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Abstract: Accurate modeling and prediction of 

materials properties is of utmost importance to 

design engineers. In this study, newly developed 

two-dimensional laminate constitutive equations 

(LCE) were derived directly from an existing shell 

model without using a classical correction factor. 

The resulted LCEs were subsequently used for the 

first time to analyze a laminated composite tube 

(LCT) subjected to in plane-loading. This led to 

additional composite-shell stiffness coefficients 

which are not currently available in some LCEs. 

The strains and stresses distribution fields were 

computed via Matlab.  The accuracy and robustness 

of our analytical method were proven by opposing 

the as-obtained results of thick and thin LCTs with 

that of existing theories which use a correction 

factor. An excellent convergence was observed. 

Whereas a lower convergence was observed in the 

case of a laminated shell plate. Results also showed 

that the thickness ratio χ (𝟐𝝌 =
𝒉

𝑹
 ) considerably 

influences the mechanical behavior of the LCT. In  

 

 

fact when χ<0.1, the distribution of stresses and 

strains of the tube were the same for the two 

opposed theories.  When χ>0.1, the distribution of 

stresses and strains were not the same, hence the 

contribution of our ABCDE matrix.  The new 

mechanical couplings in our LCE could be well 

illustrated in a finite element package with 

visualization tools to observe some intricate 

deformations which are yet to be seen. Thus the 

outcome of this work will be of particularly interest 

to promote advanced scientific and structural 

engineering applications.   

  

Keywords — Laminated Constitutive Equation 

(LCE), Mechanical couplings, interlinear stresses 

analytical formulation, Laminated Composite  

Tube, Computational solutions. 

I.  INTRODUCTION 

Investigations on composite shell structures is of major 
interest to many researchers in numerous fields. Beside 
their attractive curved structures which prompts several 
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industrial applications, they also possess general 
interesting features such high modulus/weight and 
strength/weight ratios, excellent fatigue properties, and 
non-corroding behaviour.  All of which are driving 
more efforts in the modelling analysis of these 
structures for quality assurance and increasing 
applications in numerous sectors such as aerospace, 
automotive, marine, and piping industries [1]. For 
structural applications, preference is usually given to 
continuous fiber composites due to their higher 
directional strength and modulus than those made with 
discontinuous fiber, [2]. A more balanced characteristic 
can be obtained with woven, bidirectional, or randomly 
distributed [3].  Accuracy in prediction analysis is a 
challenging problem and requires a great understanding 
of the mechanical behaviour at micro-macro-level of 
composite laminated shells. The complexity in 
designing these special structures stems from their 
heterogeneity, that is the point-to-point anisotropy of 
shells owing to their curved shape [4]. In literature, 
there are multitude of   reports on their analysis [5], [6] 
, [7], [8], [9], [10], [11].  

The modelling of composite laminated shells is usually 
classified into two categories, which are the single layer 
and the layer wise models. The single-layer approach 
comprises of the classical shell theory (CST), the first-
order shear deformation theory (FSDT) [12], the higher 
order shear deformation theory (HSDT)  [13], [14] the 
refined theory for laminated anisotropic cylindrical 
shells [15], [16]   and some others shell models as that 
suggested by [17]. M. Sayir et al [18] analyzed a 
composite laminated tube and described the limitations 
of CLT for cylindrical geometries. An alternative was 
proposed to give a more accurate solution. J. Q. Tarn et 
al [19] presented a mathematical formulations for LCT 
under several loading cases such as torsion, flexion and 
pressurization. Some other studies have been made 
under different loading conditions [20], [21]. 
Theoretical models to predict the mechanical behavior 
of thick composite tubes were developed by [8]. These 
models were implemented as an engineering 
computational tool via Matlab. The behavior of 
composite tube can be influenced by the Thickness 
ratio, the lamination angles, the constituent materials, 
direction of fiber, etc. More generally, the response of 
tube composite structure depends mainly on the matrix 
behavior which can be written in terms of the 
equivalent properties [1], [8].  In reality, the accuracy 
in predicting the laminated tube behavior is influenced 
by the stiffness matrix at the macro level of the 
structure. The stiffness matrix contains sub-matrices 
which expresses the mechanical couplings that 

influence the behavior of the tube. The existence of 
these mechanical couplings depends not only on the 
shell model but also on the methodology used.  

In order to conduct structural designing with accurate 
results, the designer should take into account more 
possible mechanical couplings such as:  extensional-
bending-shearing, extensional-bending, shearing-
bending, extensional-twisting-shearing, extensional-
twisting, bending-twisting-shearing, and shearing. 
However, all the above coupling elements do not 
appear in the laminate constitutive equations based on 
Kirchhoff-Love (K-L), Reissner-Mindlin, Donnel shell 
theories or its derivatives used to predict the behavior 
of the CT by some authors.   

In this work, we present an analytical method to study 
the behavior of laminated composite tube. ABCDE 
matrix was implemented using Matlab script to 
compute the strains and stresses distribution fields.  Our   
results were compared by other formulations obtained 
by K-L and R-M shell models. The influence of new 
mechanical coupling cited above was clarified. To 
compute the transverse and normal stresses fields, we 
proposed to use an original analytical formulation 
obtained by solving a transverse differential equation. 
This equation has been proposed initially for isotropic 
material by [22] and recently solved for anisotropic 
material by [4]. In fact composite laminates are of 
anisotropic nature, thus the need to use the theory of 
anisotropic elasticity. The results obtained by our 
laminate constitutive relation for composite tube are 
physically consistent and coherent with literary 
informations. We have shown that the mechanic 
couplings cited above is of great influence to the 
mechanical behavior of LCS when the thickness-ratio 
increases.  

