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Abstract: Numerical modeling of the characteris-
tics of Taylor-Goertler disturbances in a supersonic 
axisymmetric jet in the viscous approximation of hy-
drodynamic stability theory was performed. The basic 
equations for small disturbances in a curved cylindrical 
coordinate system were obtained. The regularities and 
peculiarities of typical relations of various-scale vor-
tices under changed mean flow parameters were stud-
ied. The critical Reynolds numbers of stability loss 
were found. It was defined that large-scale vortices 
with low increments as compared with small-scale 
ones loose stability at low Reynolds numbers. Some 
experimental results were interpreted. 
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1.   Introduction 
 
     Large-scale organized motion, an essential compo-
nent of turbulent flow, is now known occur in shear 
zones of fully developed turbulent jets. Coherent struc-
tures in the jets may assume the forms of the various 
types of streets, lines, rings, toruses, simple and double 
spirals breaking down the initially homogeneous flow 
structure [1-3]. This secondary large-scale motion may 
be result from instability of the initial flow. 
     In recent years some researchers experimentally 
found that under certain conditions stationary and 
quasi-stationary azimuthal inhomogeneities of the 
averaged flow fields appear in a mixing layer of a 
supersonic axisymmetric nonisobaric jet [4-9]. They 
are registered in the form of longitudinal black and 
white bands on the photographs with long exposure 
(Fig. 1) [4] and under visualization of cross-sections of 
the first barrel (Fig. 2,3) a wave-shaped or saw-shaped 
boundary of a supersonic mixing layer is seen [5,6].  
     The measurements showed [4, 8, 9] that in coldam-
bient turbulent air jets at high Reynolds numbers of  
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exhaustion  is the nozzle diameter) and 

small nozzle pressure ratios  great deviations from-
the mean values of excessive total pressure appear, 
which means that there are azimuthal defects of the-
longitudinal velocity. 
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Fig. 1. The longitudinal black and white bands on the 
photographs of nonisobaric jet with long exposure [4] 
 
 

 
 

 
 
 
Fig. 2,3 Under visualization of cross-sections of the 
first barrel a wave-shaped or saw-shaped boundary of a 
supersonic mixing layer is seen [5,6] 
 
In [7] the same density variation for nitrogen jets ex-
hausting in vacuum space at higher (about 50) degrees 
of expansion with  was found (Fig. 4). 3000Re >d
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Fig. 4. The density variation for nitrogen jets exhaust-
ing in vacuum space at  [7] 3000Re >d

 
     A question about these azimuthal inhomogeneities 
comes into existence. The most realistic hypothesis is 
that fluctuations may appear in a mixing layer of the 
first cell, which may be connected with rotating or cen-
trifugal instability. Let us consider the action of forces 
in a compressed layer of the first barrel of an underex-
panded jet (Fig. 5). The gas moves in it along the 
curved trajectories flowing around the suspended 
shock wave (SSW) and decelerating in a mixing 
layerδ . Unstable stratification may appear in it as the 
gas particles in the inner layers try to come out into the 
fields of small velocities under the effect of the cen-
trifugal force [10,11]. 
 
 

 
Fig. 5. Scheme of the flow in the initial part of an un-
derexpanded jet 
 
The centrifugal force directed along the normal to a 
motion trajectory from the curvature center (hypotheti-
cal point O in the figure) provides this transition. If 
this motion is not balanced by a normal gradient of 
pressure, a transverse overflow may appear which is 
analogous to that in a flow over a concave surface 
(Goertler flow) or between co-axial cylinders, one of 
which (internal) rotates and another (external) does not 
move. Rayleigh [11] formulated a theorem about ap-
pearing of centrifugal or rotating instability, a variant 
of which may be presented here. Instability appears if 

the square of absolute circulation decreases while the 
cylindrical radius increases ( ) ( , 
which is possible if the gas velocity decreases more 
than  with an increase in the cross distance. As is 
shown further, this condition is provided in a mixing 
layer.  
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Fig. 6. The flow in the initial part of an underexpanded 
jet with the longitudinal quasi-stationary vortices 
 
