
 

 

 

Abstract—This paper presents numerical models that are able 

simulate a buckling of the rubber boot. Rubber boot must be able of a 

large change of its length. A buckling of cylindrical shape of the boot 

during this deformation would cause a serious problem. Due to the 

space limitation in an assembly it is quite difficult to find optimal 

shape of the boot profile which will be able of the required 

deformation without the buckling. We have created numerical models 

that are able to simulate mechanical behavior of the compressed boot 

including the buckling of the boot with an inappropriate profile. Due 

to the material of the boot (rubber), a nonlinear hyperelastic material 

model was used in the analyses. The material constants of this 

hyperelastic model were obtained from the uniaxial and equibiaxial 

tests of the boot material. Created numerical models were used to 

design the optimal shape of the boot which eliminates the risk of the 

buckling. 

 

Keywords—boot, buckling, hyperelasticity, numerical analysis, 

rubber.  

I. INTRODUCTION 

HE rubber has irreplaceable role in many industrial 

applications today [1]-[3]. A boot protecting moving 

mechanical parts can be considered as one of such products. In 

these cases, the rubber seems to be the best, and often the only 

appropriate material. Although there are several limiting 

factors that may cause contradictions. The boot must be 

sufficiently rigid to maintain its shape, but it must not be too 

rigid to be capable of the required deformation and 

dimensional changes with the moving mechanism. 

In our case, there are also some other restrictions (mainly in 

size) caused by a small space that is available in the 

construction. The shape and dimensions of the boot (especially 

its folds) are very important for its proper function. It can be 

very difficult to find the correct shape of the product, if any of 

these parameters is limited. A numerical analysis is a very 

useful tool to solve these problems [4]-[16]. 

The goal of presented work was to find optimal shape of the 

rubber boot that will satisfy all size limitation and as well as it 

will be able of required deformation (i.e. compression in 

longitudinal direction) of the boot.  
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II. MATERIAL AND METHODS 

A. Rubber Boot Geometry and Material 

The cylindrical rubber boot which must be able to reduce its 

length to about half of the original length is the object of the 

analysis (Fig. 1). 

 

 
 

Fig. 1 original shape of boot in unloaded state (a) and after compression (b) 

 

Boot is made of Styrene Butadiene Rubber [17]-[18]. Its 

length is 133 mm and outer diameter is 77 mm. The original 

shape of the profile of boot is shown in Fig. 2; dimension h = 

0.4 mm. The folds of boot are problematic aspect of the part, 

particularly the thickness h in the narrowing of the profile 

folds. 

Boot with profile from Fig. 1 and 2 is efficient in terms of 

its ease and correct deformation under a compression. 

However, the small thickness h causes low strength in the folds 

tops that leads to the failures of boot during a cyclic loading. 

Due to space limitations in the boot vicinity, the number of 

folds or the height z can not be changed (z = 4.75 mm, 15 

folds). Therefore, the thickness h remains as only parameter 

that can be changed. But if the thickness increases largely then 

the boot becomes too rigid, and is no longer operational, it 

means that when it is compressed it loses shape stability and 

collapses to unacceptable shape (Fig. 3). Fig. 3 shows the real 
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product of h = 1.8 mm. The task is to find the maximum 

thickness h, at which the boot is still able to deform without 

the shape collapse (without the buckling). 

 

 
 
Fig. 2 boot profile 

 

 

 
 
Fig. 3 buckling of the boot with an inappropriate profile (h=1.8 mm) 

 

B. Material Model 

With a given product we can expect both large displacement 

and large deformation (tens of percent). Furthermore, we know 

that the relationship between stress and strain will be strongly 

nonlinear in the case of a rubber [19]-[26]. Due to these facts a 

hyperelastic nonlinear material model must be used. Currently, 

there are a number of hyperelastic models [27]-[33] and many 

of them are implemented in systems using the finite element 

method (FEM). Current hyperelastic models are based on the 

strain energy function W [34]-[36]. If we define this function, 

we can derivate the stress value Sij from this function by 

corresponding components of the deformation tensor Cij, as is 

described in (1). 
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The James-Green-Simpson (or 3
rd

 order deformation) 

hyperelastic model appeared to be the most appropriate for the 

material of the boot. The reasons for this choice are explained 

below. This model defines the strain energy density function W 

as 
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where the cij coefficients are material constants determined 

from experimental data, and J1 and J2 are first and second 

invariant of the right Cauchy-Green deformation tensor. If this 

tensor is expressed by principal components of stretch ratio λ, 

then it can be written as follows 
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and first and second invariant of this tensor J1 and J2 are 
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For accurate determination of material constants cij used in 

(2) it is necessary to test elastomer in typical deformation 

modes. They are: a uniaxial tension (Fig. 4a), equibiaxial 

tension (Fig. 4b) and pure shear (or planar tension) (Fig. 4c) 

[37]-[43]. We used data from uniaxial and equibiaxial tension 

tests for our model. 

