
 

 

  

Abstract—Basic properties of masonry do not allow to rely on 
tensile strength, and flexural strength cannot be trusted on. 

Nevertheless in 2D walls and in double curvature vaults, a particular 

organization of the vault apparatus can in some instances, through the 

action of compression and friction, give place to a equilibrium 

pattern including tension, which explains the unexpected good 

performance of some walls and cupolas. 

 

Keywords—Domes,  Masonry texture, Membrane equilibrium, 
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I. INTRODUCTION 

ASONRY is the main material mankind has exploited to 

provide itself a shelter. Homes, temples, offices, markets 

and so on are built by some kind of masonry since the 

beginning of civilization. Walls are the main way loads are 

transferred to foundations and to underlying soil, but 

horizontal floor structures require some more skill, since 

masonry, due to its very poor, unreliable, inhomogeneous and 

time-degrading tensile strength, is not able to resist bending 

moments. 
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Fig. 1: Beam requires compression/tension stresses to work 

 

This is the reason why masonry buildings are often 

complemented by wood or, more recently, steel systems to 

cover spaces, providing beam elements resisting by pure 

flexure.  

In a simply supported beam, equilibrium is sustained by 

bending moments, which in turn require that compression 

stresses are coupled with tension (Fig. 1a); so if some beam 

has ever been attempted it is soon realized that failure is 

inexorable.   
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Fig. 2: Natural Arches: a) Capri (Italy); b) The "Elephant Arch" in 

Pantelleria (Italy) 

On the other side, early ante-literam architects learned 

from nature that it is possible to overpass empty spaces by 

stones: natural arches are encountered everywhere in the world  

(Fig. 2).  So, the first character that is acquired at glance is that 

the masonry should be “curve”. If one considers a curved 

beam (the pseudo-arch in Fig. 3) one finds that the only 

difference is the insurgence of a compressive normal force on 

the cross-section, which mitigates, but does not cancel, the 

need for tension (Fig. 3).  
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Fig. 3: Curvature of the beam does not help by itself to cancel tension 
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Fig. 4: True arch: the action of the thrust force H increases the 

normal force and mitigates the bending moment. A small eccentricity 

e = M/N results 

The bending moments remain the same, the normal force is 

small, the eccentricity is large and the center of the force is 

generally out of the cross section: equilibrium cannot subsist 

unless tension is resisted where it is necessary in the structure.   

INTERNATIONAL JOURNAL OF MECHANICS

Issue 3, Volume 7, 2013 202



 

 

Architrave

p(z)

y

z−

A B

RA RB

H

H

+

H H

MH(z)

M(z) = Mo(z) + MH(z)

H H

N(z)= -H

-

-

+

Large bending moments by p(z)

Large counter-moments by H

Small resultant bending moments

Large compression force by H

−−

 
 
Fig. 5: Similar to the arch behaviourt, a beam with horizontally 

contrasted supports results in an architrave. The eccentricity is small 

and the center C of the normal force is in the interior of the cross-

sections. 

If the system is horizontally fixed at both ends, a new entity 

is born, the horizontal thrust H, which drastically changes the 

static regime and a true arch is realized. The thrust force is the 

key for the arch statics. It acts, in fact, producing larger 

compressive normal forces and strong counter-moments (Fig. 

4), thus mitigating the flexure and enhancing compression. The 

effect is quite independent on apparent curvature: the 

important fact is that a horizontal force exists able to produce 

counter-moments with respect to active load. The architrave is 

nothing else than an arch with the appearance of a beam (Fig. 

5). The typical condition is a composite compression-flexure 

stress, where the compression is large and the flexure is small, 

so that the eccentricity with respect to the central line is 

strongly reduced and the center of force enters in the interior 

of the cross section: equilibrium is now possible by purely 

compressive stresses (Figs. 4, 5).  

So, Man learned that it was possible to cover spaces with 

stones. Anyway, he found and inhabited also large caves, so 

the attempt to reproduce nature (a strong impulse in 

Architecture, as testified also in recent times by the Gaudì’s 

opera, see e.g. [1]) may be has pushed to realize  double-

curvature roofs. This activity gradually resulted in a success, 

with larger and larger spans being covered, thus leading to the 

early architecture and to its developments up to our times. 

