
The Kirchhoff Transformation for convective-radiative thermal problems
in fins

1Jonatas Motta Quirino, 1Eduardo Dias Correa and 2Rodolfo do Lago Sobral
1State University of Rio de Janeiro - Rua São Francisco Xavier, 524, Rio de Janeiro, RJ
2Federal Center of Technological Education - Est. Adrianopolis, 1317, Nova Iguaçu, RJ
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Abstract- The present work describes the thermal
profile of a single dissipation fin, where their surfaces re-
ject heat to the environment. The problem happens in
steady state, which is, all the analysis occurs after the ther-
mal distribution reach heat balance considering that the
fin dissipates heat by conduction, convection and thermal
radiation. Neumann and Dirichlet boundary conditions
are established, characterizing that heat dissipation oc-
curs only on the fin faces, in addition to predicting that
the ambient temperature is homogeneous. Heat transfer
analysis is performed by computational simulations using
appropriate numerical methods. The most of solutions
in the literature consider some simplifications as constant
thermal conductivity and linear boundary conditions, this
work addresses this subject. The method applied is the
Kirchhoff Transformation, that uses the thermal conduc-
tivity variation to define the temperatures values, once the
thermal conductivity variate as a temperature function.
For the real situation approximation, this work appropri-
ated the silicon as the fin material to consider the temper-
ature function at each point, which makes the equation
that governs the non-linear problem. Finally, the compar-
ison of the results obtained with typical results proves that
the assumptions of variable thermal conductivity and heat
dissipation by thermal radiation are crucial to obtain re-
sults that are closer to reality.

Keywords- Convection-Radiation, Extended surface,
Kirchhoff Transformation, Thermal distribution

I. INTRODUCTION

THE use of extended surfaces as a way to optimize or even
control heat exchange exists even before human inter-

ference with nature. The application of such surfaces, here-
inafter also called fins, can be observed in nature, such as the
ears of Vulpes zerda (or Fennec fox) [1], which work as fins
in order to dissipate heat from the running blood on them.

The low or mistaken thermal control is the reason for the
failure of a huge part of industrial components. NASA (Na-
tional Aeronautics and Space Administration) estimates that
100% of the failures of its monolithic microwave integrated

circuits (MMIC) could be prevented if there was adequate
thermal control [2]. Temperature is the environmental factor
that most causes failure in electronic components [3].

In industry there are specific applications in which, the
employed materials have properties that are closely dependent
on temperature. Some of them at high temperatures, such as
blast furnaces and others at low temperatures, as aerospace
components. For these materials, it is essential to perform
certain thermal analyzes for an adequate dimensioning.

Moreira et. al [4] study the heat transfer coefficient for
convective problems, without considering radiant effects. Its
study aims to establish criteria for the selection of the heat
transfer coefficient according to the specific parameters of the
problem to which they are applied.

Mazlaghani et. al [5] propose an empirical technique for
measuring thermal conductivity dependent on the temperature
of materials with low thermal conductivity. They analyze uni-
dimensional non-linear inverse problems, and looking for that
in their experiment there is no rejection of heat by radiation.

Gama [6] seeks to solve problems of heat transfer by
radiation, which generates a non-linear PDE. The solution
reached is given by the proposal to impose an upper limit,
estimated for the general equation of the problem.

Kim [7] uses the Kirchhoff Transformation in some ex-
amples of functions to describe the variation of the thermal
conductivity of a surface, considering thermal conductivity as
a combination of known functions, which seek to determine
its coefficients.

Lesnic et. al [8] adopt a one-dimensional model consider-
ing the thermal transient, in which the thermal capacity is an
established value. For his work, the thermal conductivity and
thermal capacity of a material are directly proportional and
the proportionality constant is known.

Bonani & Ghione [9] apply the Kirchhoff Transformation
method to provide a thermal analysis of a semiconductor ma-
terial, which presents variation in thermal conductivity, which
in turn is described as piecewise heterogeneous.

