
 

 

  
Abstract— Free-surface seepage problems have been attracting 

interests of many engineers and mathematicians due to the strong 
non-linearity as well as the importance in designing the hydraulic 
structures, such as embankments, canals, and earth and rock-fill 
dams. Free-surface seepage flow is governed by an elliptic partial 
differential equation when steady state flow conditions have been 
considered. In most geotechnical analyses, soil properties are 
assumed to be spatially and temporally invariant and thus, average 
property values are used. In reality, however, these soil parameters 
usually vary from point to point (heterogeneous) and even at one 
point they may have different values in various measured directions 
(anisotropy). Moreover, these parameters may vary in time while a 
geotechnical process is occurring due to an external influence such as 
surface pressure or due to the change of chemical compositions. 
Therefore in this research, the coefficients of permeability are 
assumed to vary in terms of geometry, external load influences and 
the effect of head variation in the system and the resulted nonlinear 
seepage problem is solved using Least Square Finite Element Method 
and Finite Difference Method. The seepage Problem is analyzed for 
two cases of variable and constant coefficients of permeability. The 
effect of a variable coefficient of permeability may not be significant 
on small dams, but as the height of the dam increases, the effect 
becomes more considerable. It is believed that a variable 
permeability analysis such as the one described in this paper should 
be taken into account. 
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I. INTRODUCTION 
Free-surface seepage problems have been attracting 

interests of many engineers and mathematicians due to the 
strong non-linearity as well as the importance in designing the 
hydraulic structures, such as embankments, canals, and earth 
and rock-fill dams. Determination of free-surface profile, 
velocity, and pressure distributions is may be main purpose of 
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free-surface seepage analysis. Free-surface seepage flow is 
governed by an elliptic partial differential equation when 
steady state flow conditions have been considered. Solution of 
this elliptic partial differential equation may be carried out 
analytically and numerically. Analytical solutions of this 
equation require several assumptions such as ideal solution 
domains and homogeneous material properties. On the other 
hand, numerical solutions have to be used if the solution 
domain has complicated geometry and/or inhomogeneous 
material properties. Among the numerical solution techniques 
finite element method and finite difference method are 
perhaps the most popular. In most geotechnical analyses, soil 
properties are assumed to be spatially and temporally invariant 
and thus, average property values are used. In reality, 
however, these soil parameters usually vary from point to 
point (heterogeneous) and even at one point they may have 
different values in various measured directions (anisotropy). 
Moreover, these parameters may vary in time while a 
geotechnical process is occurring due to an external influence 
such as surface pressure or due to the change of chemical 
compositions. For computations in flow problems using 
numerical techniques usually homogeneous conditions are 
assumed for the coefficient of permeabilities and then 
anisotropic conditions are assumed throughout. In this 
research, the coefficients of permeability are supposed to vary 
in term of geometry, external load influences such as those 
causing consolidation effects, and the effect of head variation 
in the system where seepage is taking place. In order to define 
these variations, two conditions are presented in this paper. 
The first condition can be explained by, for instance, an 
embankment load over a confined saturated fine grain soil 
layer. This load would begin to consolidate underlying 
materials. At the end of consolidation process, the 
permeability of the materials are changed and can be 
described by a governing differential equation, which can then 
be solved. In addition to the first case, a second case can be 
defined in which variations of the head can also have an effect 
on the consolidation process resulting in permeability 
variations. This effect can be seen in Terzaghi’s effective 
stress equation. The influence of head variation is introduced 
by a defined function, which can be solved numerically. This 
changes the governing differential equation to a nonlinear one, 
where one of the parameters (head), which define the 
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coefficients of the governing differential equation, is 
unknown. A numerical solution is required in such cases. 

In the present study, in order to solve the nonlinear 
governing differential equation, the Least Square Finite 
Element Formulation (LSFEF) and the finite difference 
formulation is utilized.  

The finite element (FE) method is a very powerful tool to 
solve many sophisticated engineering problems. FE analysis 
has been implemented in a number of areas in engineering 
such as solid mechanics, heat transfer and hydrodynamics as 
well as geotechnical interests such as Desai and Christian [1] 
for general geotechnical uses, Beacher and Ingra [2] and 
Righetti and Harrop-Williams [3] for stress analysis and Finn 
[4] and Smith and Freeze [5], [6] and Griffiths and Fenton [7] 
for seepage analysis. 