 

II.  MATHEMATICAL MODELING  
Some two-dimensional shell theories are 
approximations of real three-dimensional elasticity 
problems.  In fact, equations of 2D shell may be viewed 
as a simplification of the equation of three dimensional 
elasticity obtained by eliminating some terms of less 
order of magnitude with respect to the thickness of the 
shell 2ε,  ε > 0 (the half-thickness is assumed to be 
small). This simplification is possible by using a middle 
surface as the reference configuration of the shell and 
its thickness. Doing so, it is therefore possible to define 
a system of three-dimensional natural curvilinear 
coordinates inside the middle surface of shell. 
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Moreover, in the shell theory, the three-dimensional 
system is reduced to a two-dimensional one by 
deploying a set of simplifying assumptions which are 
considered and recalled in this paper [4, 23]  as below: 
(H1) The material of each constituent layer is linearly 
elastic. (H2) The laminated consist of number of 
anisotropic layers of uniform thickness together where 
each is treated as homogeneous and orthotropic.  (H3) 
For two-dimensional thick shell, the laminate is 
perfectly bonded i.e. transverse/normal strains are zeros 
(𝜖𝛼3 = 0, 𝛼 = 1,2,3 ).  (H4) The transverse and normal 
stresses aren't neglected for geometrically thin shell and 
geometrically thick shell. (H5) Geometrically two-
dimensional shell theory is based on the assumption 
that the ratio of the shell thickness to radius (𝜒 =

ℎ

2𝑅
) is 

less than unity. 
 (H6) Transverse slopes are assumed to be sufficiently 
small that the linearized curvature expressions are 
adequate. (H7)  Deformations are assumed to be 
sufficiently small that linearized strain-stress equations 
may be used. 
 

A. Two dimensional shell model   

One original model of shell theory obtained by 
applying the limit analysis is the Nzengwa-Tagne (N-
T) shell model which was developed in 1999. Without 
any ad hoc assumption on shell deformations or on 
material texture, authors deduced a two-dimensional 
model for linear elastic shells from the three-
dimensional problem of a shell of thickness 2𝜀,  𝜀 > 0 
[22]. 

 The body is called shell when there is a surface S⊂ ℝ3 
and a number r>0, which is small compared with the 
characteristic dimensions of, such that   

 Let        Ω = {𝑥𝜖ℝ3, 𝑑𝑖𝑠𝑡(𝑥, 𝑆) < 𝑟}             (1)                                                                     

(where S is mid-surface, h>0 is the thickness, and 𝒙 =

(𝑥1, 𝑥2) is the coordinate of 𝑚 𝑖𝑛 𝑆 .  The detail of 
geometry and notation are shown in [4].  

We assume the surface S is bounded and sufficiently 
smooth for all subsequent computations (see Figure 1).  
Let  {𝑎1 , 𝑎2 , 𝑎3 }  and  {𝑎1, 𝑎2, 𝑎3}  denote the covariant 
and contravariant basis of midsurface. Let  {𝑔1 , 𝑔2 , 𝑔3 }  
and{𝑔1, 𝑔2, 𝑔3}, respectively the covariant and 
contravariant basis of shell. 

𝑔𝛼 = ( 𝛿 𝛼
𝜏 − 𝑧𝑏𝛼

𝜏 )𝑎𝜏 = (𝜇 𝛼
𝜏 )𝑎𝜏 ,  𝑔3 = 𝑎3 ,  𝑔𝛼 =

(𝜇 𝜏
𝛼)−1𝑎𝜏.                                      (2)                            

 

Figure. 1 Laminated shell and notations [4]       
         

N-T’s theoretical approach was mathematically and 
rigorously deduced from three-dimensional linear 
elastic curvilinear media and through multiple scaling 
and limit analysis. Moreover it is well known that 
transverse stresses cannot be neglected as the shell 
becomes thicker. A field displacement in 𝑔𝑖 − 𝑏𝑎𝑠𝑖𝑠 or 
𝑎𝑖 − 𝑏𝑎𝑠𝑖𝑠  reads: 

𝑢 =  𝑢𝑖(𝒙, 𝑧)𝑔𝑖 =  �̅�𝑖(𝒙, 𝑧)𝑎𝑖  , 𝑢𝛼 = (𝜇 𝛼
𝜏 )�̅�𝛼    �̅�𝛼 =

(𝜇 𝛼
𝜏 )−1𝑢𝛼 .                                             (3)                             

Then the strain tensor is given by:  
𝝐𝜶𝜷(𝒖) =

𝟏

𝟐
( 𝒖𝜶/𝜷   + 𝒖𝜷/𝜶) = 

𝟏

𝟐
((𝜇 𝛼

𝜏 )(𝛁𝜷�̅�𝜏 −

𝒃𝝉𝜷�̅�3) + (𝜇 𝛽
𝜏 )(𝛁𝜷�̅�𝜏 − 𝒃𝜶𝝉�̅�3)) 

𝝐𝜶𝟑(𝒖) =
𝟏

𝟐
( 𝑢𝛼/3   + 𝑢3/𝛼)= 

𝟏

𝟐
((𝜇 𝛼

𝜏 )�̅�𝜏,3 + �̅�3,𝛼 +

𝑏𝛼
𝜏 �̅�𝜏 )                                                   (4) 

𝝐𝟑𝟑(𝒖) = �̅�3,3   
where 𝑏𝛼

𝜏 = 𝑎𝜏𝛾𝑏𝛾𝛼 and 𝑏𝛾𝛼  denote the curvature tensor 
components and 𝑎𝜏𝛾  is the contravariant component of 
metric of the midsurface S.  𝛁 indicates the covariant 
derivation in Ω and S respectively, while  𝑓,𝛼 =