Zhou et. al [10] analyze the thermal behavior of a body
of irregular geometry, applying the effects of thermal con-
vection. Mathematical modeling is done using the Weighted
Least Squares Method without Mesh, applying the Robin
boundary condition.
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Aziz & Bouaziz [11] use the Least Squares Method in the
treatment of non-linearities associated with the internal gen-
eration of heat and thermal conductivity dependent on tem-
perature in a longitudinal fin.

Suk & Park [12] study a porous medium in hydrological
application, where the Richards Equation is solved through
the Kirchhoff Transform. Using the Finite Volume Method,
the Kirchhoff Transformation adapted with expansion of the
Taylor series is applied to investigate the thermal behavior at
an interface between two different materials.

Bagnall et. al [13] present a specific application of the
Kirchhoff Transform, considering the effects of thermal con-
vection in electronic components, comparing the Kirchhoff
Transformation with the Finite Element Method, being aided
by a multiphysical model developed by COMSOL.

Although there are studies on the heat dissipation by fins,
the mathematical models used are complex and difficult to
manipulate. For this reason, such models tend to neglect some
parameters that the present model intends to analyze. Of these
parameters, this work prioritizes the variation of the thermal
conductivity according to the variation of the temperature val-
ues, looking for a method that delivers a simple and effective
analysis.

There are difficulties in modeling thermal systems in
which variable thermal conductivity is considered. Such an
obstacle is faced by some authors by mathematical methods.
The present work presents the mathematical modeling using
the Kirchhoff Transformation that allows treating the non-
linear equations that govern the thermal distribution, as a lin-
ear model. The model is applied to a longitudinal fin, with
rectangular geometric profile conected to a thermal source.

The central objective of this analysis is to observe the
thermal behavior of fins that dissipate heat from a given pri-
mary surface through the heat transfer processes of conduc-
tion, convection and thermal radiation. This latter aspect is
largely neglected in mathematical modeling studies and will
be addressed in this work.

In summary, this work seeks to collaborate with the theme
through studies on the influence of the effects of thermal radi-
ation, commonly neglected, in addition to the analysis of the
variation in the thermal conductivity of the material.

II. PROBLEM FORMULATION

As stated earlier, this work is based on the fact that in sev-
eral applications, thermal conductivity cannot be considered
constant, but rather as a temperature dependent function.

Several machines and equipment used both in industry
and in everyday life bring with it the need to dissipate the
heat produced by combustion, friction or by electric currents,
which, when moving, transform part of their kinetic energy
into heat.

Therefore, this work proposes a mathematical method for
analyzing thermal behavior along a fin that dissipates heat by
convection and radiation.

The Heat Equation is given by
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Initially, it is necessary to define the mathematical model-
ing of the analyzed problem. For this, some conditions must
be established so that the modeling is close to the real situa-
tion.

Some considerations must be made:

• The thermal transient is neglected, that is, the entire
analysis is performed after the thermal equilibrium is
reached. This removes the time term from the general
heat equation. Mathematically ∂T

∂ t = 0;

• The fin is not a source of its own heat, this causes the heat
removed by the fin to come from the primary surface to
which the fin is attached. Mathematically q̇ = 0;

• There is no heat absorption in the fin, as it is considered
that the temperature of the environment will always be
lower than the temperature in any point of the fin. Math-
ematically, the vectorial direction of heat is constant out-
side the body.

Statements 2 and 3 seek to ensure that the fin is exclu-
sively a heat sink, not generating or absorbing heat.

The PDE for heat conduction problems in isotropic me-
dia with temperature-dependent thermal conductivity can be
expressed as

∇ · (k(T (x,y,z))∇T (x,y,z)) = 0. (2)

By the definitions of fins, the width and height are much
larger than the thickness, therafter it is concluded that only
in the axis y the temperature differences between their points
are considerable. This formulation suggests that the problem
is analyzed in a one-dimensional approach.

According to the such definitions, some boundary condi-
tions will be established.

The Fig.1 presents a Single Fin which has one surface ex-
tended to the primary surface.

Two mathematical boundary conditions (b.c.) were used.
These conditions are very common in mathematical problems
involving differential equations.