General finite element formulations, such as the Variational 
or Weighted residual processes methods used by Zienkiewicz 
[8] cannot be employed to solve non-linear equations such as 
Navier Stokes, Burgers or Laplace equations. The Galerkin 
and least square methods are an extension of the Weighted 
Residual method. Using Galerkin method for the solution of 
the Navier Stokes equation has many associated difficulties as 
(a) the coefficient matrix is not symmetric and in the pressure 
variation direction in the continuity equation would perform 
as ill-conditioned and (b) convergence of this system in non-
linear problems is very slow and sometimes may come up 
With some difficulties with iterations. This method has 
recently been used by researchers such as Zienkiewicz et al. 
[9], Lynn and Arya [10], and Winterscheidt and Surana [11], 
[12] in many areas such as solution of partial and hyperbolic 
differential equations or boundary layer flow, gas dynamics, 
and compressible fluid and gas problems. LSFEF method was 
used based on the minimizing of the error function in 
differential equations with non-linear partial differentiation. 

Finite difference analysis has been implemented in a 
number of areas in engineering such as heat transfer [13] and 
hydrodynamics [14] ,[15] as well as geotechnical interests 
such as seepage [16]-[20] and consolidation [21], [22]. It also 
works well with anisotropic materials [23]. 

The objective of the finite difference method for solving a 
partial differential equation (PDE) is to transform a calculus 
problem into an algebraic problem by: 

1. Discretizing the continuous physical domain into a 
discrete finite difference grid. 

2. Approximating the exact derivatives in the initial-
value PDE by algebraic finite difference 
approximations (FDAs). 

3. Substituting the FDAs into the PDE to obtain an 
algebraic finite difference equation (FDE). 

4. Solving the resulting algebraic FDE [24]. 
 
The development of computer technology may ease solving 

the partial differential equations (PDE). One is the spreadsheet 
modeling. The popularity of spreadsheets in the solution of 
engineering problems has been recently increasing since setup 
of spreadsheets well fits into the finite-difference grid 

schemes. By utilizing this feature of spreadsheets several 
studies have been carried out in different fields of engineering 
problems [16]. 

 

II. VARIABILITY OF THE COEFFICIENT OF PERMEABILITY 
In flow problems, both the magnitude and direction of 

governing fluid flows are highly sensitive to the coefficient of 
the permeability. For simplicity, this parameter is usually 
assumed to be a constant in space and time. In this study, the 
coefficient of permeability is assumed to be spatially variable. 
The variation of coefficient of permeability was defined for 
different cases, and then the resulted governing differential 
equation was solved. In order to define a function for the 
variation of the permeability two conditions were proposed.  

First Condition: This is a simple condition where the 
coefficient of the permeability is a function of material 
properties and geometrical conditions. From most classical 
soil mechanics literature it is well known that coefficient of 
permeability is directly proportional to the void ratio of the 
soil. As the void ratio increases or decreases, so does the 
coefficient of permeability, Lambe and Whitman [25]. Only 
confined flow was considered here. As an example, one can 
consider construction of an embankment dam over a saturated 
fine grain soil. As the construction starts, the consolidation of 
the material beneath the embankment will begin. Due to non-
uniformity of the applied load, the consolidation of the 
materials under the embankments will vary, which will result 
in void ratios that vary in space and time. This would 
therefore introduce variation of coefficient of permeability at 
different locations and directions under the embankments. 
Generally, these coefficients of permeability are a minimum at 
the centerline of the embankments and increase as the distance 
from the centerline increases. These coefficients of 
permeability would also be time dependent as long as the 
consolidation process is occurring. In order to define good 
estimates for coefficient of permeability in flow problems for 
any given point, mainly dependent upon soil type, fabric and 
structure, and consolidation stage one should undertake 
laboratory testing to define the equations for xk  and yk , the 

coefficients of permeability in x and y direction, respectively. 
The variation of xk  in horizontal direction can be simply 
expressed by any order binominal equation, which in this 
study was considered to be second order. 