𝜕𝑓/𝜕𝑥𝛼. 
𝜖𝑖3 = 0  and, as a consequence, the limit displacement 
reads: 
𝑢𝛼 = 𝜉𝛼(𝒙) − 𝑧𝜃𝛼(𝒙) + 𝑧2𝜓𝛼(𝒙),  
𝑢3 = 𝜉3(𝒙)                    (5) 
where 𝜃𝛼 = �̅�3,𝛼 + 2𝑏𝛼

𝜏 �̅�𝜏;𝜓𝛼 =  𝑏𝛼
𝜏 (𝑏𝛼

𝜏 �̅�𝜏 + 𝜃𝛼)                                                                    
(6) 
The strain tensor is now deduced from N-T shells 
kinematic [4, 22]  with respect to plane strain (in view 
of hypothesis (H3) is given by equation (7) : 
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𝝐𝜶𝜷(𝒖)  =  𝑒𝜶𝜷(�̅�𝜏) − 𝑧 𝐾𝜶𝜷(�̅�𝜏) +

               𝑧2𝑄𝜶𝜷(�̅�𝜏) ;   𝜖𝑖3(𝑢) = 0, 𝑖 = 1,2,3             (7)               
Where the tensors associated with arbitrary 
displacement field     �̅� = 𝑢𝜏𝑎𝜏   on surface.                                      
𝒆 = 𝑒𝛼𝛽(�̅�),   𝑲 = 𝐾𝛼𝛽(�̅�), 𝑎𝑛𝑑 𝑸 = 𝑄𝛼𝛽(�̅�) denote 
respectively, the membrane deformation tensor, the 
linearized change of curvature tensor and the linearized 
change in third fundamental form (or gauss curvature 
tensor) with respect to shell axes.   
𝑒𝛼𝛽(�̅�𝜏) =  

𝟏

𝟐
(𝛁𝜷�̅�. 𝑎𝛼 + 𝛁𝛼�̅�. 𝑎𝜷 ) ,  

𝐾𝛼𝛽(�̅�𝜏) = (𝛁𝛼𝜷�̅� − 𝚪𝛼𝛽
𝜏 𝛁𝛼�̅�). 𝑎3  

𝑄𝛼𝛽 =  𝟏
𝟐

(𝑏𝛼
𝜏 𝛁𝜷𝜃𝜏 + 𝑏𝛼

𝜏 𝛁𝜷𝜃𝜏) ,                        (8) 

Where,   𝚪𝛼𝛽
𝜏 ∶=

𝟏

𝟐
(𝑎𝛼𝛽)

−1
(𝛁𝛼𝑎𝛽𝛾 +  𝛁𝛼𝑎𝛼𝛾 − 𝛁𝛾𝑎𝛼𝛽)   

designate the Christoffel symbols  and  (𝑎𝛼𝛽)
−1

∶= 
𝑎𝜏𝛾 .   

The expressions of these tensors are available in 
[4, 1, 22] for spherical and cylindrical shell [1]. 
The expressions of these tensors are available in [4, 1, 
22] for spherical and cylindrical shell [1]. It is worth 
noting that the term  {𝑸𝜶𝜷}

𝑘
 disappears usually in 

classical laminated shell models. The fact that it 
appears here does not mean that it is a second order 
theory as it may be easily thought. It results from the 
N-T approach which suppresses the use of a correction 
factor.  
 

 

  

 

   

Figure 2.  Geometry of shell, and location of layer in the composite shell structure [4]
 
 
  In view of hypotheses (H1) and (H4) the strain-stress 
relationship can be written by equation (13) following: 
                        
  {𝜎𝛼𝛽}

𝑘
 =   [�̅�]𝑘{𝑒𝛼𝛽}

𝑘
−  [�̅�]𝑘𝑧𝑘{𝐾𝛼𝛽}

𝑘
+

[�̅�]𝑘  𝑧𝑘
2{𝑄𝛼𝛽}

𝑘
 (9)                                        

 In this equation, the strains are given at a 𝑧𝑘 location 
where the stresses are required (see Figure 3); and [�̅�]𝑘 
is the stiffness matrix with respect to shell coordinates. 
It is obtained by transforming the stiffness matrix Q in 
the principal material coordinates (𝑥, 𝑦, 𝑧) to shell 
coordinates (l-2-3) using coordinate transformation 
matrix given by the relation [23, 1, 24] 
[�̅�]𝑘 =[𝑇𝜎]−1[𝑄]𝑘[𝑅][𝑇𝜎][𝑅]−1.                            (10)  
 where [𝑇𝜎] is the transformation matrix;  [𝑅] is the 
Reuter matrix  defined respectively by: 

𝑇𝜎= (
𝑐2 𝑠2 2𝑐𝑠
𝑠2 𝑐2 −2𝑐𝑠

−𝑐𝑠 𝑐𝑠 𝑐2 − 𝑠2

)  and 𝑅  (
1 0 0
0 1 0
0 0 2

)    (11)     

                                                     
For N-T shell, transverse shear stresses (𝝈𝟏𝟑 , 𝝈𝟐𝟑  )𝒌 
and normal (𝝈𝟑𝟑 ) 𝑘   in each layer 𝑘 can be predictable 
accurately by solutions of differential equations 
presented here recently developed [4].  
Consider a shell of thickness h clamped on a part of its 
border Γ0, subjected to volume forces 𝑓𝛼 , 𝑓3 and to 
surface forces ℎ̅𝛼  and  ℎ̅3 on the rest of its border Γ1. 
Suppose the forces are sufficiently smooth; then the 
transverse stresses 𝜎𝛼3 and normal stresses 𝜎33 are 
solutions to the differential equations [22]:  
𝜕𝜎𝛼3