Fig. 1: Boundary and domain of fins.
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• The face Γ1 (y = 0) is conditioned with a certain temper-
ature imposed on it. (Dirichlet b.c.)

• The faces Γ2 (x = 0), Γ3 (x = L) and Γ4 are thermally
isolated. (Neumann b.c.)

• In the faces z = 0 e z = δ , heat dissipation is considered
by thermal convection and radiation [14, 15].

For the characterization of the thermal conductivity pro-
file, it is necessary to trace parameters that relate the thermal
conductivity (k) and temperature (T ).

Experimental values of the variation of thermal conduc-
tivity as a function of different temperature values can be ob-
served in the work of Nayar [16] from where the values for
a body of silicon were taken. Such values are shown in the
Table 1.

Table 1: Thermal conductivity values (W/m.K)

T (K) k(W/m ·K)
20 4980
40 3530
60 2110
80 1340

100 884
150 410
200 260
250 190
300 150
400 99
500 76
600 62
800 42
1000 31
1200 26
1400 24
1500 23

This function can be expressed as an equation that relates
the temperature values to their respective thermal conductiv-
ity values, as shown by (3).

k(T ) = aT b (3)

Where the constants a and b were defined by the Least
Square Method. Bonani & Ghione [9] define these constants
as a = 259000 and b = −1.3 while Bagnall et. al [13] con-
clude that a = 249085.75 and b =−1.3.

III. KIRCHHOFF TRANSFORMATION

With (3) and the values from a and b, the values of k must
be defined by the Finite Difference Method discussed above.
From the determination of the interesting values to the ther-
mal conductivity variation function, a mathematical method
can be applied that performs the inverse description, where
the temperature values are defined, once the values of k are
known [17].

Kirchhoff Transform is defined by (4) [18].

ω = f̂ (T ) =
∫ T

0
k̂(ξ )dξ (4)

This work characterizes that the lower bound of the work
domain is limited to the value of 0K. Such a restriction is not
generic, being used for convenience in this application.

It is noteworthy that the value of T0 is the reference tem-
perature, which in turn represents the primary surface temper-
ature, which is fixed, known and upper limit. This is to say
that no fin point can have a higher temperature than T0. The
Equations (5) describes the correct formulation to a thermal
heat sink .

ω1 =
∫ T0

0
k̂(ξ )dξ =

∫ T0

0
aT bdT ⇒ ω1 =

aT b+1
0

b+1
(5a)

ω2 =
∫ T

0
k̂(ξ )dξ =

∫ T

0
aT bdT ⇒ ω2 =

aT b+1

b+1
(5b)

In order to make it possible to limit the working region
between T and T0, it is necessary to algebraically treat Equa-
tions (5). It should be noted that grad T0 = 0, therefore only
grad ω2 is analyzed

grad ω2 = k grad T (6)

The final format of Kirchhoff Equation given by (4) will
be given by subtracting the Equations (5a) and (5b), thus
reaching the integration interval that matters for the applica-
tion.

This is why integration limits range from T to T0, unlike
the definitions described by the authors Sobral [19] and Gama
[20]. This ensures that the inverse of (4) is within the working
domain.

Such a maneuver could be avoided in the application,
since, as b < 0, the algebraic inconvenience has already been
overcome. Therefore, this maneuver was used in order to fa-
cilitate generic solutions in the application of the method.

Since the function of k given by (3) is applied to the Kirch-
hoff Transformation, one has to

ω = ω1−ω2 =
aT b+1

0
b+1

− aT b+1

b+1
(7)

Whose inverse expression is

T =

[
T b+1

0 − (b+1)
a

ω

] 1
b+1

(8)

When plotting the Table 1 points on a T vs k graph, a trend
curve depicting a negative exponential function is observed.

Some studies [9, 13] analyze silicon and how its thermal
conductivity varies with temperature. These works conclude,
just like this present work, that the mathematical modeling
that describes such variation presents the format of a power
function.