2 (1)x x x xk a x b x c= + +  
Where xa , xb  and xc , are the coefficients that can be 

determined from a curve fitting procedure based on the results 
from laboratory and field-testing. Similarly yk  the coefficient 

of permeability in vertical direction can be expressed by a 
similar second order binominal equation of the form: 

2 (2)y y y yk a x b x c= + +  

where ya , yb and yc  are the coefficient which can be 

determined from curve fitting procedure based on the results 

INTERNATIONAL JOURNAL OF MECHANICS

Issue 4, Volume 1, 2007 93



 

 

from laboratory testing. Generally yk  in vertical direction can 

vary by either the effect of overburden pressure of the natural 
soils or the influence of excess stresses due to an embankment 
load. For the first case, as the overburden pressure increases 
with depth, there would be a tendency for the material to 
become more compacted, therefore reducing yk  with depth. 

For the second case, as the depth increases the effect of 
embankment load decreases i.e. less consolidation, and thus 

yk  increases. The effect of the second imposed condition is 

opposite to the first case, and these physical effects with depth 
should be superimposed in order to define (2) for every 
starting point at interface of embankment and natural soil in 
the vertical direction. 

Second Condition: In this condition, the coefficient of 
permeability, in addition to the first case, can be affected by 
the variation of heads in the upstream, downstream, or in the 
soil. In the next section the relationship between hydraulic 
head and the coefficient of permeability is described. 

 
Relationship between Effective Stress and Soil Void Ratio  

In the soil consolidation process, the relationship between 
effective stress and void ratio can be demonstrated in e vs. log 
p space, as an example Fig. 1, Leroueil et al. [26]. The first 
portion of the curve with lower slope, which is due to 
unloading of the sample, is not considered here. Only the 
second portion with slope of cc , which is mainly due to 
loading, is considered. The void ratio "e" of the material at 
any stage of the consolidation can be determined by: 

1
1

log (3)ce c eσ
σ

′
= +

′
 

where σ ′  is the applied effective stresses (head) 
corresponding to e  and 1σ ′  is the known effective stress 
corresponding to 1e . Equation (3) can be written as: 

1 1log log (4)c ce c c eσ σ′ ′= − +  
or 

log (5)e a bσ ′= +  
where ca c=  and 1 1logcb c eσ ′= − + . 
 
Relationship between Void Ratio and Coefficient of 

Permeability  
It can be observed from previous research of Lambe and 

Whitman [25], Leroueil [26] and Cedergren [27] that the 
relationship between void ratio and logarithm of coefficient of 
permeability is linear, Fig. 1. Similar to previous case, "e" 
void ratio of the material at any stage can be determined by: 

1
1

log (6)k
ke c e
k

= +  

where kc  is the slope of the curve, k is the unknown 
coefficient of permeability corresponding to e, and 1k  is the 
known coefficient of permeability corresponding to 1e . By 
rearranging (6), the coefficient of permeability can be found 
as follows: 

1
1log log (7)

k k

eek k
c c

= − +   

 

 
Fig. 1 Typical e  against logσ ′  and e  against log k  curve (after Leroueil et al.) 

 

Since 1
1log

k

e
k

c
−

+  is a constant value assumed to be equal 

to d , and 1

k
c

c
= , therefore: 

log (8)k c e d= +   

And finally k can be written as: 
( )10 (9)c e dk +=  

And with substitution of (5) into (9), it can be written as: 
( log )10 (10)k α σ β′+=  

where α  is equal to c a  and β  is equal to c b d+ ,which 
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all of the parameters a, b, c, and d are constant and can be 
determined from laboratory or in-situ testing. 

 
Relationship between Heads (Total or Pressure) and 

Coefficient of Permeability 
From the effective stress Terzaghi's Equation and from the 

information in Figure 2, the effective stress at any point can be 
written as: 

( ) ( ) (11)sat w wy H h yσ γ γ γ′ = − + − +  
where satγ  is the saturated density of the soil, h is the total 

head, h + y is the pressure head, H is the upstream water 
height and wγ  is water density. 

 
Fig. 2 Schematic diagram of an embankment dam. 

