
 

 

  
Abstract—In this paper, an analytical solution for the 

axisymmetric stagnation point flow of a viscous and incompressible 
fluid, toward a shrinking sheet is presented. A similarity 
transformation reduces the Navier–Stokes equations to a set of non-
linear ordinary differential equations which are solved analytically 
by means of Homotopy Analysis Method (HAM). The results 
obtained in this study are compared with numerical results released 
in the literature. Close agreement of the two sets of results indicates 
the accuracy of the HAM. The method can obtain an expression 
which is acceptable for all values of effective parameters and also is 
able to control the convergence of the solution. 
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I. INTRODUCTION 

TAGNATION flow, describing the fluid motion near the 
stagnation region, exists on all solid bodies moving in a 

fluid. The stagnation region encounters the highest pressure, 
the highest heat transfer and the highest rate of mass 
deposition [1]. Problems such as the extrusion of polymers in 
melt-spinning processes, glass blowing, the continuous casting 
of metals, and the spinning of fibers all involve some aspect of 
flow over a stretching sheet or cylindrical fiber [2]. In 
stagnation point flow, rigid wall or a stretching or shrinking 
surface occupies the entire horizontal x-axis, the fluid domain 
is 0>y and the flow impinges on the wall with different origin 

of stretching or shrinking on the sheet. 
Homman [3] was first to study axisymmetric stagnation 

flows. He introduced similarity transforms which reduced the 
Navier-Stokes equations to non-linear ordinary equations. 
Temperature distribution was later discussed by Sibulkin [4]. 
Wang [5] presented a similarity solution for an axisymmetric 
flow to a stretching sheet. Chiam [6] and Mahapatra and 
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Gupta [7], [8] considered stagnation flow on a stretching 
sheet. Wang [1] studied the flow pattern and temperature 
distribution in stagnation flow on a shrinking sheet. He 
showed that the non-alignment of the stagnation flow and the 
shrinking sheet complicates the flow structure. In these 
analyses, the governing equations were solved by numerical 
methods. 

Analytical methods were used to study the viscous flow 
near a stagnation point. Xu et al. [9] studied the unsteady 
boundary layer flows of non-Newtonian fluids near a forward 
stagnation point. Hayat et al. [10], [11] investigated the MHD 
stagnation point flow of an upper convected Maxwell fluid 
over a stretching surface and MHD flow of a micropolar fluid 
near a stagnation point towards a non-linear stretching 
surface. Nazar et al. [12] studied the unsteady mixed 
convection boundary layer flow near the stagnation point on a 
vertical surface in a porous medium. Priede et al. [13] 
matched asymptotic solution for the solute boundary layer in a 
converging axisymmetric stagnation point flow. Ayub et al. 
[14] presented an analytical solution of stagnation-point flow 
of a viscoelastic fluid towards a stretching surface. 

Most scientific problems in fluid mechanics and heat 
transfer are inherently nonlinear. Except a limited number of 
these problems, most of them do not have analytical solutions. 
Therefore, these nonlinear equations should be solved using 
other methods. Some of them are solved using numerical 
techniques and some are solved using perturbation method 
[15]. In the numerical method, stability and convergence 
should be considered so as to avoid divergence or 
inappropriate results. On the other hand in the numerical 
methods, the problem should be solved for each value of the 
effective parameters, which is deficiency of these methods.  In 
the perturbation method, a small parameter is inserted in the 
equation. Therefore, finding the small parameter and exerting 
it into the equation are deficiencies of this method. 

One of the semi-exact methods which do not need 
small/large parameters is the Homotopy Analysis Method 
(HAM), first proposed by Liao in 1992 [16], [17]. In this 
method the convergence region can be adjusted and controlled 
and it is the most important feature of this technique in 
comparison to other techniques. It should be emphasized that 
the Homotopy Perturbation Method (HPM) introduced in 
1998 is only a special case of HAM [18], [19]. 

Up to now, no investigation has been made which provides 
the analytical solution for the axisymmetric stagnation flow 
towards a shrinking sheet. In this study, HAM is applied to 
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find an analytical solution of nonlinear ordinary differential 
equations arising from the similarity solution, and the results 
were compared with those obtained in [1]. Moreover the 
numerical solution based on shooting method and fourth order 
Runge Kutta method have been developed by authors of this 
article. 