The historical development of Structural Mechanics is 

exhaustively reconstructed in the book by E. Benvenuto  [2]. A 

very interesting and complete historical survey on the 

conception, realization and progress in the masonry vaults 

technology can be found in [3] and in [4,5]. Here an 

observation by Thomas Young is reported, namely: “The 

construction of the dome is less difficult than that of an arch 

since the tendency of each arch to fall is counteracted not only 

by the pressure of the parts above and below but also by the 

resistance of those which are situated on each side…..”.  

Further extensive studies have been developed by the 

author with the Naples research group on the No-Tension 

treatment of bodies made of masonry or non-cohesive 

materials [6-17]. 

That double curvature surfaces are easier to be built than 

simple arches or barrel vaults is a fact that merits further 

specification (see e.g. [6,7]. 

II.   THE MASONRY AS A MATERIAL 

Masonry is not properly a "material" in the strict sense of 

the word. It consists in the (generally man-made) assemblage 

of a basic component (the stones) simply laid on each other or, 

more often, jointed by mortar. Stones and mortar may have 

very variable mechanical properties, and the way in which the 

stones are organized in the masonry volume (the masonry 

"texture") may be very different, and is subject to the skill and 

the  creativity of the designer and/or of the builder. 

So, "masonry" has not a uniquely defined object, and it is 

very difficult to set up a mechanical model able to closely 

reproduce the properties of masonry, fitting all the possible 

variety of masonry assortment and texture. 

Anyway, in all structural analyses the engineer is forced to 

balance the trend to reproduce the material (and consequently 

the structural behaviour) as closely as possible, with the 

practical manageability of the analytical tools. Linear theory of 

structures applied to steel, reinforced concrete and even to 

masonry,  is a successful example of such effort. In all cases 

the basic theory should include the major features of the 

behaviour, possibly neglecting many details that poorly 

influence structural safety assessment, and/or are 

uncontrollable. The small tensile strength in concrete, for 

instance, not only yields a poor contribution to the structure 

performance, but since it is a highly uncertain parameter in the 

concrete mass  of a building, it increases uncertainty of the 

analysis' results: so it is preferred to adapt linear theory by 

neglecting tensile strength rather than to exploit cumbersome 

procedures yielding results depending on uncontrollable 

parameters. 

The first step is then to identify the major properties, that 

are more or less common to all masonry types. The basic 

knowledge can be achieved through simple experiments. Uni-

axial compression/tension tests can be performed on some 

Representative Volume Element (RVE) of a typical masonry 

(Fig. 6).  

After some experiments, it is possible to conclude that 

(Fig. 6a): i) the masonry has different elastic moduli in tension 

(Et) and compression (Ec); ii) the masonry has different limit 

stresses in tension (σt) and compression (σc); iii) the limit 
stress in tension is much smaller than the limit strength in 

compression (σt << σc); iv) the behaviour at failure in 
compression has some degree of ductility; v) the behaviour at 

failure in tension is definitely brittle, so tensile strength cannot 

be recovered absolutely.  

Moreover, surprisingly (Fig. 6b), the limit strength in 

compression of masonry is larger than the strength of the weak 

element (the mortar) and is bounded from above by the limit 

strength of the strong component (the stones); this is due to 

some complex phenomenon of stress interaction and transverse 

INTERNATIONAL JOURNAL OF MECHANICS

Issue 3, Volume 7, 2013 203



 

 

deformation of mortar with respect to stones. It is also easy to 

understand that if the axis of the stress is rotated by an angle, 

say 90°, the results of the experiment may significantly 

change, in particular as regards the tensile strength. Some 

similar conclusions can be drawn from biaxial tests (see e.g. 

[18,19]). Experimental limit strength domains are of the type 

in Fig. 7, showing a high capacity in compression and a very 

poor limit in tension without ductility. 
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Fig. 6: a) A typical test of compression/tension on a masonry 

specimen; b) The limit strength in compression is in between the 

strength of mortar (small) and the strength of the bricks (large). 