𝜕𝑧
+ 2 Γ𝜆3

𝛼 𝜎𝛼3 +  Γ𝜆3
𝜆 𝜎𝛼3 = − (𝜎,𝛽

𝛼𝛽
+ Γ𝛽𝜆

𝛽
 𝜎𝜆3 −

𝑓𝛼), , 
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𝜎𝛼3 (−
ℎ

2
) = −ℎ̅−

𝛼 = 0 ,    𝜎𝛼3 (+
ℎ

2
) = ℎ̅+

𝛼 = 0,                                                                                

with    𝑓𝛼 ∈ 𝐿2( Ω), 𝐻1  (−
ℎ

2
,

ℎ

2
, 𝐻−1(𝑆)).   

  
𝜕𝜎33

𝜕𝑧
+ Γ𝛼3

𝛼 𝜎33 = −(𝜎,𝛼
3𝛼 + Γ𝛼𝜆

3  𝜎𝜆𝛼 +  Γ𝜆3
𝜆 𝜎𝛼3 − 𝑓𝛼 )                              

𝜎33 (−
ℎ

2
) = −ℎ̅−

3 = 0,   𝜎33 (+
ℎ

2
) = ℎ̅+

3 = 0,     

       𝑓𝛼 ∈ 𝐻1( Ω), 𝐻2  (−
ℎ

2
,

ℎ

2
, 𝐻−2(𝑆)).               (12) 

It is possible to obtain transverse strain and stress of 
laminate composite shell using directly three 
dimensional constitutive relation obtained by 3D shell 
model. (see for  instance [4]). This shell model is not 
presented here. 

In the following subsection we present a new general 
laminate constitutive equations. 

B.   The Shell Model Based 2D Laminate Constitutive 

Relation 

We can find them using Equation (6). We assume that 
we know the applied force N = (Nα, Nβ, Nαβ), the  
Gauss bending and twisting moments   M =

(Mα, Mβ, Mαβ),  and   M∗ = (Mα
∗ , Mβ

∗ , Mαβ
∗ ) 

respectively.  Let  𝐍 = Nαβiα⨂iβ,  𝐌 =

Mαβ iα⨂iβ,   𝐌∗ = Mαβ
∗ iα⨂iβ  where  iα⨂iβ is the 

projector. Using this projector Therefore, the resultant 
stresses and moment are defined as integral of stresses 
through the thickness of laminated shell, while using 
the Lamé parameters Aα and Aβ, and radius of shell Rα 
and Rβ, see [25]. The Laminate constitutive relation is 
given by: 

(
𝑵
𝑴
𝑴∗

) =  (
𝐴 −𝐵 𝐶

−𝐵  𝐶 −𝐷
𝐶 −𝐷 𝐸

) (

𝒆
𝑲
𝑸

) ,                    (13)   

            
The sub-matrices A,B,C,D,E,  are defined by: 
(Aij, Bij, Cij, Dij, Eij) = 

   ∑ ∫ (1, z, z2, z3, z4)
hk

hk−1
[Q̅ij]k

dz,   i, j = 1,2,6.Nb
k=1         

𝑁𝑏 denotes the layers number, 𝑧 and ℎ𝑘 define the 
position of the 𝑘𝑡ℎ  layer from the mid-plane of the 
composite laminate ( Fig. 3).    
Here  𝐴, 𝐵, 𝐶, 𝐷 and 𝐸 sub-matrices  are calculated by 
using the lamination theory with axis parallel theorem 
and  are known in CLST as the extensional-shearing  
mechanical coupling (𝐴16 𝑎𝑛𝑑 𝐴26), extensional-
bending mechanical coupling ( 𝐵11, 𝐵12, 𝐵22), 
extensional-bending-shearing coupling ( 𝐶11, 𝐶12, 𝐶22), 
extensional-twisting-Gausss mechanical coupling   
(𝐶16 𝑎𝑛𝑑 𝐶26),  shearing mechanical  coupling 
( 𝐷11, 𝐷12, 𝐷22), Gauss bending-twisting-shearing 

mechanical coupling  (𝐷16 𝑎𝑛𝑑 𝐷26) and shearing 
stiffness mechanical  coupling (𝐸16 𝑎𝑛𝑑 𝐸26).  The last 
four among the above couplings are the additional 
mechanical couplings due to the presence of the 
Gaussian tensor in the Strain-stress relation (9). 
We can find 𝒆, 𝑲, 𝑎𝑛𝑑 𝑸 by  solving the nine 
simultaneous equations obtained by inverse calculation 
and given by [1]:  

(

𝒆
𝑲
𝑸

) =  (
𝐴1 𝐵1 𝐶1

𝐷1 𝐸1 𝐹1

𝐺1 𝐻1 𝐼1

) (
𝑵
𝑴
𝑴∗

) ,                        (14)                                                                      

where  𝐴1 , 𝐵1, 𝐶1, 𝐷1 , 𝐸1, 𝐹1, 𝐺1, 𝐻1, 𝐼1   are given by 
[24]. 

C.    Interlaminar/Transverse Stresses from the Two-

Dimensional Anisotropic Shell.  