Fig. 1 shows an axisymmetric stagnation flow towards an 
axisymmetric shrinking sheet. Non alignment occurs when the 
line of symmetry of the stagnation flow and that of shrinking 
sheet are not matched. 

 

 
Fig. 1 Axisymmetric stagnation flow on a axisymmetric shrinking 

sheet 

II. MATHEMATICAL FORMULATIONS 

Let ( wvu ,, ) be the velocity components in the Cartesian 
coordinates ( zyx ,, ), respectively. For three dimensional 

incompressible flows, the continuity equation reduces to: 
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Wang [1] defined the following similarity transforms: 
 

),(2),(),()( ηυηηη fawfayvbchfaxu −=′=+′=  (2) 
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where 0>a  is the strength of the stagnation flow and is 
proportional to the free stream velocity far away from the 
shrinking (stretching) surface, b is the shrinking rate ( 0<b ) 
or stretching rate ( 0>b ) and -c is the location of the 
stretching origin and υ  is the kinematic viscosity. η  is 

independent dimensionless parameter and primes denote 
differentiation with respect to η . )(ηf  and )(ηh  are the 

velocity similarity variables. 
On the shrinking (stretching) surface the velocities are: 
 

,0,),( ==+= www wayvcxbu α  (4) 

 
where ab=α , is the ratio of the stretching rate to the 

strength of the stagnation flow. Wang [1] found that the 
solution is unique for 1−≥α  and there is no solution for 

1−<α . This paper presents an analytical solution in the range 
of 1−>α . 

The Navier–Stokes equations are reduced by using (2) and 
(3): 
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The boundary conditions: 
 

,1)(,)0(,0)0( =∞′==′= fa
bff α  (7) 

 
.0)(,1)0( =∞= hh  (8) 

 
Stream function for non-alignment flow ( 0≠c ) does not 

exist and fluid structure is completely three dimensional [1]. 
Once the velocities are known from the previous analysis, 

the temperatures can be found from the energy equation. A 
similarity solution exists [20] if the sheet and stream 
temperatures, 0T  and ∞T , are constant. 

The three dimensional energy equation is written as: 
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here T is the temperature and κ  is the thermal diffusivity. A 
dimensionless temperature θ  is defined; 

 

.
0 ∞

∞

−
−

=
TT
TTθ  (10) 

 
The energy equation (9) becomes: 
 
( ) ( ) ( ) ,0Pr2 =′+′′ ηθηηθ f  (11) 

 
where κυ /Pr =  is the Prandtl number. The boundary 
conditions are: 

 
( ) ( ) .0,10 =∞= θθ  (12) 

 
It is of interest to obtain the value of )0(θ ′−  which is an 

effective parameter for the heat transfer. 

III. HAM SOLUTIONS 

The governing equations for the stagnation flow towards a 
axisymmetric shrinking sheet are expressed by (5) and (6). 
Nonlinear operators are defined as follows: 
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where ]1,0[∈q  is the embedding parameter. As the 

embedding parameter increases from 0 to 1, ),( qU η  and 

),( qY η  vary from the initial guess, )(0 ηU  and )(0 ηY , to the 

exact solution, )(ηU  and )(ηY : 
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Expanding ),( qf η  in Taylor series with respect to q leads 

to: 
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Homotopy analysis method can be expressed by many 

different base functions [17]; according to the governing 
equations, it is straightforward to use a base function in the 
form of:  
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pmb  and pmd  are the coefficients should be determined.  

When the base function is selected, the auxiliary functions 
)(ηfH  and )(ηhH , initial approximations )(0 ηU , )(0 ηY  and 

the auxiliary linear operators fL  and hL  must be chosen in 

such a way that the corresponding high-order deformation 
equations have solutions with the functional form similar to 
the base functions. It is worth mentioning that the presence of 

expressions such as )sin( ηη mn  prevents the convergence of 

the analytical solution. This method is known as the rule of 
solution expression [17]. The linear operators are chosen as: 
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Equations (23) and (24) lead to: 
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where c1 to c5 are the integral constants. 