 
Fig. 7: Synthesis of biaxial tests on masonry prisms. Limit domain 

(see e.g. Hegemier [18] and Page [19]. 

 

Summing up, masonry is a non-linear material, strongly 

hetero-resistant, anisotropic with respect to tensile strength, 

with compliance coefficients depending on the orientation of 

the stress axes and different in compression and tension, and 

with brittle failure at the tension threshold. If one needs to 

confer masonry some reliable tensile strength, contemporary 

technology allows effective reinforcement by applying 

composite materials (see e. g. [20,21]). 

III. EFFECT OF MASONRY TEXTURE 

The influence of the texture on the masonry performance 

can be illustrated by the following example.  

Assume that a panel is built by regular bricks with 

interposed poor mortar joints, lacking any adhesive force. 

Consider that bricks are set according to the following two 

patterns (Fig. 8a,b). If there is no vertical compression both 

panels are free to expand laterally without encountering any 

resistance (Fig. 8c). If a vertical compression is applied, the 

panel in Fig. 8a still can  freely separate; by contrast an 

horizontal tensile pseudo-strength becomes active in the panel 

in Fig. 8b, because of friction and interlocking of bricks with 

each other.  
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Fig. 8: Masonry element: a) Aligned bricks; b) Staggered bricks; c) 

Free lateral expansion for both panels 

The failure mechanism in Fig. 9 can be studied for the bi-

dimensional masonry plane element in Fig. 8b having a 

friction coefficient f, a joints stagger s (Fig. 9) and a row-

density ω defined as the ratio of the number of block rows in 
the panel height H to the height H. In Fig. 9, ω = 7/H.  

σy ≤  0

σy ≤  0

σ
x
 =
 σ
' o
x σ

x  =
 σ
'o
x

u
.τxy

τxy

H

s a

h

 

Fig. 9: Masonry element: Failure mechanism under compression and 

limit tensile forces; stagger parameter. 

The wall is subjected to vertical compression stresses σy 
orthogonal to the joints direction and horizontal tractions σx 
parallel to the joints. It is possible to prove [22] that the 

horizontal tensile strength σ'ox is given by (Fig. 9) 

       ωσ−=σ′ sf yox                               (1) 

The ratio between the compressive stress on the joints and 

the transverse tensile strength is 

ω=
σ

σ′
fs

y

ox                              (2) 

If the length of the stone is a, s is of the order a/2. Usually 

a > 2h (very often a > 4h), with h the thickness of the brick, 

and so s > h. On the other side, ω ≈ 1/h, so that sω > 1 (very 
often sω > 2). With the help of mortar and/or of roughness of 
the interface between stones, f may possibly  be rather large (f 

= 0.5 ÷ 0.8), and the ratio in (2) is frequently larger than 1, i.e. 
the tensile strength in the direction parallel to joints is larger 

than the acting compressive stress. 

It can be also proved that a pretty ductility is associated to 
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the tensile strength σ'ox . With reference to the diagrams in Fig. 
3, applying a safety coefficient γ to the limit resistance σ'o , the 
loss in strength is balanced by a gain in ductility (Fig. 18). In 

other words if σ'a is the admissible stress and δa is the 
maximum ductility, one can write 

γσ=σ oa ''  ; ( )11 −γ
ε′
ε′

+=
ε′
ε′

=δ
o

r

a

oa
a             (3)  

A fundamental observation is that (1) not only expresses 

the tensile resistance of the masonry element, but also puts to 

evidence that the tension can be contrasted in function of the 

static needs by means of a skilled orientation of the texture of 

the masonry blocks and of the mortar joints. After recognizing 

that by the combined effect of compression and friction the 

lines of the mortar joints are probably the lines where original 

designers and builders intended to provide tensile strength in 

the masonry mass, it can be conceived that a technical practice 

had spread out, very similar to the modern technology of 

reinforced concrete where the structural designer inserts steel 

bars in way to balance tension along stretched lines. 
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Fig. 10: a) Stress vs. deformation in the tension range,  

b) conventional diagram with variable ductility. 

 

Many examples proving that clever architects were aware 

of this effect when designing vault structures can be illustrated 

as for instance in so-called cantilever stairs (see e.g. [23-25]).  