 

1) Uniaxial Tension Test 

The uniaxial tensile test was carried out on a universal 

tensile testing machine according to ISO 37. Specimens of 1A 

type with the thickness of 1 mm were used (Fig. 5). 

Stress/strain curve was measured during the whole range of 

loading. Specimens were loaded up to their break. 

 

2) Equibiaxial Tension Test 

This test is specific for elastomers and therefore it is less 

frequent. Due to these reasons it is not standardized and such 
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tests are rarely performed in industrial laboratories. 

 

 
 
Fig. 4 schematics of three basic tests of mechanics of elastomers: uniaxial 

tension (a), equibiaxial tension (b) and pure shear (c) 

 

 

 
 

Fig. 5 1A type of uniaxial tension test specimen (according to ISO 37) 

 

The principle of the test is to stretch flat specimen in all 

directions of its surface. There are several methods to load the 

specimen in this way. We used method of flat circular 

specimen inflation that is called as a "Bubble Inflation 

Technique" [44]-[45]. In this method a uniform circular 

specimen of elastomer is clamped at the rim and inflated using 

compressed air to one side (Fig. 6 and 7). The specimen is 

deformed to the shape of bubble. The inflation of the specimen 

results in an equibiaxial stretching near the pole of the bubble 

and in the planar tension near the rim. The inflation of the 

specimen and current value of pressure is recorded in short 

time intervals. 

Obtained stress-strain relations for uniaxial and equibiaxial 

tension of boot material are shown in Fig. 8. We can see the 

suitability of the James-Green-Simpson hyperelastic material 

model that is able to predict behavior of the boot material with 

minimal deviation from the experiment. 

 

 
 
Fig. 6 bubble inflation technique 

 

 

 
 
Fig. 7 the specimen inflation 

 

 

 

 
 

Fig. 8 stress-strain diagram of experimental data and hyperelastic material 

model (James-Green-Simpson); gray – uniaxial tension, black – equibiaxial 

tension, cross – experiment, line – model 

 

Stress in the specimen can be calculated from the pressure p 
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inside the bubble, initial specimen thickness t0 and the stretch 

ratio λ. Thanks to the spherical symmetry we can consider 

σθθ=σφφ at the pole of the bubble. Then we can write the 

Cauchy stress tensor in spherical coordinates as: 

 

),,(
00

00

00

zr

rr






























 (6) 

 

The thickness of specimen is small and the ratio between the 

thickness of the inflated specimen t and the curvature radius r 

is small enough, then the thin shell assumption allow us to 

neglect the radial stress σrr in front of the stress σθθ. In addition 

we equate σθθ to the thickness-average hoop stress, which leads 

to: 
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where p is the differential inflation pressure, r is curvature 

radius of specimen and t is the specimen thickness. 

With consideration of material incompressibility we can 

express the thickness of inflated specimen t as: 
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where t0 is the initial thickness of specimen (unloaded state). 

Further we have to measure the stretch λθθ at the pole of 

inflated material. Generally stretch λ is the ratio between the 

current length l and the initial length l0: 
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We can use some of optical method for measurement of 

stretch λθθ and curvature radius r (camera, video camera, laser, 

digital image correlation - DIC etc.). The white strips were 

drawn in the central area of specimen for stretch measurement 

(Fig. 9). It is important to measure elongation and curvature 

radius only in the area near to pole (between the strips) of 

inflated specimen and not on entire bubble contour because 

only on the pole the equibiaxial state of stress occurs. 

Substituting (8) into (7) we can compute the hoop stress σθθ as: 
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C. Numerical FEM Model 

Due to the fact that the model must be able to simulate 

buckling, shown in Fig. 3, it must be created as a three-

dimensional solid - despite the fact that its original unloaded 

shape is axisymmetric. There can not be used shell elements 

whereas the thickness of boot is not uniform and just the 

influence of different thickness in folds on behavior of the 

component was evaluated. Therefore 3D elements of 

"TETRAHEDRON" type were used to create the FEM model. 

A quarter symmetry of the collapsed shape of boot is apparent 

from Fig. 3. This fact allows us to reduce the model geometry 

only to one quarter. The resulting model geometry is then 

shown in Fig. 10. 

 

 
 
Fig. 9 equibiaxial tension test 

 

 

 
 
Fig. 10 geometry of FEM model 

 

Five models with different boot profiles were created. The 

model of already existing boot that collapses under the 

pressure (Fig. 3) was created and its profile is shown in the Fig 

11. The size of h=1.8 mm is greater than the thickness of the 

boot wall (1 mm) in this model. The purpose was to verify the 

accuracy of the FEM model and mainly its ability to simulate 

buckling of the real rubber boot. The profile of this model is 

the only which is not symmetric. It means that the size h=1.8 

mm is only in the inner folds of profile; and different value of 

h=1 mm is in the outer folds (Fig. 11). All other created 
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models have symmetric profile with the same value of h in 

inner and outer folds. 