An effective way to treat the non-linear function of depen-
dence between thermal conductivity and temperature is the
Least Squares Method [11]. These results will serve to val-
idate the Kirchhoff Method by comparative analysis. In the

INTERNATIONAL JOURNAL OF MECHANICS 
DOI: 10.46300/9104.2021.15.2 Volume 15, 2021

E-ISSN: 1998-4448 14



LSM the empirical data were stipulated [21] and the approxi-
mation is illustrated in Figure 2 for silicon data.

The numerical result applied to the data in the Table 1,
conclude that a = 438900 and b =−1,3759.

Fig. 2: Curve fitting by LSM in exponential type.

Therefore, the Figure 2 shows that thermal conductivity
variation describes a trend curve represented by a negative
exponential function.

For the solution of the problem, the considerations pre-
sented in the Section II. will be applied: The analysis is sta-
tionary after the thermal equilibrium and the fin is not a heat
source.

Based on such definitions, the thermal distribution in the
directions of each Cartesian axis of the fin, is

∂ 2ω

∂x2 +
∂ 2ω

∂y2 +
∂ 2ω

∂ z2 = 0 (9)

As stated earlier, the problem is being formulated in a one-
dimensional approach, making the above PDE in (9) become
an ODE,as presented in (10). Besides that, the conditions
presented in the Section II., when applied to the Kirchhoff
Transform mathematical model, take the form

k(T )
dT
dz

=
dω

dz
(10)

It is worth mentioning that (10) can be applied at z = 0
and z = δ , differentiating only by the vectorial direction.

The first consideration given to heat dissipation by the fin
is that both faces of the fin reject heat exclusively by convec-
tion, where such an effect occurs when a body at a tempera-
ture higher than ambient rejects heat to the environment once
it is surrounded by some fluid.

Therefore convection heat dissipation on each side of the
fin is given by (11)

z = 0⇒ dω

dz
= h

([
T b+1

0 − (b+1)
a

ω

] 1
b+1
−T∞

)
(11a)

z = δ ⇒−dω

dz
= h

([
T b+1

0 − (b+1)
a

ω

] 1
b+1
−T∞

)
(11b)

When working with extended surfaces, one should con-
sider an essential fin feature, which is its geometry as a very
thin plate. Thus, by integrating the differential equations
above, we conclude through Average Value Theorem that

d2ω

dz2 =− 2
δ

[
h

([
T b+1

0 − (b+1)
a

ω

] 1
b+1
−T∞

)]
. (12)

When considering the effects of thermal radiation, it is
assumed that the boundary conditions on the fin faces will be
altered, since it is precisely on both faces of the fin that the
thermal dissipation occurs. Until here the analytical solution
was exposed only with the effects of convection.

This insertion is given by adding the equation of the
Stefan-Boltzmann’s Law, which represents the heat flux emit-
ted by thermal radiation.

For the total analysis of the problem, one has to:

z = 0⇒ dω

dz
=h

([
T b+1

0 − (b+1)
a

ω

] 1
b+1
−T∞

)

+ εσ

[
T b+1

0 − (b+1)
a

ω

] 4
b+1

(13a)

z = δ ⇒−dω

dz
=h

([
T b+1

0 − (b+1)
a

ω

] 1
b+1
−T∞

)

+ εσ

[
T b+1

0 − (b+1)
a

ω

] 4
b+1

(13b)

Equations (13) are similarly symmetrical, since the geo-
metric conditions imposed on the problem produce a sym-
metrical heat dissipation on both faces of the fin. Thus, the
equation governing heat transfer in case of dissipation con-
sidering convection and radiation is given by

d2ω

dz2 =− 2
δ

{
h

([
T b+1

0 − (b+1)
a

ω

] 1
b+1
−T∞

)

+εσ

[
T b+1

0 − (b+1)
a

ω

] 4
b+1
}

(14)

Relating (2) and (14), we have a new formulation for the
temperature profile with the equation as a function of T .

k(T )
∂ 2T
∂x2 + k(T )

∂ 2T
∂y2 +

(
∂k(T )

∂y
· ∂T

∂y

)
−

2
δ
[h(T −T∞)+ εσT 4] = 0. (15)

In the situation involving thermal radiation dissipation
and variable thermal conductivity, the thermal phenomenon
presents itself as non-linear, considerably hindering an ana-
lytical solution.