Masonry elements or components behaving like rigid 

blocks under dynamic action may be analysed by worst 

scenario approaches [26-28]. 

IV. CANTILEVER STAIRS 

In the static analysis of a vaulted staircase, like in Fig. 11, 

it is possible to recognize three basic typological components: 

the landings, the angle connections, and the flights of stairs 

(two or three depending on the structure morphology). The 

structure is supported by the outside walls system which 

represents the stairs box. 

Looking at the section of a vaulted stair in Fig. 12a, such 

structural conformation suggests an apparent paradox: despite 

the fact that masonry is not effective in sustaining tension 

stresses and bending, it should work as a cantilever, or 

however it is an incomplete vault which lacks the counter-

thrust from the missing part of the arch (Fig. 12b) and so being 

prone to lose the equilibrium state (Fig. 12c).  
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a)                                                               b)    
Fig. 11: Vaulted stairs: a) Planimetric view; b) Longitudinal section 

 
It is quite obvious that the solution of the contradiction 

goes pursued abandoning the search of improbable plane 

patterns and by investigating three-dimensional equilibrium 

paths accounting for the space articulation of such structural 

organisms, searching stress fields in equilibrium and 

compatible with the resistant abilities of the masonry material 

as usually interwoven in the case of "cantilever" stairs.      

a)                                     b)                                                 c)

 
Fig. 12: Transverse sections of vaulted stairs: a) Section and 

particular of one step; b) "Half barrel vault" model,  

c) Improbable "cantilever" behaviour. 

After identifying the basic internal force distributions 

through which the stairs can equilibrate their own weight and 

live loads, and the correlation that was intended by the original 

builders between statics and masonry tissue, it is also possible 

to design the reinforcement of the vaults, that shall be designed 

in way to sustain the possible equilibrium paths. Apart from 

complex FEM analyses (see e.g. [29]), it is possible to identify 

simplified equilibrium patterns that are compatible with the 

load-carrying  capacity of the structure [30, 31]. All these 

approaches, FEM and/or simple 3D-beam, agree in identifying 

isostatic tension lines that approximately agree with the 

proceeding of the rows of mortar joints (Fig. 13), that are 

compressed in the orthogonal direction, thus developing a 

tension capacity along their lines of action; thus proving that 

the statics of these stairs are strictly connected with the vault 

apparatus. It is also possible to use this argument in an inverse 

fashion, i.e. to infer isostatic lines proceeding from the 
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observation of the masonry texture. Any double curvature 

cover, in fact, is a highly hyperstatic system, which means that 

it can select its own pattern in a large set of possible  

equilibrium paths. So texture and vault apparatus are a tool by 

which, apart from the shape of the vault (barrel vault, rib vault, 

groin vault, etc.) the architect can steer the structure to work in 

some preferred way. 

 

Upper floor Lower floor

Tension lines

a)                                                             b)  
Fig. 13: Comparison of tension isostatic lines with the mortar rows. 

a) Tension lines calculated by a FEM (linear) procedure;  

b) Mortar rows in the flights 

V. TENSION IN SPHERICAL DOMES 

Consider the axial-symmetric hemispherical dome with 

radius R and thickness t (Fig. 14a), supporting its own weight 

w, where it is well known that in the classical solution, tension 

should be active along the parallel lines after some degree of 

the zenith angle ϕ = 51.8°.  

 

Fig. 14: a) Spherical dome;  b)Ratio of parallel to meridian stress 

resultant. Nϕ is everywhere compressive  for any ϕ, and Nθ is a tensile 

stress for ϕ > 51.8°; c) The friction pattern for tensile strength yields 
a admissible stress if fsω > 1. 

 

Here the meridian stress Nϕ and the hoop stress Nθ are [32] 
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with w = γt and γ the unit weight of the material constituting 
the shell. 

The ratio is 

ϕ−ϕ−=
ϕ

θ 2
1 coscos

N

N
                     (5) 

The ratio is plotted in Fig. 14b, whence one can see that the 

ratio is always not larger than 1. So, if masonry is organized by 

staggered regular bricks –as often happens− tension could 
generally be faced by the friction mechanism as illustrated in 

Sec. 2 (Fig. 14c).  