 
By substituting (11) into (10), it can be written as: 

log [ ( ) ]10 (12)sat wy H h yk α γ γ β− + − − +=   
Equation (12) can be simplified to 

10 [ ( ) ] (13)sat wk y H h yβ αγ γ= − + − −  
In the above equation α , β , satγ  and wγ  are constants 

that depend on material properties and can be determined from 
laboratory or in-situ testing. The value of total head h depends 
on the geometry of the considered point and is an unknown 
value, H is the height of water at upstream and y is the depth 
of the considered point from datum. It can be concluded from 
the above equation that at any point within the confined flow 
the coefficient of permeability can be defined as a function of 
total head h which will directly influence the solution of the 
governing differential equation. 

III. NON-LINEAR GOVERNING SEEPAGE EQUATION 
The 2-D governing equation of water flow in porous media 

under laminar conditions, where Darcy's law is applicable is 
given by: 

( ) ( ) 0 (14)w x w y
h hk k

x x y y
γ γ∂ ∂ ∂ ∂

+ =
∂ ∂ ∂ ∂

 

The above equation can be simplified by assuming wγ , 
water density, to stay constant at all times, and therefore: 

( ) ( ) 0 (15)x y
h hk k

x x y y
∂ ∂ ∂ ∂

+ =
∂ ∂ ∂ ∂

 

Under conditions of homogeneity, xk  and yk  are assumed 

to be constants which do not vary in space. In addition, 
applying anisotropy conditions requires x yk k≠ . Generally 

for simplicity xk  and yk are assumed to be constant and for 

more simplicity, they are assumed to be equal and constant. 
However, in this research these coefficients are assumed to be 
variable which would change the differential equation to a 
non-linear one. Equation (15) can be expressed as follows: 

2 2

2 2 0 (16)yx
x y

dkdk dh d h dh d hk k
dx dx dy dydx dy

+ + + =  

xk  and yk can now be expressed by (1) and (2) and (13) 

and can be substituted in (15). Formulation of the least square 
finite element method requires first order differential 
equations. This can be adopted by assigning hydraulic 
gradients in the x and y directions as follow: 

(17)x x y y
dh dhP I P I
dx dy

= = = =  

Equation (17) was used in least square finite element 
formulation. In finite difference formulation hydraulic 
gradient is evaluated by: 

(18)x
hi
x

Δ
=

Δ
 

Secondary Solutions: In seepage problems, in addition to 
evaluation and calculation of heads at various locations in the 
system, three other parameters are important to be evaluated. 
These are total discharge rate, exit hydraulic gradient, and 
uplift pressure. These parameters are known as the secondary 
solutions. Total discharge rate can be calculated on the bases 
of discharge for each element at any section, and the 
summation of these discharge rates would be the total 
discharge rate of the system. In finite element formulation it 
will be: 

1

[ ][ ] (19)
N

i xi xi
i

Q d k I
=

= −∑  

where id is the width of the element I, with the value xI  as 
the average of the eight node hydraulic gradient for each 
element. In finite difference formulation, the discharge rate 
will be: 

1

(20)
N

i xi xi
i

Q d k i
=

= −∑  

where d, is the distance between two adjacent nodes, with 
the value xii  as the hydraulic gradient for that nodes. The exit 
hydraulic gradient would be known at the downstream section 
of the system. Uplift pressure can be calculated on the bases 
of Bernoulli's equation by knowing total head (h) from 
analysis and evaluation of the concerning point from geometry 
assuming, that v2/2g =0. 
 

IV. NUMERICAL EXAMPLES 
 
In this section two examples are provided for the proposed 
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types of variations on xk  and yk . 

Example 1: To illustrate the proposed methods, consider 
Example 18.2 of Lambe and Whitman [25]. A schematic 
diagram of a concrete dam for use in LSFEM and FDM is 
given in Fig. 3. This system consists of two sheet piles of 21 
meters height at upstream and downstream of the dam. In 
order to analyses the problem in LSFEM, the permeable 
section of the system was divided into 18 elements with 77 
nodes (Fig. 3a). As for the FDM, the permeable section of the 
system was divided into 67 nodes (Fig. 3b). Sheet piles were 
considered as impermeable boundaries, where / 0h x∂ ∂ =  and 
other impermeable boundaries where / 0h y∂ ∂ =  are at the 
bottom of the 64 meter thick permeable layer and dam itself. 
A thirty-meter distance away from the system (sheet piles) 
was chosen as a limit for numerical analysis where it assumed 
there is no flow taking place away from these limits in the 
permeable layer. Variable heads at upstream and downstream 
locations were chosen in order to examine the effect of the 
proposed solution. In order to apply (13), the following values 
were used based on Effati [28]. 