     These disturbances of the flows are presented as 
longitudinal quasi-stationary vortices at a linear stage 
(Fig. 6). At the nonlinear stage, helical secondary vor-
tices may appear as well as more complicated struc-
tures whose shape is defined by particular conditions. 
There is no inconsistency in applying these considera-
tions to free shear layer and one may expect that such 
instability causing turbulent or other type of laminar 
motion may be realized at free supersonic exhaustion. 
     A certain interest to this problem has arisen, which 
is proved by a great number of experimental re-
searches, some of them have been mentioned above. It 
may be explained by the appearance of instability in a 
form of stationary longitudinal vortices in a jet, which 
is uncommon. The acknowledged idea is that a surface 
with a curvature or an inflection is a result of rotating 
instability even in the case when the vortices do not 
touch the surface directly and are at a boundary of 
stagnation zones as in separated flows. In nonisobaric 
jets, this trajectory curvature of gas motion is created 
by exhaustion conditions and may occur in a region of 
flow mixing with external ambient or subsonic exter-
nal jet zone contracted by the shock wave. 
     This hypothesis may be confirmed or rejected by 
either direct methods of discovering three-dimensional 
velocity fields, which should be the first task of ex-
perimental research or by indirect methods i. e., 
mathematical modeling. At present time, there is a 
positive answer to this question under a condition 
when the equations describing instability in a mixing 
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layer of a supersonic jet with active centrifugal forces 
allow the presence of stationary unstable disturbances. 
     Centrifugal or rotating instability called Taylor - 
Goertler (T - G) instability was theoretically well in-
vestigated [8, 12-16]. Mathematical modeling is lim-
ited by inviscid frame. This fact has good grounds. 
First, it is known that a mean profile of the longitudi-
nal velocity with a bend is realized in a mixing layer of 
a jet. It means that instability of such flows is defined 
mainly by inviscid convective effects. Secondly, the 
appearance of T - G instability is owed to centrifugal 
forces, which are taken into account in an inviscid 
analysis; hence, we suppose that the influence of other 
forces is secondary. Modeling a mixing layer stability 
of a nonisobaric jet with curvatures in the inviscid 
analysis showed that quasi-stationary waves defined by 
these forces may occur in it. Thus it was found that T - 
G instability and longitudinal vortices may appear in a 
jet. 
     The question about which characteristics obtained 
by calculation may be compared with experimental 
data has arisen. The coefficients of longitudinal fluc-
tuation increase (increments) are supposed to be the 
most informative at this stage. The analysis of investi-
gations [4-9] showed that the measurements define 
irregular diagrams according to azimuthal angle which 
manifest a polymode structure of the disturbances. 
That is why it is necessary to obtain reliable informa-
tion about the spectral structure of a signal in order to 
get transverse pictures of fluctuations by calculation 
and compare them with experimental ones. At present 
time, this spectral analysis was done only in [4, 8], 
which gives small grounds for the hypothesis consid-
ered. All other investigations may be used as informa-
tive qualitative data presenting additional results. This 
fact complicates the problem as all measurements [4, 
8] for jets exhausting at high turbulence and noisiness 
have peculiarities which laminar and pre-turbulent jets 
do not have [7]. Unfortunately, the researchers of [7] 
did not make such spectral analysis of data. 
     Complication of the signal structure with an in-
crease of the Reynolds number of exhaustion is a 
common factor for all papers considered. The photo-
graphs [5, 6] show that at low Red the number of azi-
muthal ”saw teeth’ is small and increases with a rise of 
Red. The measurements [7] prove the same fact. In ex-
periments [4, 8], the signal has a complicated structure. 
     The data about the place of azimuthal inhomogenei-
ties are contradictory. In [4,8,9] they were registered 
only in a mixing layer and were not discovered in a 
compressed layer in the region from the SSW to the 
inner boundary of the layer ( at any high values of 
Reynolds numbers of exhaustion. At the same time, the 
authors [7] stated that this region and the SSW may be 
deformed with Red increase. This difference may be 
connected with peculiarities [7] of exhaustion into 