Anyway, equilibrium can be found by some other 

membrane surface other than the mean surface of the shell, 

provided it is included in the thickness between the (spherical) 

intrados and extrados.  

Considering a revolution membrane surface having an 

elliptic profile with radii a and b, included in the interior of the 

hemisphere (Fig. 15a) the internal forces equilibrating the 

weight of the spherical dome can be found as follows   
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Fig. 15: a) The elliptic membrane surface included in the dome 

thickness; b) Possible physiological fractures 

Consider the spherical cap above the center angle β, whose 
weight is 

 ( )β−π= coswRW 12 2                         (6) 

The angle β is related to the zenith angle ϕ by the 
relationships  
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The radii of curvature of the ellipsoidal surface are  ([30], 

p.40) 
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so that 
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and 
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The equilibrium versus the vertical translation can be 

written 

( ) 02 2
2 =+ϕϕπ ϕ WsinNr                     (11)  

and 

( ) ( )
( ) ϕϕ

β−
−=ϕϕ 2

2

2 1

sinr

coswR
N                    (12) 

The ellipsoidal membrane shall now sustain the weight w 

of the spherical shell, that transforms in the weight w
*
 on the 

ellipsoid setting 

( ) ( ) β=θβ=θϕϕϕ sinRr;drwRddrdr*w ss1        (13) 

whence 

( )ϕ
=

2

2 1

br
wRw*                            (14) 

The equilibrium along the outward normal to the 

(ellipsoidal) membrane yields 
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Ellipsoidal stress surface can be active in order to mitigate 

tension hoop stresses, possibly after some fractures have 

opened (Fig. 15b), that can be considered physiological if 

masonry has some degree of ductility in the parallel direction, 

as in the friction strength mechanism illustrated in Sec. 2. In 

Fig. 16a  various membrane stress surfaces are plotted, with 

different ratios a/b.  

Spherical and ellipsoidal stress surface

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2

x

y

Spherical shell

Extrados profile

Intrados profile

1) Ellipsoidal stress surface:

a/R=0.9 ; b/R = 1.1

2) Ellipsoidal stress surface:

a/R=0.93 ; b/R=1.07

t/R = 0.2

Ratio of parallel to meridian force

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

0 10 20 30 40 50 60 70 80 90

,,,,

N,,,,/N,,,,

Spherical stress surface

1) Ellipsoidal stress surface:

a/R=0.9 ;  b/R=1.10

2) Ellipsoidal stress surface:

a/R=0.93 ; b/R=1.07

a)

b)

 

Fig. 16: a) Ellipsoidal membrane surfaces for different ratios of the 

ellipse radii a and b to the radius R of the spherical dome; b) Ratio of 

Nθ to Nϕ for different shapes of the elliptic profile. 

 

Note that such surfaces make sense provided that they 

remain included in the thickness of the spherical shell, i.e. if t 

> 2(R−a) and  t > 2(b−R), with b > a, since it is assumed that 
the interface in the meridian direction is no-tension. The plots 

in Fig. 16b prove that the ratio of the parallel to the meridian 

normal force can be mitigated, and also be near 0.4 and 

smaller, with increasing the ratio b/a, a value that is very often 

in the range of the ratio σ'ox/σy in (2), so that one can conclude 
that tensile hoop stress most times does not cause any problem. 

Consider that both in the spherical and in the elliptic 

INTERNATIONAL JOURNAL OF MECHANICS

Issue 3, Volume 7, 2013 207



 

 

membranes, the stress surface is a complete semi-ellipsoid, 

with ϕ = 90° at y=0, so that the equilibrium solutions do not 
require any thrust force at the bottom support y = 0. 

Anyway, it has been proved in [33] that a membrane 

surface included in the thickness of the dome can be found 

without hoop tension, provided that a adequate counter-thrust 

force can be exerted at the bottom of the dome. In Fig. 17a it is 

illustrated how the spherical and elliptic membranes only 

transfer vertical actions on the basement, vs and ve 

respectively, while a no-tension profile requires that the base 

support can support a horizontal force hn (Fig. 17b).  
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Fig. 17: No-thrust and no-tension stress surfaces: a) The basement of 

the dome is not subject to thrust action, but lower parallel lines are 

under tension; b) If a no-tension solution is adopted, the support of 

the dome is subject to a horizontal thrust force. Tension in the 

parallel lines is transferred to the basement. 