Predicting the interlaminar stresses are of particular 
interest in real application.  We recall that some two 
dimensional LCS models based on K-L , R-M,  Donnel 
shell models  or  its derivatives shell model are not  
capable to predict with accuracy some local effects as 
interlaminar stress distribution between layer.  
Certain of these models utilize plane stress assumptions 
which are not always suitable for layered composite, 
since some capital informations about the transverse 
stresses are lost. Moreover some analytical 
formulations of transverse stresses have not been 
mathematically established. 
It is well-known that the transverse stresses can not be 
neglected when the LCS becomes thicker. The LCS 
models based on R-M theory for instance use a shear 
correction factor to determine the transverse stresses 
but fails to give accuracy results.  Others technique to 
find the transverse shear stresses without shear 
correction factor consist of using stress recovery from 
the equation equilibrium (body forces excluded). The 
two-dimensional models capable to predict by 
equivalent single layer the transverse stresses with 
accuracy are generally poor or non-existent. To 
determine all the transverse stresses components, a 
newly analytical formulation developed by Arno 
Ngatcha et al [23]: 
 
(𝜎13 )𝑘  =−[𝑁0 − 𝑁1ℎ𝑘 + 𝑁2ℎ𝑘

2] exp(−𝜏(𝑧 −

ℎ𝑘)) +[𝑁0 − 𝑁1ℎ𝑘−1 + 𝑁2ℎ𝑘−1
2 ]exp (−𝜏(𝑧 − ℎ𝑘−1)),  

    
(𝜎23 )𝑘= 

1

𝐶−𝜏
  [ (𝛿1̅ +  𝛿2̅ℎ𝑘 + 𝛿3̅ℎ𝑘

2) +  ( �̅�1 +

 𝛿2̅ℎ𝑘−1 + 𝛿3̅ℎ𝑘−1
2 )ex p(−𝜏(ℎ𝑘 −

ℎ𝑘−1))] exp(−𝐶(𝑧 − ℎ𝑘))                                                                                                     
 
(𝜎33 )𝑘 = 1

𝐶−𝜏
  [ (𝛿1̅ +  𝛿2̅ℎ𝑘 + 𝛿3̅ℎ𝑘

2) +  ( �̅�1 +

 𝛿2̅ℎ𝑘−1 + 𝛿3̅ℎ𝑘−1
2 )ex p(−𝜏(ℎ𝑘 −
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ℎ𝑘−1))] exp(−𝐶(𝑧 − ℎ𝑘))+ −1

𝐶−𝜏
[(𝛿1̅ +  𝛿2̅ℎ𝑘 +

𝛿3̅ℎ𝑘
2) + (𝛿1̅ + 𝛿2̅ℎ𝑘−1 + 𝛿3̅ℎ𝑘−1

2 ) exp (−𝜏(ℎ𝑘 −

ℎ𝑘−1))] exp(−𝐶(𝑧 − ℎ𝑘−1)) ;                               (15) 
                                 

Where  𝑛𝑖 ,  �̅�𝑖 , 𝑁𝑖 , i = 1, 2, 3,     𝜏, 𝐶, 𝐵(𝑧), are the 
values and functions available in [4].  
 

D. Appropriate Laminate Stiffness matrix   for a 

Uniform Cylindrical Tube.  
 

We determined the stiffness matrices of a composite 
tube or cylinder using the approach proposed by [26], 
and [27]. We consider an infinitesimal plate section of 
tube laminate which has its axis x-y-z and is inclined at 
an angle  𝜃  with respect to the composite tube axis. 
This section is rotated about z (z=𝑅cos𝜃) to position it 
parallel to the x-axis (Fig. 4).  The stiffness of the plate 

calculated by lamination theory is translated to the x 
axis according to parallel axis theorem [28]. 
We considered the uniform tube with circular cross-
sections 𝑅0, and L respectively for the outer and inner 
radii. The length of the cylindrical composite is L. The 
length of the tube is sufficiently high than that of its 
radii. Hence the tube is considered as long. Taking into 
account the strain and stress transformation matrices  

[𝑇𝜀] and [𝑇𝜎],  [𝑇𝜀]𝑥 = [𝑇𝜎]𝑥 =  (
1 0 0
0 𝑚2 0
0 0 𝑚

) where 

 𝑚 = 𝑐𝑜𝑠 𝜃, hence, reduced stiffness matrices after Z 
and X rotation will be given by: 
[𝑄’] = [𝑇𝜎]𝑧[𝑄] [𝑇𝜀]𝑧  ,  [�̅�] = [𝑇𝜎]𝑥[𝑄’] [𝑇𝜀]𝑥  ,       (16)               
    Where  
 [𝑇𝜎]𝑧 = 𝑇𝜎   and   [𝑇𝜀]𝑧 = 𝑇𝜀.  
 
 
 
 

 
  

Figure 3.  Uniform cylindrical composite tube and   notations.   

 

 The overall stiffness of the composite tube (or 
cylinder) is thus obtained by integrating over the entire 
𝜃 domain. The corresponding stiffness matrix elements 
[�̅�], [�̅�], [𝐶̅], [�̅�] and [�̅�] of the tube can be written as:  
[�̅�] = ∫ [𝐴′]𝑅𝑑𝜃,

2𝜋

0
  [�̅�] = ∫ [𝐵′]𝑅𝑑𝜃

2𝜋

0
, [𝐶̅] = [�̅�] =

∫ [𝐷′]𝑅𝑑𝜃
2𝜋

0
, [�̅�] = ∫ [𝐸′]𝑅𝑑𝜃 .  