This happens for two reasons:
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• While the temperature varies depending on the position
of the fin, the thermal conductivity varies depending on
the temperature ∂

∂x

(
k ∂T

∂x

)
.

• The nonlinear term of temperature at the fourth power,
derived from the Stefan Boltzmann’s law for heat trans-
fer by radiation. T 4.

If it is still considered that the thermal conductivity of the
system is constant, then the solution of (15) can be obtained
by minimizing the following functional

I[ν ] =
1
2

∫ H

0

∫ L

0

[(
∂ν

∂x

)2

+

(
∂ν

∂y

)2
]

dxdy

+
∫ H

0

∫ L

0

[
h

δk
(ν−T∞)

2 +
2εσ

5δk
ν

5
]

dxdy (16)

Where ν represents the vector field which, when applying
the boundary condition at y = 0, says that the temperature at
that point is given as a prescribed fixed temperature.

The existence of a solution by minimizing functional I is
guaranteed as long as it is proven that I is a convex, coercive
and convergent functional [22].

Equation (16) is shown to be equivalent to (15) through
its first variation, which means that (16) is evaluated as being
the minimization of the functional,considering the constant
thermal conductivity.

Equation (15), therefore, it is the equation that models the
thermal distribution with radiance in the fin, still in a two-
dimensional approach. As previously explained, the studied
situation considers that the entire primary surface is at a pre-
scribed homogeneous temperature, ie, along this surface, all
points are at the same temperature, which leads to the conclu-
sion that along the axis x of the fin , there is no variation of
temperature, so the derivative of temperature in relation to x
equals zero.

k(T )
∂ 2T
∂y2 +

(
∂k(T )

∂y
· ∂T

∂y

)
−

2
δ
[h(T −T∞)+ εσT 4] = 0, (17)

where k is a function of T , which in turn is a function of y, so
k will be treated as a variable in function of y.

Whose representation in the functional given by (16) can
be written as

I[ν ] =
1
2

∫ H

0

(
∂ν

∂y

)2

dy

+
∫ H

0

[
h

δk
(ν−T∞)

2 +
2εσ

5δk
ν

5
]

dy (18)

Resuming the representation of the problem in the Kirch-
hoff Method, which is the focus of this work and applying the

boundary conditions, (2) takes the form

d2ω

dy2 =
2
δ

[
h

([
T b+1

0 − (b+1)
a

ω

] 1
b+1
−T∞

)

+εσ

([
T b+1

0 − (b+1)
a

ω

] 4
b+1
)]

for 0 < y < H

(19)

In order to solve numerically the partial derivatives in
the problem studied, is used the Finite Differences Method
(FDM). Given these relations, after algebraic adjustments
takes the following form.

ω j =
2H2

δ

[
h
(
(b+1)

a
ω j +T b+1

0

) 1
b+1
−T∞+

εσ

(
(b+1)

a
ω j +T b+1

0

) 4
b+1
]
+

(ω j+1 +ω j−1)

2
(20)

IV. RESULTS

The analysis and processing of all the data, methods and
processes exposed in this work have resulted in some ex-
tremely relevant conclusions.

Since this work argues that certain phenomena can not be
neglected, all simulation procedures occur contemplating the
most varied situations so that it is possible to make compar-
isons of the results and determine the relevance of the study.

The simulation environment was maintained in all situa-
tions, except for the parameters that characterize the prepon-
derant differences that will be compared.

It was used to carry out this work the commercial soft-
ware Matlab, which allowed the creation of an algorithm that
contains all the mathematical data and process the required
information and calculations.

Table 2: Applied parameters

Symbol Concept Value
T∞ Environment Temperature 300K
T0 Primary Surface Temperature 500K

jmax Number of vertically oriented nodes 100
Ly Fin height 10mm
δ Fin thickness 1mm

tolT Specified accuracy 10−6

It is worth mentioning that the parameters stipulated
above can be handled in a convenient manner in order to in-
vestigate results in other circumstances.