3

3

0.034049
1.0

(24)
22 /

10 /
sat

w

kN m

kN m

α
β

γ

γ

= −
= −

=

=

 

Results for head, the coefficient of permeability k and 
discharge rate were obtained based on the above values.  

 
 

 
Fig. 3a Schematic diagram of the LEFEM mesh. 

 
 

 
Fig. 3b Schematic diagram of the FDM mesh. 

 
Comparing the results of the heads obtained here with flow 

nets in Lambe and Whitman [25] shows only very small 
differences. Any conclusions based on head results and flow 
nets alone may not be justified due to the accuracy of the 
results. A flow net drawing is based on a trial and error 
procedure and is not affected by upstream or downstream 
heads. In Fig. 4 variation of coefficient of permeability k is 
shown against head (water height) in the upstream. It is clear 
from this figure that, (i) when the head at any node varies, it 
would influence the permeability of that node, (ii) as the head 
increases the values of permeability decrease, and (iii) when 
the head at any point increases, consolidation of the material 
occurs resulting in reduced the permeability. The variation of 
k against head is non-linear because the proposed function for 
k in (13) is non-linear.  
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Fig. 4 Variation of coefficient of permeability against head. 
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Fig. 5 Comparison between FDM and LSFEM  

for variable k. 
 
Fig. 5 shows the comparison between FD method and Least 

Square FE method for variable k. As it is seen, both methods 
show decrease of k with increase of head and the differences 
are in an acceptable range.  

Fig. 6 shows the variation of the discharge rate under the 
dam against upstream head. Two types of curves are shown in 
this figure, one with constant permeability and the other with 
variable permeability (proposed method). In the one with 
constant permeability, similar to most classical seepage 
problems, permeability is assumed constant throughout the 
analysis and the system, and if it varies, it is not due to the 
effect of upstream head. In this case k was assumed to be 
0.080 cm/s. But in the other one variable k refers to the 
influence of head on discharge rate. It can be seen from Fig. 6 
that for both cases when upstream head increases, the 
discharge rate also increases. It should be clarified, however, 
that in the actual case, head effects influenced permeability. 
The discharge rate is different from that of the constant 
permeability case. The difference would be higher for longer 
values of upstream head, i.e. for h = 120 m the effect of the 
head on discharge rate is about 2%. This is mainly due to the 
effect of upstream head on permeability.  

In fig. 7, finite difference method and least square finite 
element method are compared for variable k. It is observed 
that FD method gives lower discharge than LSFE method and 
both methods show the same pattern. 

Example 2: In this example, variations of xk  and yk are 

not effected by a direct influence of head but they are based 
on other effects using (1) and (2). 
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Fig. 6 Discharge rate variation under dam vs head for 
constant and variable coefficient of permeability. 
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Fig. 7 Comparison between FDM and LSFEM for variable 

k 
 
 

The FD mesh and LEFE mesh of a concrete dam are given 
in Fig. 8. The permeable section of the system was divided 
into 105 nodes for FDM and 20 elements and 85 nodes for 
LSFEM. The top and bottom portion of the permeable section 
with thickness of 40 meters were considered as impermeable 
boundaries, where / 0h y∂ ∂ = . Sixty meters from the toe and 
heel of the dam were chosen as a limit for numerical analysis 
where no flow was assumed to take place away from these 
limits in the permeable layer. The proposed variations for xk  
and yk  are based on (1) and (2) and Effati [28]. 
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Fig. 8a Schematic diagram of the system with LSFE mesh. 

 
 

 
Fig 8b Schematic diagram of the system with FD mesh. 