2𝜋

0
                        (17)                                                  

Where 
 [𝐴′] = [𝐴] ;  [𝐵′] = [𝐵] + 𝑅𝑐𝑜𝑠(𝜃)[𝐴] ; [𝐶′] = [𝐶] +

2𝑅𝑐𝑜𝑠(𝜃)[𝐶] + (𝑅𝑐𝑜𝑠(𝜃))2[𝐶] ; 
[𝐷′] = [𝐷] + 3𝑅𝑐𝑜𝑠(𝜃)[𝐶] + 3(𝑅𝑐𝑜𝑠(𝜃))2[𝐵] +

 (𝑅𝑐𝑜𝑠(𝜃))3[𝐴] ;                            
[𝐸′] = [𝐸] + 4𝑅𝑐𝑜𝑠(𝜃)[𝐷] + 6(𝑅𝑐𝑜𝑠(𝜃))2[𝐶] +

 4(𝑅𝑐𝑜𝑠(𝜃))3[𝐵] + (𝑅𝑐𝑜𝑠(𝜃))4[𝐴].                    (18)                              

Note that those stiffness matrices are in terms of 𝑅  
where 𝑅 is the mid-thickness radius of the circular tube.   
𝑅 =  𝑅0 − 0.5𝑁𝑏𝑡𝑘  where  𝑁𝑏 is the number of layers 
and 𝑡𝑘 is the ply thickness.          
In the case of laminated composite  tubes (LCT), the 
constitutive relation is obtained through inverse 
calculation by the following Laminate constitutive 
equation for laminated uniform cylinder tube:  

 (
𝑵
𝑴
𝑴∗

) = (−
�̅� −�̅� 𝐶̅

�̅� 𝐶̅ −𝐷̅̅̅̅̅

𝐶̅ −�̅� �̅�

) (

𝒆
𝑲
𝑸

)                                 

(19).  

          More generally, we obtained the stiffness matrices by 
following the procedure described in the flowchart 
given bellow:
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       Figure 4.  Flowchart for analytical modelling stiffness matrices of laminate cylindrical tube 

 

IV. NUMERICAL RESULTS AND DISCUSSIONS  

In this section we developed some applications which 
will help to analyze laminated   composite   cylindrical 
tubes. First, we obtained solutions of the   local stresses, 
and strains for each layer at the top, middle and bottom. 
We compared results obtained using classical 
laminated shell  theory containing  ABD matrix based 
on K-L shell model, classical FSDT containing ABDF 
matrix  based on R-M shell model, and our formulation 
(ABCDE matrix) obtained by N-T shell model.     
Matlab computational tool was used to compute the 
stresses and strains distribution fields in laminated tube  

 
with sacking sequence equal to [0o/30o/-45o].  The 
circular tube has a  mid-thickness radius equal to   𝑅 =

 𝑅0 − 0.5𝑁𝑏𝑡𝑘. The mechanical properties of the 
materials used to fabricate the composite tube are given 
in Table1. 
The composite tube is analyzed under different static 
loading conditions. The results are presented in Table 
2-4 and graphically in Fig. 5 – Fig. 8. 
The results obtained by using our LCE method are 
compared with those obtained by using ABD in CLST 
and laminate shell constitutive equations model 
(ABDG) according to FSDT of  R-M.   
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Table  1.  2D Material properties, limits and loading conditions for graphite/ Epoxy Composite  
Material 

properties 

Carbon 

AS4/PEKK 

Graphite/ 

Epoxy 

Car/Ep 

(IM6/S1081) loading 

𝐸1(𝐺𝑝𝑎)  140  181 177   N M 𝑀∗ 
𝐸2(𝐺𝑝𝑎) 10  10.3 10.8 1000  0 0 
𝐺12(𝐺𝑝𝑎) 5.56 7.17 7.6 1000   0 0 

𝜈12 

𝜈12 
0.31   0.28 0.27    0  0 0 

𝐺13(𝐺𝑝𝑎) 5.56    
𝐺23(𝐺𝑝𝑎) 5.56   

 

. 

A. Laminated Shell Plate Analysis 

In this example Matlab tools is used to analyze the 
behavior of classical thin shell configuration. Here we  
assumed that the transverse slopes are sufficiently 
small that the linearized curvature expressions are 
adequate. This test was conducted by [29], [5] for the 
same material (graphite/epoxy) of which characteristics 
are given in table. 1.  The results obtained by Matlab 
script code are compared to those proposed by [5], [29]. 
The influence of thickness ratio is not taken into 
account in this case (Assumption of plate shell).   The 
shell is analyzed under extensional loading. The 
maximum local stresses and the minimum local strain 

are presented in Table. 2.  We observed a divergence 
due to the contribution of new mechanical couplings in 
the rigidity matrix ABCDE. It seems that our method is 
not suitable to predict the behavior of flat composite 
plate.    
 
 
 
 
 
 
 
 
 
 

 
Table 2.    Local Strains/ stresses of graphite/epoxy with ABD-matrix and ABCDE-matrix at different layers with 
different orientations. 

Orientation (𝜃𝑜) 
 
 

                 0𝑜                   30𝑜      −45𝑜 

ABD 
CLT [5] [29] 

Present 
LCE 

ABD 
CLT [5] [29] 

Present 
LCE 

ABD   
CLT [5] [29] 

Present 
LCE 

 Minimum 
Strains (𝑚𝑚) 
 

𝜖11 
𝜖22 
𝜖12 

0.0001 
0.0043 
-0.0038 

-0.000135 
-0.00184 
-0.00287 

0.0005 
0.0020 
0.0021 

0.0007 
0.0038 
0.0034 

-0.0004 
 0.0017 
-0.0023 

-0.002243 
-0.00236 
-0.00442 

Maximum 
Stresses 
(𝑁/𝑚𝑚2) 