In order to allow better visualization and understanding of
the obtained results, some graphs were generated.

To evaluate the behavior of thermal conductivity at differ-
ent temperature values, the data were processed in four dif-
ferent ways from the combinations that will be exposed in the
following subsections.

A. Without radiation
One of the parameters proposed in this work is the inser-

tion of the effects generated by the phenomenon of variation
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of thermal conductivity, as a function of temperature. Such
an analysis has been described in the section II.. Kraus et.
al [23] have suggested that the Murray-Gardner hypothesis
that evaluates the constant thermal conductivity in all direc-
tions, when disregarded, proposes results that are closer to a
real model.

Most engineering projects still prefer to disregard the ef-
fects of thermal radiation, since mathematical modeling is
complex. This produces effects in which unknown or ne-
glected parameters are coupled, generating erroneous dimen-
sions.

For purposes of illustration, Gorla & Bakier [24] presents
a comparative analysis of how the radiation effects consider-
ably affect the thermal dissipation profile in the fin.

Since the effect of varying thermal conductivity is applied
to the thermal distribution of the body, an intense change in
temperatures throughout the body can be noted, as seen in the
Fig.3.

Fig. 3: Thermal profile without radiation and variable k.

The importance of this analysis can be seen through the
Table 3, where it can be seen that the thermal profiles present
values very distant from each other at each point. In the
analysis carried out, a maximum percentage difference of
31.3642% is noted in the twenty-third node. On the other
hand, as in most applications, the maximum heat dissipation,
which is given in the last node, is sought, it can be noted that
the percentage variation in this node is 23.8991%.

B. With radiation
The combination of the effects generated by the heat dis-

sipation by thermal radiation, besides the evaluation of the
thermal conductivity variation as a function of the tempera-
ture at each point was proposed by Cohen [25] and brings a
closer approximation to real results. To the non-linear dif-
ferential equation (as a function of the radiation term) the
approximation calculation of thermal conductivity values is
added by means of appropriate numerical methods. Further-
more, this work considers that the effects of the variation in
thermal conductivity can still be added to thermal radiation,
where the body loses even more heat, thus changing the pro-

Table 3: Constant and variable k without radiation

Node Constant k Variable k % Error
1 500 500 0,0000%
5 413,6476 488,9148 15,3948%

10 356,069 476,4604 25,2679%
15 327,6621 465,3793 29,5925%
20 313,6473 455,506 31,1431%
30 303,3218 438,8529 30,8830%
40 300,8085 425,6417 29,3282%
50 300,1968 415,2598 27,7087%
60 300,0479 407,2673 26,3265%
70 300,0116 401,3496 25,2493%
80 300,0028 397,2872 24,4872%
90 300,0007 394,9356 24,0381%

100 300,0003 394,2136 23,8991%

file generated. These two added phenomena can be analyzed
in the Fig.4, where the profiles with and without variation of
k are superimposed.

Fig. 4: Thermal profile of single fin, with radiation and vari-
able k

As can be seen in Fig.4, the analysis of the phenomenon
of variation in thermal conductivity as a function of tempera-
ture, when added to the effects of thermal radiation, generate
a considerable displacement of the thermal profile of the fin.
For further analysis, the Table 4 presents that a maximum per-
centage difference of 44.8210% is noted in the twelfth node.

As stated earlier, it is very important to analyze the full
thermal dissipation, which is given at the last node of the fin.
To this end, it is clear that the case of comparison between
situations with radiation generates a percentage difference of
20.4363%.