 
 

 
3 2 2

2 2 2

0.375 10 0.375 10 10
(25)

0.255 10 0.375 10 2.5
x

y

k x x

k y y

− −

− −

= × − × +

= × − × +
 

In this example results for exit gradient and uplift pressure 
are presented based on above values for xk  and yk .  

Fig. 9 shows the exit gradient in vertical direction against 
upstream head for constant and variable permeability based on 
data in this example. For low upstream head the difference 
between constant and variable permeability conditions is 
sometimes negligible, but as the upstream head increases, in 
large dams the difference becomes more significant which 
might influence the design of the whole system. For the 
upstream height of 180 meters, the exit gradient difference is 
about 24%, which would reduce the factor of safety against 
piping to a low point, which, in turn, may result in changing 
the geometry of the dam. It should be noted that constant 
values of permeability considered in the computation would 
result in higher values for exit gradient, which would be on 
the safer side. Fig. 10 shows the comparison of FD method 
and LSFE method for variable k. As it is seen, both methods 
show increase of exit gradient (absolute value) with head and 
the results are in good agreement. 
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H
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Fig. 9 Variation of exit hydraulic gradient against head for 
constant and variable permeability. 

 
Fig. 11 shows the uplift pressure at the bottom of the dam 

against upstream head for constant and variable permeability 
based on data in this example. As the head in the upstream of 
the dam will increase, obviously the uplift pressure under dam 
increases, but as it can be seen, there is a difference between 
constant or variable permeability conditions. This difference 
would be around 8% for an upstream head of 150 meters. 
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Again, it should be noted that with constant permeability the 
value of uplift pressure is higher than that with the variable 
permeability, which would also be on the safe side.  
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Fig. 10 Comparison between FDM and LSFEM  

for variable k. 
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Fig. 11 Comparison of the uplift pressure against head for 

constant and variable k. 
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Fig. 12 Comparison between FDM and LSFEM  

for variable k. 
 

 

Fig. 12 also shows the uplift pressure against upstream head 
for FD method and LSFE method. It is observed that FD 
method gives higher uplift pressure than the LSFE method. 

V. CONCLUSIONS 
 
This paper presents a non-linear governing differential 

equation for a confined seepage problem under non-
homogeneous and anisotropic conditions. This non-linear 
performance is introduced by the governing equation based on 
actual material behavior and solving the resulting non-linear 
differential equation numerically using the least square finite 
element formulation and finite difference formulation. These 
methods were used to solve several seepage problems to 
examine the accuracy of the results. The solutions show good 
accuracy and convergence. The advantage of these methods is 
their capability to solve nonlinear problems compared to 
routine methods with constant coefficients in order to increase 
the accuracy of the solution. The results of both methods are 
also compared with each other and they show a very good 
agreement with each other. Some clear conclusions can be 
drawn from this study as follows: 

 
a) Generally, results of head changes (i.e., flow net analyses) 
either by first or second conditions for variable permeability 
conditions compares favorably to the case when the 
permeability is assumed to be constant and very little 
difference is observed. 
b) Comparison of the results for discharge rate between 
constant and variable permeability conditions shows little 
effect of low head on discharge rate results. However, as 
upstream head increases, the effect of variable permeabilities 
becomes more significant. Usually the difference in discharge 
rate between variable and constant permeability for a typical 
head is not more than 8%. 
c) Results of exit gradient for a critical condition show that the 
values are less affected for low head, but the effect increases 
for higher head. The results, assuming variable permeability 
conditions, would give a lower safety factor regarding piping, 
etc. 
d) In terms of uplift pressure, as the head increases the uplift 
pressure also increases, but there is only a slight difference 
between uplift pressure under constant or variable 
permeability conditions for any given head. This result is 
consistent with part (a). 
e) In general, the effect of variable coefficient of permeability 
may not be significant on small dams, but as the height of the 
dam increases, the effect becomes more considerable. It is 
believed that this would influence the geometry and design of 
the dam and that variable permeability analysis such as the 
one described in this paper should be conducted. 
f) Finite difference method and least square finite element 
method results were in good agreement and the differences 
between the results are negligible. These methods, because of 
their more simplicity and less resource consuming, are 
preferable methods for dealing with (non-linear) seepage 
problems.  
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