According to the rule of solution expression and the initial 
conditions, the initial approximations, 0U  and 0Y  as well as 

the integral constants, c1 to c5, are formed as: 
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The zeroth order deformation equation and its boundary 

conditions for )(ηf  and )(ηh  are: 
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0≠  is a nonzero auxiliary parameter. According to the rule 

of solution expression and from (29), the auxiliary functions 

)(yH f  can be chosen as follows: 

.)( ryp
f eyyH −=  (33) 

 
Differentiating (29), and (30), m times, with respect to the 

embedding parameter q and then setting 0=q  in the final 

expression and dividing it by !m , reduced to: 
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Equations (34) and (36) are the mth order deformation 

equation for )(ηf  and )(ηh , where: 
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The rate of convergence can be increased when suitable 

values are selected for p and r. According to the rule of 
solution expression the suitable values for p and r are 

}1,0{ == rp . 

Consequently, the corresponding auxiliary functions were 

determined as ηη −= eH f )( . As a result of this selection, the 

solution’s series )(ηU  and )(ηY  is developed up to 20th order 

of approximation, so )(ηf  and )(ηh  is obtained as follows: 
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)(ηθ  has an analytical solution as follows: 
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The HAM solution can be applied to obtain the temperature 

distribution as follows: 
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The mth order deformation equation for 1≥m are: 
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The solution’s series )(ηQ  is developed up to 20th order of 

approximation. 
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IV. CONVERGENCE OF HAM SOLUTION 

The analytical solution should converge. It should be noted 
that the auxiliary parameter ћ, as pointed out by Liao [17], 
controls the convergence and accuracy of the solution series. 
In order to define a region where the solution series is 
independent on ħ, a multiple of ħ-curves are plotted. The 
region where the distribution of f ′′ , f ′ , f  and h′ , h  and 
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θ ′ , θ  versus  is a horizontal line is known as the 
convergence region for the corresponding function. The 
common region among the )(ηf  and its derivatives, )(ηh and 

its derivative and )(ηθ  and its derivative are known as the 

overall convergence region. 
To study the influence of  on the convergence of solution, 

the ħ-curve of )0(f ′′ , )1(f ′ , )2(f  and )0(h′ , )1(h  and 

)0(θ′ , )1(θ  are plotted by 15th order approximation of 

solution for selected α , as shown in Fig. 2. Moreover, 
increasing the order of approximation increases the range of 
the convergence region, as shown in Fig. 3. 
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(c) 
Fig. 2 The ħ-curves to indicate the convergence region: (a) 2.0=α ; 

(b) 0=α ; (c) 25.0−=α , 7.0Pr = . 
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Fig. 3 The effect of order of approximation on convergence region. 
(a) )0(f ′′ , 0=α ; (b) )0(h′ , 5.0=α ; (c) )0(θ ′ , 5.0−=α , 7.0Pr = . 

V. RESULTS AND DISCUSSION  

Equations (6), (7) and (12) along with the boundary 

conditions (7), (8) and (12) are solved using HAM for some 
values of the parameter α . The rate of convergency and 
results for )0(f ′′  and )0(h′  at some values of α  are shown in 

Table I and Table II respectively. The results obtained from 
HAM solution are compared with results of [1]. The same 
comparison is made with the results of numerical solution of 
similarity equations based on fourth order Runge Kutta 
method, developed by these authors.  

The results show that HAM gives an analytical solution 
with high order of accuracy with a few iterations. 

Variations of the )0(f ′′  and )0(h′  relative to the  are 

presented in Table III and Table IV, show that results are 
independent from  in convergence region. 

 
 

Table I Comparing the present analytical and numerical results for )0(f ′′ with the results of [1]. 

)0(f ′′  
α  5th order 10th order 15th order 20th order Numeric. [1] 

-0.95 1.02080507 0.98798215 0.96263402 0.946815 0.94688120 0.9469 
-0.75 1.37582656 1.35311884 1.35300321 1.35285011 1.35285001 1.35284 
-0.5 1.49218863 1.49006144 1.48999537 1.49002102 1.49000996 1.49001 

-0.25 1.45635226 1.45651781 1.45655385 1.45659894 1.45659973 1.45664 
0 1.32856195 1.31186085 1.31187102 1.31193770 1.31193769 1.311938 

0.1 1.22883485 1.22931217 1.22899112 1.22911310 1.22911275 1.22911 
0.2 1.13347782 1.13368023 1.13355123 1.13373987 1.13374336 1.13374 
0.5 0.78069662 0.78024735 0.78026471 0.78032334 0.78032335 0.78032 
1 0 0 0 0 0 0 
2 -2.13267341 -2.13196947 -2.13082815 -2.13107410 -2.13106966 -2.13107 
5 -11.51664341 -11.73022468 -11.795058010 -11.80221341 -11.80221358 -11.8022 

 
 

Table II Comparing the present analytical and numerical results for )0(h′ with the results of [1]. 