In order to visualize the difference in the thermal profiles
of each of the four cases analyzed in this work, Fig. 5 was
built in an superimpose way. It is worth mentioning that this
work does not seek an arrangement whose heat rejection is
maximum, but rather the most realistic case when phenomena
intrinsic to the heat equation are considered.
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Fig. 5: Comparison between all analyzed cases

Table 4: Constant and variable k with radiation

Node Constant k Variable k % Error
1 500 500 0,0000%
5 286,5776 450,3872 36,3708%

10 226,0266 407,0929 44,4779%
15 209,9219 375,9749 44,1660%
20 205,2388 352,4497 41,7679%
30 203,4269 319,2875 36,2872%
40 203,2638 297,3025 31,6306%
50 203,249 282,0702 27,9438%
60 203,2477 271,356 25,0992%
70 203,2476 263,9188 22,9886%
80 203,2476 259,0351 21,5367%
90 203,2476 256,2857 20,6949%

100 203,2476 255,4526 20,4363%

C. Numerical Convergence
The heat equation (14) that governs the problem described

in this work is presented in a non-linear model, which makes
any analytical solution approach very difficult.

For this reason, numerical methods are used to approach
the solution. However, this approach brings with it some de-
mands, such as the guarantee of convergence of the solution.

Bearing in mind that along the fin the last node is the one
with the highest thermal gradient compared to the primary
surface, therefore, this node is considered as a critical point.
Therefore, the numerical convergence analysis evaluated the
behaviour of the temperature of this node as a function of the
mesh refining, which can be seen in Fig.6.

The above convergence analysis shows that the tempera-
ture of the last node converges to a value, which can be ap-
proximated by the Least Squares Method that generates the
(21).

f (x) = axb + c. (21)

Whose solution presents the coefficients a = 186,2158,
b =−1,045802 and c = 392,6822.

Fig. 6: Convergence of the last node

Since the coefficient c represents the linear displacement
of the curve in Fig.6, it can be interpreted that the value of c
is the value to which the sequence converges.

D. Comparison between FDM and Kirchhoff Method
Having results obtained previously with the numerical

processing by the Finite Differences Method, a comparative
analysis with the Kirchhoff Method proposed in this work can
be performed.

The comparative analysis can be seen in the Tables 5 and6,
which shows the values obtained for processing with FDM
and Kirchhoff. Since the exposure of the values of all 50
nodes used would be very extensive, it was decided to expose
the values of the first five and the last five nodes.

Table 5: FDM vs Kirchhoff without radiation

Without radiation
Node Kirchhoff FDM Dif. %

1 500,000 500,000 0,000%
2 494,358 494,345 0,003%
3 488,981 488,955 0,005%
4 483,854 483,818 0,008%
5 478,964 478,918 0,010%
.
.
.

.

.

.

.

.

.

.

.

.
46 396,195 396,085 0,028%
47 395,998 395,889 0,028%
48 395,867 395,758 0,028%
49 395,801 395,692 0,028%
50 395,801 395,692 0,028%

In addition, a graph in Fig.7 was generated that overlapped
all the results analyzed by this work in order to demonstrate
the discrepancy between the results in all situations analyzed
in this work.

From the illustration brought by the Fig. 7, a very inter-
esting effect is revealed. It can be noted that, although the
ambient temperature is 300K, according to the Table 2, the
cases in which the radiation effect is applied allow the fin to
reach temperatures below the ambient temperature.

This phenomenon can be explained by the fact that the
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Table 6: FDM vs Kirchhoff with radiation

With radiation
Node Kirchhoff FDM Dif. %

1 500,000 500,000 0,000%
2 473,026 472,880 0,030%
3 450,464 450,224 0,049%
4 431,261 430,961 0,062%
5 414,687 414,348 0,071%
.
.
.

.

.

.

.

.

.

.

.

.
46 257,160 256,982 0,045%
47 256,930 256,753 0,045%
48 256,777 256,601 0,045%
49 256,701 256,525 0,044%
50 256,701 256,525 0,044%

Fig. 7: Comparison of thermal profiles.

problem is radiant being analyzed in an environment without
atmosphere, such as a vacuum. Such a situation allows the
heat dissipated by the fin to be transferred to infinity, thus not
generating the lower limitation in heat dissipation.

However, still in this analysis, another situation can be
seen. If the applied ambient temperature is 0K, T will never
be below that environment temperature. That kind of situation
should be considered, for example, in aerospace applications,
where Tamb is just above 0K.