𝜎11 
𝜎22 
𝜎12 

55.76    
61.87   
-12.80 

55.9379    
55.3591   
-13.319 

200.745   
43.4817    
18.9030 

204.136   
55.549    
30.253 

258.576   
 21.231    
-3.5333 

512.0146 
 27.1901    
26.0128 

 

 

B.  Thin Cylindrical Uniform Laminated Tube.  

 
Table. 3 compares the local strains and local stresses 
between our analytical formulation which uses ABCDE 
matrix and the classical formulation which leads to 
ABD matrix. The convergence of both formulations is 
excellent.  We observe in these results that the 
membrane deformation and stresses are the same. The 

additional mechanical couplings do not have any 
influence in the behavior of tube. E and D disappear in 
the rigidity matrix ABCDE. In this case ABCDE,  ABD 
ABDG have same contribution.   Thus   for 
geometrically thin shell,   our formulation coincides 
with those used in CLST. This assertion is verified in 
Table 3 and Fig. 5. where both approach converge very 
well. Assumptions made above in our model are 
reasonable and correct.  
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Table 3.  Local   Strains/ stresses of graphite/epoxy uniform cylinder tube with the ratio  𝜒 =0.099.  

Orientation (𝜽𝒐) 

 

 

                       𝟎𝒐                           𝟑𝟎𝒐         −𝟒𝟓𝒐 

 CLST 

 

Present 

LCE 

CLST Present 

LCE 

 CLST Present 

LCE 

 Minimum 
Strains (𝑚𝑚) 
 

𝜖11 
𝜖22 
𝜖12 

 0.0028    
0.0107    
0.0014 

 0.0028    
 0.0107   
  0.0014 

0.0054     
0.0080    
0.0076 

 0.0054     
0.0080    
 0.0076 

   0.0059   
   0.0075  
  -0.0078 

 0.0059    
 0.0075   
 -0.0079 

Maximum 
Stresses 
(𝑁/𝑚𝑚2) 

𝜎11 
𝜎22 
𝜎12 

147.6277  
103.9482    
6.7317  

147.711  
103.839    
6.7615  

257.733    
86.1836 
34.2360 

257.647   
86.1668   
34.2402 

 277.388   
82.6025  
 -34.955 

277.807   
82.5877  
 -35.0434 

 

.  

C. Thick Cylindrical Uniform Laminated Tube. 

 
Table  4. Comparison of Local Strains and local stresses of graphite/epoxy uniform cylinder tube with the thickness 
ratio   𝜒 = 0.15 obtained using Reissner-Mindlin-based formulation (Eq. 29) and the present formulation.   

Orientation (𝜽𝒐) 

 

 

                      𝟎𝒐                            𝟑𝟎𝒐      −𝟒𝟓𝒐 

LCE using  

  R-M 

Present 

LCE 

LCE using  

  R-M 

Present 

LCE 

LCE using  

  R-M 

Present 

LCE 

 Minimum 
Strains (𝑚𝑚) 
 

𝝐𝟏𝟏 

𝝐𝟐𝟐 

𝝐𝟏𝟐 

0.0009    
0.0036    
0.0005 

0.0010    
0.0036    
0.0004 

0.0018    
0.0027    
0.0025 

0.0018    
0.0028    
0.0026 

0.0020    
0.0025  
  -0.0026 

0.0021    
0.0025    
- 0.0027 

Maximum 
Stresses  
(𝑁/𝑚𝑚2) 

𝝈𝟏𝟏 

𝝈𝟐𝟐 

𝝈𝟏𝟐 

 49.2092   
34.6494    
2.2439  

  51.360   
35.6374    
2.1961 

  85.9112   
28.7279   
11.4120 

  87.0844   
30.1208   
11.5685 

 92.462  
27.5342  
 -11.652 

  99.194   
28.124  
 -12.126 

 

Note that in this test, h is constant while the radius 
varies with the ratio 𝜒. The local strains and stresses are 
influenced by the contribution of additional mechanical 
couplings,  because E, D do not disappear in the rigidity 
matrix ABCDE. This effect is due to the increase of the 
thickness ratio 𝜒 = 0.15. The high similarity between 

both R-M based formulation and the current model is 
observed in table 4. Thus our formulation is able to 
compute local stresses and strains of thin and 
moderately thick tube with very good accuracy. 

 

 

D.  Stresses Analysis in LCT.   

In this section, we have used the graphite/epoxy mechanical characteristics to perform the computation.                                         

     

Figure 5: Stresses distribution, left for  𝜒=0.075, right for 𝜒 =
ℎ

2𝑅
=0.1.     
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Figure. 6: Stress distribution left for  𝜒=0.1765 and right for 𝜒 =0.1429

We have used in  the following range of ratios: 0.05 ≤

𝜒 ≤ 0.18  in these tests because they belong to both 
thin and thick laminated shell thickness ranges. 
Important remark is that 𝜒 = 𝜒(ℎ) i.e. the  radius of 
tube is constant. All plots are presented below. 
Classical rigidity matrix ABD and that presented in this 
work (ABCDE-matrix) are implemented analytically 
using some MATLAB scripts. The result are plotted for 
some different ratio and results are shown in  figure 5 
and 6. We can see that  𝜒 ratio influences considerably 
the mechanical behavior of the LCST. In fact 
when  𝜒 < 0.1, the distribution of stresses and strains 
of tube is the same. Both plots overlap perfectly.  

                                                                                                                                     
When 𝜒 > 0.1, the distribution of stresses are not the 

same (Figures 6). We can see that the two Laminate 
constitutive equations diverged [12]. We believe that 
our model is more accurate because it contains more 
couples deformation as opposed the RM one. 
Moreover, it was not deduced by imposing a correction 
factor.  