vacuum space at high nozzle pressure ratios, a fact 
which may intensify the process. 
     The evolution of the signal after the normal shock 
(Mach disc) has not been clear yet. In [4,8] it was 
shown that after passing a triple point only the traces 
of previous intensive fluctuations are present, whereas 
photographs [5] show that neither the number of  “saw 
teeth” nor their intensity change. It may be explained 
by different regimes. In [4,8] the jets are turbulent, in 
[5] they are laminar. 
     Thus after analyzing experimental results we begin 
to discuss mathematical description. Within an inviscid 
analysis [8,12] a qualitative correspondence of the in-
crement order of low azimuthal modes realized in [4, 
8] and reproduction of the azimuthal distribution of a 
signal of excessive total pressure are shown. At the 
same time, a number of factors have been discovered 
which are not adequate to the experiments. 
     The main one is the observed quick destruction of 
high mode components in a spreading jet while calcu-
lations within the inviscid frame show that the incre-
ments of small-scale components increase with a rise 
of the mode number. So according to theory, these 
components should increase intensively. 
     If we take into consideration a great decrease of 
increments and a reconstruction of wave configura-
tions of these modes with an increase of thickness of a 
mixing layer [14-16], we can better describe the real 
dynamics of the disturbances. However, it does not 
settle the theoretical description as there is a number of 
physical processes which should be taken into account 
to describe the spectral characteristics of the distur-
bances in the right way. We distinguish three main 
factors: dissipative influence of viscosity, non-
parallelism of the mean fields of velocity in the first 
barrel, and non-linearity leading to secondary instabil-
ity of longitudinal vortices and changing their incre-
ments. Consideration of these factors defines the re-
search strategy. It is impossible to evaluate preliminar-
ily their importance and take them all simultaneously 
into account in calculation. That is why in the present 
paper one of these factors - influence of viscosity - is 
considered and viscous Taylor - Goertler instability is 
studied. 
     We consider a limit variant of introduction of vis-
cosity into analysis, namely for an incompressed fluid, 
since it is impossible to overcome difficulties in calcu-
lations having axisymmetry (cylindrical coordinates 
with longitudinal curvature). As a result of theoretical 
research we shall have two marginal solutions: the first 
one is within the inviscid frame and the second one is 
with constant viscosity. It should be expected that the 
true solution will be between these two marginal ap-
proaches. 
     Since we have no reliable experimental calculation 
data now, we shall consider first the qualitative influ-
ence of viscous forces on stability of a mixing jet layer 
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and find general regularities of its functioning. A de-
tailed analysis of experimental research was done for 
this purpose. 
     Let us evaluate the quantitative influence of factors 
that are ignored. The change of the first physical 
(shear) viscosity across the mixing layer is not consid-
ered. Moderate Mach numbers 1< M0 <2 were consid-
ered. Regimes with a small change of the average 
static temperature for cold jets are performed. For ex-
ample, for M0=1,5 the difference of static temperatures 
across the layer proportional to 1/ 0ρ   causes a change 
of dynamic viscosity by 20 %, it may be neglected un-
der qualitative consideration. Secondly, the secondary 
(volume) viscosity is not considered. The reason is a 
comparison of two approaches to calculation of the 
spectral characteristics of the disturbances for a super-
sonic boundary layer with and without consideration of 
the secondary viscosity [17]. It appeared that, other 
conditions being equal, the difference of the incre-
ments of the disturbances for low Mach numbers 
makes up some percent and does not affect phase ve-
locities.  
     Probably, the influence of the secondary viscosity 
of stability problems for air is not decisive. At last, 
viscous dissipation of heat is ignored and the equation 
of entropy conservation at the streamline is considered 
instead of the equation of energy as it is in the inviscid 
case of. This simplification may be justified by a 
choice of regimes considered in the research. At low 
Mach numbers, the relative difference of average ve-
locities in a mixing layer is by two times more than the 
relative difference of temperatures, which means that 
viscous dissipation of the dynamic characteristics is 
much greater than viscous dissipation of the heat ones. 
Let us accept it as a true fact for small disturbances. 
     In spite of a great number of simplifications, such a 
statement of the problem is well grounded as the main 
factor - shear viscosity - is considered. Factors, which 
are not considered, vary. Methods of mathematical 
modeling should be used to find and reflect the main 
features of a true process avoiding difficulties. 
     It should be mentioned that within the inviscid 
analysis several families or branches of eigenvalues 
satisfying the boundary-value problem have been ob-
tained. In other words, its polysemantism has been 
shown [8,12,13]. It was found that the increments of 
the disturbances in the main branch are proportional to 
the azimuthal wavenumber and the increments of other 
(additional) branches do not depend on it. In recent 
calculations [14] similar results were obtained for in-
viscid running waves in a plane shear layer with curva-
ture. A more accurate consideration of this problem 
may help to make clear these additional solutions. 
2   Basic formulas and methods  
 
     A compressed layer of the first barrel of an axi-
symmetric ambient nonisobaric jet (see Fig. 5) has 

been considered. Its normal spread is from the SSW to 
the boundary of a mixing layer and the longitudinal 
one is from the near region of the nozzle exit to the 
Mach disc. Shock waves and a change of the mean 
parameters in them are not considered but it is as-
sumed that the SSW position determines the values of 
the radius of curvature  and the centrifugal forces 
proportional to . The longitudinal spread of the 
calculated domain is expressed through the mixing 
layer thickness 

