the almost independence
of a mesh on discontinuities. Whereas [52] relies on
certain expanding of conventional FEM, special enrich-
ments of approximation functions are suggested by [53].
Two basic variants of XFEM can be distinguished: the
singularity-based approach and the phantom node one.
For their better understanding (23) some special param-
eters anmjs and bnmkls , unlike those well-known from the
standard FEM techniques, can be separated from unmis
to enable the presentation of (23) in the form of [54]

unms = unmis φi + anmjs φjHj(Fj) + bnmklsφkFl ; (24)

now n means the sum of all admissible indices i, j and
pairs (k, l) and i, j, k, l undergo the Einstein summation
again. Moreover (24) contains the special sign functions
Hj with values ±1 only, the crack surface functions Fj
referring to all parts of Λ and some branch functions Fl
extracted from asymptotic fields; for more details of such
functions and instructive examples cf. [55], [56] and [57].

The singularity-based approach by [58] pays special
attention to the 3rd additive term of (24), whose speci-
fication, namely the reasonable form of Fl from both the
point of view of physical justification and that of practi-
cal reliable setting of selected material parameters, can
be derived the detailed analysis of various modes of stress
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singularities on crack tips following [59]. Unlike this, the
phantom node approach by [60] tries to handle cracking
using the 2nd additive term of (24) only, which offers a
chance to include the cohesive properties of Λ naturally
like [61].

However, such notation, induced by (24), compatible
with [27] and [13], does not cover all possible algorithms,
in particular the original intrinsic method by [62]. Here
we shall apply namely the engineering computational ap-
proach of [13] to demonstrate the possibility of effective
numerical simulations; the discussion of computational
techniques for numerical quadrature on relevant adap-
tive meshes can be found in [54]. Much more references
to the advances in XFEM strategies in the last decade
are contained in [63], [64], [12] and [65]; especially for
some inverse problems of identification of material char-
acteristics including sensitivity analysis see [66] and for
the potential coupling of XFEM with BEM, i. e. the
boundary element method, utilizing some knowledge of
(semi-)analytical solutions, cf. [67].

B. Illustrative examples

The test task is a relatively simple body with an a pri-
ori crack of a circular shape. A uniform load was applied
to the surface of this a priori crack, and thus the forma-
tion of the following cracks emanating from this stress
concentrator is assumed using XFEM. The basic calcu-
lation system was the commercial software Abaqus 2018,
into which a user subroutine in the Fortran 90 language
was implemented, realizing the modelling of matrix dam-
age using exponential law, based on the planar element
CPE4. It is based on the possibility of user procedures
in Abaqus. In principle, it allows you to recalculate the
stress distribution in the body or modify the properties
of the element, or create a new element. This means
that the tested tasks use built-in procedures for solving
the finite element method, or modification of the built-in
XFEM procedure. At present, there is a need to create
a separate code independent of the commercial system.

The following basic input data corresponding to rein-
forced cement paste: the Young modulus E = 3.2 GPa,
the Poisson ratio µ = 0.3 and the tensile strength 10
MPa were used for this task. For 3 mm long metal fi-
bres, the Young modulus E = 190 GPa and the same
Poisson ratio µ = 0.3 were used.

All figures show some typical distributions of princi-
pal stresses in loaded specimens under the plain strain
assumption. Their original colours are: red 10-50 MPa,
yellow 4-10 MPa, green 2-4 MPa, blue 0.5-2 MPa. Figure
1 demonstrates creation and propagation of a crack us-
ing standard (without special modification) XFEM in a
cement paste. The stress is initially evenly concentrated
on the surface of the hole, due to the different shear mod-
ules, the crack spreads logically as presented in right fig-
ure. In the following Figure 2, reinforcing metal fibres
are introduced into the structure, the first figure shows
a situation where there is one fibre in the vicinity of the
concentrator, the next figure shows a situation for two
fibres.

Fig. 5: Nonlocal damage model maximum principal
stress with the evaluation of damage factor by [21], ap-
plying the exponential formula from [41], close to 2 fibres.

Figure 1 shows the characteristic stress distribution
in front of the crack tip, the field is dominant in the
direction of tension. The material is isotropic and the
highest stress is above the direction of crack propaga-
tion; i. e. in fact, delamination occurs in front of the
whole crack. The detailed situation is shown in Figure
1 at the bottom. The main stress level for the first two
images is selected as 1e7 MPa. The critical area is prac-
tically symmetrical on both sides in front of the whole
crack. The following Figure 2 shows the effect of fibre
shading. Nevertheless, the crack hits the fibre and tries
to get around it. Usually the growth of the crack is
stopped when the fibre (obstacle) is reached. There is
no significant difference for the case of 1 or 2 fibres in
the critical area (relation to the unit cell). However, the
importance of fibres increases with their concentration.
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The left part of Figure 3 documents how the stress
distribution ahead the crack tip is determined when
the nonlocal approach is used for computing stress field
ahead the crack tip. The right part of Figure 3 attempts
to clearly illustrate the algorithm used to calculate the
stress concentration in front of the crack tip (an instruc-
tive simplified scheme). This picture has a schematic
character, as it indicates how the tension is calculated
with the help of a non-local approach. In the tested
cases, due to the density of the mesh, the stress is calcu-
lated only from the following surrounding finite elements.
For more accurate analysis, it is necessary to use a finer
finite element mesh and calculate the performance for
3-4 layers.