 

E.  Strain Analysis in LCT. 

In this example Matlab tools is used to analyze the 
behavior of classical moderately thick shell 
configuration. 
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Figure 7:  Strains  distribution in laminated tube  left  for  𝜒 =
ℎ

2𝑅
=0.099 and  right at ratio 𝜒 =

ℎ

2𝑅
=0.85, the  Car/Ep 

(IM6/S1081) has been used here. 
 

 
 
Figure 8:  Strains distribution in laminated tube,  left   𝜒 =

ℎ

2𝑅
=0.1429  and right   𝜒 =

ℎ

2𝑅
=0.1765, the  Car/Ep 

(IM6/S1081) has been used here.  
 

     

 
The results of the transverse stresses are presented in 
table 5 below without using a correction factor which 
is often needed in the case of Reissner-Mindlin shell 
and other types of models. Those transverse stresses 
could not be obtained using the ABD matrix. Fig. 7 and 
8 shows the strain distribution fields for a wide range 
of 𝜒 which are 0.099 (Fig. 7), 0.85 (Fig. 7), 0.1429 (Fig. 
8), and 0.1765 (Fig. 8). The distribution fields across 
the tube perfectly overlapped for the two first values of 
𝜒 above which are less than 0.1. For 𝜒 =

0.14 𝑎𝑛𝑑 0.18 respectively, a shift was observed 
between the two curves in each figure (Fig.8). The shift 
increased with the value of 𝜒. We believe that this 
discrepancy is due to the contribution of additional 
mechanical couplings in our model. A more detailed 
model which is accurate for thin tube is likely to also 
show better results in thick tube. Nevertheless, deriving 
a 3D version of our model is also highly advisable.   
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Table 5.       Transverse stresses of graphite/epoxy tube.  
Angle (𝜽𝒐) 

 

 

         0       30         -45 

Max 
Stresses 
(𝑁/

𝑚𝑚2) 

𝝈𝟏𝟑 

𝝈𝟐𝟑 

𝝈𝟑𝟑 

- 0.000034 
- 0.000054 
   0.5973 
 

0.000012  
0.000074 
 -0.00320 

0.000147                  
0 
- 0.1364 

 

We have proves in this paper of the influence of new 
Composite-shell stiffness coefficients obtained by an 
original shell model in mechanical behavior of LCST.  
We have used some MATLAB scripts to test a 
conventional algorithm as in [5], [29]. In this work,we 
proposed  a new constitutive relation  for composite 
shell tube using the method developed by W.C. Chan 
and K.C, Dermirhan [26]  rarely implemented in 
literature. The previous LCEs based on K-L and R-M 
neglected D and E sub-matrices. Notice that these 
square matrices exist by the presence of third 
fundamental form in the kinematic equation used in this 
work and are very capital for better accurate results in 
LCS.  Our study is based on some assumptions 
presented above. One of these hypothesis stipulate that 
the transverse stresses are not neglected. Some two-
dimensional analyses of laminated shell do not use 
those assumptions.   

Moreover, most of LCEs used do not have strong 
scientific basis since they introduce a correction factor 
[13], [30], [31]. Our LCEs are more general as they 
contain additional sub-matrices D, E to those found in 
classical laminated shell theories. Moreover, they are 
obtained using original kinematic equations which are 
mathematically and mechanical justified without any 
ad hoc assumptions on transverse fiber’s behavior. 
When the thickness ratio is greater, or equal to 0.1, 
 𝐷𝒊𝒋/ 𝐴𝑖𝑗 is in the order of 10.  𝐷𝒊𝒋/ 𝐵𝑖𝑗  in the order of 
100,   𝐸𝑖𝑗/ 𝐴𝑖𝑗 in the order of 100,  𝐸𝑖𝑗/ 𝐵𝑖𝑗  in the order 
of 1000. 

V. CONCLUSION 
 
In this paper a new laminate constitutive equation 

(LCE) was employed for to first time to analyze the 
mechanical behavior of composite tube through 
computational tool such as Matlab. This LCE is 
developed by applying N-T’s shell model. Moreover it 
is physically realistic and is able to represent more 
generally some information on the behavior of CT. 
Some test cases were achieved and the results obtained 
using our analytical formulations are consistent and 
coherent with the literary informations. Therefore the 
Matlab tool used here is a good alternative to predict 
the mechanical behavior of general thin and moderately 

thick multi-layered composite tube. It was clearly 
shown that when the ratio-thickness  𝜒 =

ℎ

2𝑅
  becomes 

greater, the behavior of tube is influenced by the 
contribution of some new mechanical couplings such as 
extensional-gauss, bending-shearing, gauss bending-
shearing, shearing. Those couplings are not taken into 
account for some laminated composite shell models 
and their derivatives cited above. Transverse stresses 
were also analytically computed while taking into 
account the plane stresses components, ABCDE matrix 
and the geometries of laminated shell [4].  The results 
obtained by this formulation showed that the normal 
stresses component are not zero as suggested by LCS 
model based on R-M assumptions. The predicting 
ability of ABCDE matrix and transverse stresses 
relations for anisotropic linear elastic shell is also a 
prove. It appears that the shear vary linearly through the 
thickness as compared to 3D thick shell equations.    
The N-T’s model brings a unique ability to find all the 
transverse shear stresses components through the 
thickness. Though the number of applications in this 
work may seem insufficient, it will surely aid structural 
engineers during the conceptual and preliminary design 
to gain more precision in predicting the behavior of a 
material.  The study can be extended to tapered tube 
and curved tube using our constitutive relation. 
Furthermore, numerical techniques such as those 
recently developed by [32], [33] will certainly be 
pursued.  
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