VI. THE MASONRY APPARATUS. AN HELP TO INTUITION 

Reading masonry texture in a vault can help in 

understanding its equilibrium asset. The first element is indeed 

its geometry, a cross vault yields a equilibrium pattern 

different than a barrel vault, and so on. But a double-curvature 

surface, apart from its particular conception is anyway a highly 

hyperstatic system, and the equilibrium is never uniquely 

determinate. So the way the stones are jointed all together is a 

key to understand what equilibrium path would stresses run 

through, and/or what path would the builder have preferred to 

drive the vault to accommodate in.  

So, consider for instance the two vaults in Fig. 18a and in 

Fig. 18b, having the same geometry, but in vault a) the mortar 

rows are parallel to the base perimeter, while in the vault b) the 

mortar rows are normal to the perimeter. The postulate is that 

compression normal to the mortar rows is the preferred 

equilibrium path for the vault, and that this is the tool for the 

original builder to steer the vault into a (his own) objective 

static asset. If the preferred direction for compression is 

normal to the perimeter, it is expected that compression acts 

along the arrows drawn in Figs. 18, a) and b), so that the vault 

gains a tensile capacity in the direction orthogonal to the 

arrows. It is easy to understand that this produces an effect on 

the thrust the vault exerts on the base supports. Consider in 

fact that in both cases the vault is made by four gores. In the 

case a) compression is directly transferred to the sides of the 

basement, while lateral dilatation and the diffusion of stresses 

to the corners is contrasted by internal tensile strength; so two 

opposite gores tend to directly sustain each other, and the 

distribution of the horizontal thrust force tends to concentrate 

towards the middle of the sides (Fig. 18c). By contrast, in case 

b) compression is active in the direction parallel to the base 

sides, and the gores tend to support each other along the 

diagonal lines, while the orthogonal dilatation and diffusion of 

stress are now contrasted by tensile strength in the direction 

orthogonal to the sides; so all forces tend to converge in the 

corners, and the distribution of the horizontal thrust force tends 

to concentrate to the corners (Fig. 18d).  

compression
directions

a) b)

c) d)

thrust

force

 

Fig. 18: Influence of the vault apparatus on the static behaviour of 

vaults. The difference in the apparatus in Figs. a) and b) yields  

different equilibrium pattern and a different distribution of the thrust 

force as in Figs. c)- d). 

In other words, by acting on the masonry apparatus it is 

possible that, with the same geometry, a structure may be 

realized that works like a cloister vault rather than like a  groin 

vault or viceversa. Which means that it may be not wise to 

analyze the statics of a vault only on the basis of its geometry. 

Anyway, a skilled design of apparatus is also a tool to build 

vaults without formworks [34]. 

VII. CONCLUSIONS 

Historical masonry vaults and/or cupolas exhibit a large 

variety of typological assets. Often masonry is well operated, 

with strong stones and effectively adhesive mortar; in many 

cases masonry is in worse working order; in other cases a poor 

masonry is encountered. 

Anyway, double-curvature structures can appeal to many 

equilibrium patterns to sustain at least their own weight plus 

some light additional loads. So they are, in general, stable 

systems, provided that their supports are strong and able to 

contrast thrust forces. Vaults are in general characterized by 

their shape, and a lot of types can be listed (see e.g. [35]), that 

have been conceived to be included in any simple or complex 

architectural design. But the equilibrium paths are also driven 

by the way masonry is interwoven. In some cases, a masterly 

design of the masonry tissue and of the vault apparatus may 

help in improving the structure's stability, and sometimes even 

in preventing fractures, as discussed and illustrated in Sec. 3. 
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It should be realized, by contrast, that fractures are almost 

always a physiological feature of masonry; since almost always 

it has not significant tensile strength, it cannot expand by 

tension and, when necessary to comply with congruence of the 

overall deformation, dilatation is provided by fractures. 
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