The fundamental question is from what distance from
the crack front it is appropriate to calculate the stress
distribution in front of the crack front. It should be
noted that the results presented in this article are based
on experience with the test task. The aim was and is
to test the alternatives of individual steps of the algo-
rithm in connection with proper mathematical analysis.
In the case of a practical case, we will look for feedback
in the physical approach and in general consideration
of the size of the elementary cell, which decides on the
transfer of the properties of the microstructure to the
macrostructure. In general, the size of an elemental cell
is determined by about six factors (microcracks, fibers,
etc.) that cause the crack to form and grow.

The influence of nonlocal stress calculation is quite
clearly observed in the following Figure 4, in the vicinity
of the stress concentrator (hole) are two fibres, using the
evaluation of damage factor in the exponential form by
[21], referring to [41]. If we compare this situation with 2,
a markedly different character of crack propagation can
be observed. The crack is perpendicular to the stress.
The effect of fibre may be less than might be expected.
Figures 4 and 5 are describing the same situation, but the
principle stress and Mises stress are used for comparison
and understanding of micromechanisms of fracture.

The decisive factor is the damage factor, which is re-
ally dependent on the stress concentration in front of the
whole crack. The damage factor is then only a tool for
modelling crack propagation. However, the combination
with the non-local factor makes it possible to better de-
scribe the behaviour of the material, which more clearly
characterizes the course of the stress in front of the whole
crack represented by the maximum principal stress.

The cleavage fracture is a sequential process involv-
ing crack nucleation and propagation. In most materials
nucleation occurs at brittle boundary particles (such as
inhomogeneities, fibres, etc.) in consequence of stress
concentration. Due to microstructural inhomogeneities
volume sampling effects play an important role in quanti-
fying the large scatter of fracture data. Reference volume
for many theories for brittle fracture initiation are saying
that size of this volume and maximum principal stress in
this volume are the most important parameters not only
for correct material response and numerical modelling
using the finite element method.

Finally Figure 6 attempts to work with smeared fibres
for comparison. The influence of fibres is implemented
in the behaviour of the whole structure here, as certain
homogenization approach – cf. [9].

Fig. 6: Computation for a regularized material structure
containing smeared fibres.

V. Conclusion

Most computational algorithms predicting fracture of
brittle and quasi-brittle materials and composites refer
to some principles of classical mechanics, but apply ad
hoc approaches in their final forms. Queer and mutu-
ally incompatible results lead to their seeking for various
heuristic macroscopic models with numerous parameters,
coming from laboratory experiments, whose reasonable
setting needs advanced statistical or soft computing ap-
proaches. Unlike them, this paper demonstrates the pos-
sibility of well-posed physical and mathematical formu-
lation of a relevant deterministic problem, supported by
the constructive design of convergent sequences of ap-
proximate solutions, based i) on the method of discretiza-
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tion of time (of Rothe sequences), ii) on the (extended) fi-
nite element method, iii) on certain regularization due to
the nonlocal strain / stress considerations, following the
Eringen model, iv) on the evaluation of cohesive proper-
ties of crack interfaces. The related computational ap-
proach covers both the micro- and macro-cracking phe-
nomena, applicable to the dynamic case, as well as to
the quasi-static one.

Nevertheless, rather strong mathematical and com-
putational simplifications of physical reality are involved
here. Some of them have been introduced to avoid
readeer-unfriendly technical difficulties. Substantial re-
strictions occur in still other simplifications, namely in
both nonlinear terms (damage factor, cohesive inter-
face): a) the requirement ς > 0 forbids (even local)
complete loss of stiffness due to micro-cracking, whose
lifelikeness would be controversial because of the a priori
strain-stress linearizations, b) macro-cracks are allowed
on a finite number of (potential) cohesive surfaces only,
whereas some XFEM algorithms promise to predict them
(nearly) everywhere. The reasonable design of ω for (6),
related to a), is also not trivial, as well as that of λ for
(20), connected with b). Certain inspiration for a proper
finite-strain formulation can be found in [68], p. 303, in
confrontation with [69] and [70], handling important par-
ticular problems.

The above sketched limitations of the presented ap-
proach can be interpreted as motivations for future re-
search. Its possible aim of high practical importance can
be the development and verification of the computational
tool for prediction of brittle and quasi-brittle behaviour
of structural components from fibre reinforced compos-
ites under mechanical loads, with methodology based on
the physical model incorporating such processes as elas-
tic and plastic deformation, crack initiation and propaga-
tion in a matrix and debonding or rupture of fibres. As
already mentioned, the goal cannot be achieved by writ-
ing user procedures in the Abaqus commercial system
alone. As the next step, creation of special FEM library
inside MATLAB environment is being prepared.
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[25] M. Jirásek, Nonlocal theories in continuum mechan-
ics, Acta Polytechnica 44/5–6 (2004), pp. 16–34.

[26] J. Vala and V. Kozák, Computational analysis of
quasi-brittle fracture in fibre reinforced cementi-
tious composites, Theor. Appl. Fract. Mech. 107
(2020), pp. 102486/1–8.

[27] M. G. Pike and C. Oskay, XFEM modeling of short
micro-fiber reinforced composites with cohesive in-
terfaces, Finite Elem. Anal. Des. 106 (2005), pp. 16–
31.

[28] V. Kozák and Z. Chlup, Modelling of fibre-matrix
interface of brittle matrix long fibre composite by
application of cohesive zone method, Key Engineer-
ing Materials 465 (2011), pp. 231–234.

[29] L. Bouhala, A. Makradi, S. Belouettar, H. Kiefer-
Kamal and P. Fréres, Modelling of failure in long
fibres reinforced composites by X-FEM and cohesive
zone model, Composites Part B 55 (2013), pp. 352–
361.

[30] V. Kozák, Z. Chlup, P. Padělek and I. Dlouhý, Pre-
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