To ensure the convergence of the numerical analysis used
to process the heat equation by the Kirchhoff Transform, a
stop criterion was applied [26]. This criterion establishes that
there is a Stopping criterion defined by (22)

r(k) =
max |x(k)i − x(k−1)

i |
max

1≤i≤n
|x(k)i |

. (22)

In the iteration in which the criterion is verified, the pro-
cess stops, otherwise the iterations continue. If it is possi-
ble to guarantee that the (22) represents a decreasing series at
all points, then the numerical method used converges, where
convergence is guaranteed if it is possible to show that r tends
to zero.

The Fig. 8 illustrates the stabilization of the iterations,
confirming that the method converges.

Fig. 8: Final thermal profile.

The convergence study of the method can be done by an-
alyzing the mathematical behavior of each point, verifying
whether such points approach defined values or not. How-
ever, for the purpose of simplifying the problem, it is noted
that the last nodal point is the one that presented the greatest
distance in values when compared case by case.

Therefore, the convergence analysis was taken by observ-
ing each nodal point in relation to the temperature value of
the previous point, thus concluding if the temperature values
tend to stabilize. The analysis performed on the behavior of
the relative error can also be seen in Table 7.

Table 7: Error analysis

k r
1 not applicable
2 65535
3 0,9838924
4 0,487936686
5 0,322625087
10 0,1160175
20 0,047182763
30 0,027496305
40 0,018111285
50 0,012548592
60 0,008790923
70 0,005999022
80 0,003752786
90 0,001808115
99 0,000178564

Since the final objective of the analysis is based on the re-
sults with thermal radiation dissipation and variable thermal
conductivity, the numerical results of the first five nodes and
the last five nodes were compared to that, in Tables 5 and 6,
where such comparisons are expressed in the percentage dif-
ference to the conclusive result.
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V. DISCUSSIONS

When looking at Figs.3 and 4, it is clear how the effects of
variation in thermal conductivity affect the temperature distri-
bution along the fin.

This shows that this phenomenon should not be neglected
in fin heat dissipation projects, because when removing such
effects, considering that the thermal conductivity of the mate-
rial is constant, incorrect dimensioning and insufficient mod-
els are caused.

It is worth mentioning that the thermal profiles studied in
situations where there is radiation heat dissipation, the min-
imum temperature values exceed the environment tempera-
ture value. This phenomenon is explained by the fact that the
mathematical processing of such situations does not take into
account the minimum boundary that the environment temper-
ature causes.

Physically speaking, it is considered that the body is capa-
ble of rejecting heat to the vacuum and is therefore not limited
by the environment from the point of view of radiant dissipa-
tion.

It can also be noted that variations in values of k are much
more evident in a context in which low and medium tempera-
tures are employed, since the higher the values of T , the more
the thermal conductivity profile approaches a straight line, in
asymptotic way.

VI. CONCLUSIONS

The analysis of such temperature profile aims to present
the importance of considering the effects of thermal radiation
on heat dissipation and thermal conductivity variation, so that,
compared to the thermal behavior in the absence of such ef-
fects, there is a considerable discrepancy in the results.

Since the majority of the works that involve the topic con-
sidered consider the parameter of thermal conduction con-
stant, this study proposes to consider the variation of such
parameter to bring even greater applicability and approxima-
tion of reality. For this purpose will be applied a appropriate
mathematical method, that will be approached forward.

This study shows the feasibility of using the Kirchhoff
Transformation in problems whose thermal conductivity is a
known function of temperature. It was necessary to establish
what kind of function this would be and the coefficients re-
lated to it, as well as its values. This can be seen in Section II.
of this paper, where (3) and Table 1 determine such parame-
ters.

It can be concluded, therefore, that thermal dissipation
analysis, in order to approach a real model, should never ne-
glect the variation of thermal conductivity, the effects of ther-
mal radiation.

In the future, this study is still seeking to improve the
analysis through comparison with COMSOL’s multiphysics
model; efficiency and effectiveness analysis; insert internal
heat generation; extend the analysis to double fins.
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