)0(h′  

α  5th order 10th order 15th order Numeric. [1] 
-0.95 0.2319867 0.2712571 0.2684487 0.2684501 0.26845 
-0.75 -0.2306214 -0.2221852 -0.2207901 -0.2207899 -0.22079 
-0.5 -0.5387551 -0.5351514 -0.5323681 -0.5323711 -0.53237 

-0.25 -0.8450057 -0.7905277 -0.7563891 -0.7563901 -0.75639 
0 -0.9433567 -0.9430505 -0.9387311 -0.9387315 -0.93873 

0.1 -1.0090467 -1.0080904 -1.0039871 -1.0040260 -1.004 
0.2 -1.0710228 -1.0696988 -1.0658870 -1.0659335 -1.0659 
0.5 -1.2400660 -1.2391778 -1.2355030 -1.2354515 -1.2355 
1 -1.4878204 -1.4838635 -1.4793212 -1.4793376 -1.4793 
2 -1.8959174 -1.8908089 -1.8799812 -1.8799488 -1.88 
5 -2.7587690 -2.7777899 -2.7616891 -2.7617243 -2.7617 
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Table III Variation of the )0(f ′′  in the convergence region with 20th order approximation. 

   )0(f ′′    
α  ћ HAM ћ HAM [1] 

-0.95 -1.6 0.9457240 -0.4 0.9455352 0.9469 
-0.75 -1.7 1.3524837 -0.6 1.3529858 1.35284 
-0.5 -1.8 1.4900097 -0.6 1.4900624 1.49001 

-0.25 -1.8 1.4566012 -0.6 1.4565778 1.45664 
0 -1.8 1.3119512 -0.6 1.3118981 1.311938 

0.1 -1.8 1.2291474 -0.6 1.2284004 1.22911 
0.2 -1.7 1.1337501 -0.6 1.1336301 1.13374 
0.5 -1.6 0.7803720 -0.4 0.7802590 0.78032 
2 -0.7 -2.1310722 -0.2 -2.1317621 -2.13107 
5 -0.6 -11.8021978 -0.1 -11.8023868 -11.8022 
      

 
 

 
Table IV Variation of the )0(h′  in the convergence region with 20th 

order approximation. 
   )0(h′    

α  ћ HAM ћ HAM [1] 
-0.95 -1.5 0.268435 -0.4 0.268439 0.26845 
-0.75 -1.6 -0.220778 -0.5 -0.220780 -0.22079 
-0.5 -1.6 -0.532349 -0.6 -0.532357 -0.53237 
-0.25 -1.7 -0.756376 -0.6 -0.756380 -0.75639 

0 -1.7 -0.938729 -0.8 -0.938727 -0.93873 
0.1 -1.7 -1.003832 -0.6 -1.003874 -1.004 
0.2 -1.7 -1.065775 -0.6 -1.065698 -1.0659 
0.5 -1.7 -1.235632 -0.6 -1.235641 -1.2355 
1 -1.6 -1.479223 -0.4 -1.479211 -1.4793 
2 -1.6 -1.881134 -0.4 -1.881582 -1.88 
5 -1.5 -2.761812 -0.4 -2.761801 -2.7617 

 
 Fig. 4 is prepared in order to see the effects of α  on the 

velocity components )(ηf ′ , )(ηf  and ).(ηh  

Fig. 6 shows dimensionless temperature distribution in the 
flow domain for various values of α . It’s obvious that as α  
increases, thermal boundary layer thickness decreases. Also 
decreasing the Prandtl number increases the thermal boundary 
layer thickness. 

)0(θ ′−  is an important parameter for heat transfer. Since 

there is an analytical solution for )(ηf , obtained from HAM, 

the )0(θ ′−  can be found from two different ways; the HAM 

and equation (43) which can be reduced to: 

 
.