Next reference model was the model with a minimum 

thickness h=0.4 mm (Fig. 12). We also knew that this 

geometry is able to deform correctly but such product has 

insufficient strength (Fig. 1) and it fails just in this points (i.e. 

boot folds). Therefore we need to find the maximum of h with 

which there is no buckling of the boot. For this purpose three 

other models were created; they dimensions h are: 0.6 mm 

(Fig. 13), 0.8 mm (Fig. 14) and 1.0 mm (Fig. 15). As the 

radius r in all three models has constant value 0.3 mm, 

different dimensions h will be achieved only by changing the 

radius R (Fig. 2) in these models. 

 

 
 

Fig. 11 profile of model with size h=1.8 mm 

 

 

 
 

Fig. 12 profile of model with size h=0.4 mm 

 

Material constants for the most used hyperelastic models 

(Neo-Hookean, Mooney-Rivlin, Yeoh, Signiorini, James-

Green-Simpson, Ogden, Arruda-Boyce, and Gent [46]-[50]) 

were determined from the test results. James-Green-Simpson 

model (2) showed the smallest error (the smallest deviation 

from the experimental stress/strain curves) and therefore was 

chosen for the FEM model. 

Material constants for James-Green-Simpson model 

determined from the tests are as follows (in MPa): 

c10=429321; c01=-14574; c11=220.2; c20=15554; c30 =-84.2. 

The least squares method was used to determine constants of 

hyperelastic models from the experimental results. 

 

 
Fig. 13 profile of model with size h=0.6 mm 

 

 

 
 

Fig. 14 profile of model with size h=0.8 mm 

 

 

 
 

Fig. 15 profile of model with size h=1.0 mm 

 

III. RESULTS 

Results of the analysis of the original functional boot shape 

from Fig. 1 are shown in Fig. 16. Figure shows the 

deformation of boot with a dimension h=0.4 mm after a 

maximum compression value of 53 mm. Buckling occurs if the 

compression will be larger than 53 mm. 

Opposite extreme, i.e. deformation of model with h=1.8 

INTERNATIONAL JOURNAL OF MECHANICS

Issue 3, Volume 7, 2013 297



 

 

mm, is illustrated in Fig. 17. In this case the buckling occurs 

already after the small compression of 23 mm. The collapsed 

shape of the model corresponds exactly with the real product 

shown in Fig. 3. 

 

 
 
Fig. 16 deformation of model with h=0.4 mm 

 

 

 
 

Fig. 17 deformation of model with h=1.8 mm 

 

Values of compression (evaluated by displacement of right 

end of boot in mm) which will trigger a collapse were 

monitored as well as for the other three models (h=0.6 mm, 0.8 

mm and 1.0 mm). These values are listed in Table I, and the 

relation between the h size of analyzed models and these 

values is shown in Fig. 18. Critical deformation of all five 

models is illustrated in Fig. 19 and 20. In the Fig. 19 we can 

see deformations of all models just in last moment before their 

collapses (last moment when they were stable), and in the Fig. 

20 there is the deformation of models in the first moment just 

after the collapse. 

 
 TABLE I. VALUES OF CRITICAL COMPRESSION 

"h" size 

[mm] 

Critical compression 

[mm] 

0.4 53 

0.6 52 

0.8 50 

1.0 38 

1.8 23 

 

 
 
Fig. 18 dependence of boot stability on the h size 

 

In case of dimension h=0.4 mm the model becomes 

(contrary to the reality) unstable, but nevertheless it is clear 

that this occurs almost at full compression of the boot. The 

difference between reality and the model is given by the size of 

each FEM element in the boot folds of model where we are not 

able to exactly copy arcs with such a small radius. But still we 

can say that the model is with good agreement with reality, it is 

able almost of full compression and thus it is sufficient for our 

analysis. 

The second reference model (h=1.8 mm) collapses (contrary 

the previous model) already at low compression of 23 mm. 

Comparing Fig. 3 with Fig. 17 we can see that the model 

behaves exactly like the real product and collapses into 

identical shape. 

The results of these two models show significant agreement 

with the reality and confirm suitability of the chosen methods 

for evaluating the influence of the boot profile shape (size h) 

on the stability of the boot during compression. 
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Fig. 19 critical deformation of FEM models in the moment before the collapse 

 

IV. CONCLUSION 

It was obvious that with increasing size h boot stability will 

decrease, it means, the value of compression at which boot 

collapses will be reduced. However, strongly non-linear 

relation between h size and compression value (which is 

shown in Fig. 18) is very interesting. 

 

 
 
Fig. 20 critical deformation of FEM models in the moment after the collapse 

 

We can see a significant difference in stability between the 

boot with h = 1.0 mm and h = 0.8 mm. Additional reducing of 

the h still improves boot stability, but increase of the 

compression value is not as significant as in previous models. 

The results lead to the conclusion that the decisive factor is the 

ratio between the h size and the profile thickness in straight 

sections (which in our case is just 1 mm). The above results 
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show that the ratio of h / thickness = 0.8 / 1 should be 

sufficient for the proper function of the product. 
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