1
)0(

0

Pr2
0 η

θ η
η

de
fd

∫
∞ − ∫

=′−  (51) 

 
By integrating (51) using numerical methods (The 

Simpson's 3/8 Rule), )0(θ′− can simply be estimated. The 

HAM results shown in Table V and Table VI indicated that 
shrinking sheet has lower values of )0(θ′−  as compared to 

stretching sheet. )0(θ ′−  lessens at the same Prandtl number 

when α  is decreased. 
In the case of α  approaching zero, stagnation flow on the 

sheet becomes similar to the stagnation flow studied by 
Homman [3] and Sibulkin [4]. Table VII shows the 
comparison between HAM results and numerical solution 
from [20].  A general equation is obtained from HAM which 
is acceptable for all values of α and Prandtl number: 
 

+×+×−

×+×−

×+×+

×−×+

×+×−−=′−

2127-2116-

29-527-5

26-525-5

244-47-

23-422-3

Pr104.97Pr103.58

Pr102.64Pr107.64

Pr105.21Pr106.818

Pr101.887Pr103.275

Pr103.59Pr101.3Pr0.367(0)

αα

αα

αα

αα

αααθ

 (52) 

 
This solution was obtained by 10th order approximation for 

)(ηθ  and 10th order approximation for )(ηf  with 1.1−= . 
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(c) 

Fig. 4 Velocity components predicted by the HAM solution with 20th 
order approximation: (a) the function )(ηf ; (b) the function )(ηf ′ ; 

and (c) the function )(ηh . 
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(b) 

Fig. 5 Temperature distributions predicted by the HAM solution with 20th order approximation: (a) 7.0Pr = ; (b) 0.7Pr = . 

 
Table V Variations of )0(θ ′− with respect to Pr for the axisymmetric stretching sheet )0( ≥α . 

 )0(θ ′−  

 α 0 0.1 0.2 0.5 1 2 5 

HA
M 

0.66540000 0.69830000 0.72970000 0.81676798 0.94406979 1.15706992 1.63771881 Pr=0.
7 

(51) 0.66537763 0.69830523 0.72974134 0.81678146 0.94406979 1.15711096 1.63677035 

HA
M 

1.54570000 1.72280000 1.89040000 2.34510969 2.98541099 4.00505277 6.19312765 Pr=7.
0 

(51) 1.54577945 1.72284802 1.89041135 2.34511860 2.98541099 4.00496580 6.16452790 

 
 

Table VI Variations of )0(θ ′− with respect to Pr for the axisymmetric shrinking sheet )0( <α . 

 )0(θ ′−  

 α -0.25 -0.5 -0.75 -0.95 
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HAM 0.57485972 0.46709271 0.32600021 0.13688695 
Pr=0.7 

(51) 0.57483466 0.46707156 0.32592005 0.13685381 
HAM 1.05649153 0.51204057 0.07191553 0.00003548 

Pr=7.0 
(51) 1.05647092 0.51202490 0.07190343 0.00003896 

 
 

Table VII Comparing the results of present analytical solution for )0(θ ′− with [20]. 

)0(θ ′−  

Pr 0.01 0.1 1 10 100 1000 
HAM 0.1062 0.30154 0.7622 1.752 3.8702 8.4267 
[20] 0.106 0.301 0.762 1.752 3.87 8.427 

 
 
Note that, as pointed in [18] and [19], the results given by 

the “Homotopy Perturbation Method” are exactly the same as 
those given by the HAM when 1−=  and 1)( =ηH , because 

the “Homotopy Perturbation Method” is only a unique case of 
the HAM. The comparison between HAM and HPM for 

)0(f ′′  is shown in Fig. 7. The figure shows that for 2<α , 

the prediction of the two methods are identical, and when α is 
increase )2( ≥α , the deviation between two methods becomes 

more significant, because the HPM solution gets divergent. 

I. CONCLUSION 

The nonlinear differential equations resulting from 
similarity solution of stagnation flow towards a shrinking 
sheet is studied using Homotopy Analysis Method (HAM). 
The comparison between numerical results and convergence 
study shows that using approximations of small orders, results 
in satisfactory accuracy and increasing the order of 
approximation, the accuracy is increased. After demonstrating 
its effectiveness as a powerful analytical technique, the effects 
of different parameters such as the shrinking rate, non-
alignment shrinking and Prandtl number on the velocity 
distribution and temperature distribution are presented. 

The proposed analytical approach has many applications, 
and thus may be applied in similar ways to other boundary-
layer flows to get accurate series solutions. 
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