0R

0
2 / RU

δ , which is one of the main parame-
ters. The considered range 65.01.0 << δ  corresponds 
to real thicknesses of the mixing layer. Dependences of 
the longitudinal coordinate x  on δ  determine the lon-
gitudinal conjunctions )(δxx =

N

 connected with the 
type of exhaustion. The values of the nozzle pressure 
ratio  are not specified. A wide range of  which 
may be connected with  was taken. The values 
5< <25 are most realistic. The ambient cold air jet 
with 

N

0

k

0R

R

VP cc /k,4.1 ==  was considered. 
     A compressed layer consists of two sub-regions 
which differ in excessive total pressure. The first one 
spreading from the external SSW region up to the 
maximum value of excessive total pressure (dashed 
line in Fig. 5) is called the “inviscid” sub-region. There 
are the recovery pressure and a small increase of the 
mean velocity up to the maximum value in it. The flow 
parameters are determined from the equations for an 
ideal gas. In the second sub-region, there is a smooth 
transition from the parameters of the external boundary 
of the compressed layer to the parameters in the ambi-
ent space. This is a mixing layer. 
     The profiles of the longitudinal velocity and density 
in the first region are taken as constant and equal to 
their maximum value. It is based on data [18], which 
experimentally show that an increase of the mean ve-
locity at small nozzle pressure ratios is not great as 
well as it is in the problem of stability. The theory of 
hydrodynamic stability states that, in the regions with 
small acceleration, the flow is as stable to small distur-
bances as it is in a homogeneous flow without shear. 
This simplification makes it possible to formulate the 
boundary conditions for the disturbances. In averaging 
the equations, the values of the mean velocity U  and 
density ρ  in this analogue of the potential nucleus are 
taken as typical. 
     In mixing layers δ  the dimensionless profiles of 
the longitudinal mean velocity are prescribed by the 
relation 
 

.2/1,/)(2
),693.0exp()(

11

2

δδη
η

−=−=
−=

rrr
rU                                   (1)  

This problem is devoted much attention to in experi-
mental work [18]. It shows that in a mixing layer the 
distributions of longitudinal average velocities are well 
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described by a universal function, the so-called reverse 
Schlichting profile. Relation (1) derived for a super-
sonic isobaric jet coincides with this universal function 
and has an advantage because it describes better the 
conjugation with the ambient zone near the external 
boundary. As is seen, a change of velocity across the 
layer is greater than  r/1 .
The profile of mean density 0ρ  is connected with U  

by dependence . [ )1 M ] 122
00 2/)1((1

−
−−+= Ukρ

 
Profile (1) has an inflection   ( ) 0'/)'( 0 =rUρ . 
 
There value r  is taken as a typical linear scale on the 
line of half velocity, that is why at . This 
value coincides with half thickness of the mixing layer 
whose spread is 

5.01 ==rU

2/11 δ+<< rr .  
     The Mach number  is also determined by the 
line of maximum velocity. It may be connected with 
the Mach number of exhaustion at the nozzle exit Ma 
by the known isoentropic relation 

0M

 
[ ] )1/(12/)1(12 /)1(22

0 −−Μ−+=Μ − kNk kk
a . 

     Thus, all necessary relations have been determined. 
The scheme of the flow in the first barrel of an under-
expanded jet is shown above in Fig. 5. Here 

 where rRR += 0 r  is a changing radial variable and 

0  is the radius of curvature ( 0 >>R R r ) and angular 
variables ϕ  and γ  are taken as curved orthogonal co-
ordinates. The velocity components v  correspond 
to them.   

u, w,

     The metrical form in this coordinates system is 
, and the Lame 

coefficients are  02

22
3

22
2

2
1

2 coscos γϕ dHdHHdS ++=
,11 =H cosRH ,R−= γ  RH =3 . 

It is natural to assume that in a region we are interested 
in =  and the parameters of the mean field de-
pend on the mixing layer thickness 

0R const
δ  (plane-parallel 

approximation). Then 1≈cosγ  and 
 and the longitudinal coordi-

nate is introduced as 
0321 ,,1 RHrHH ===

γdRdx 0= . 
     The viscous terms of equations of moments are 
written as for an incompressed fluid and the equation 
of energy is reduced to the equation of entropy conser-
vation on the streamline as the in inviscid approxima-
tion.  
     In [12] a complete inviscid system in these coordi-
nates is given. Let us add viscous terms using formula 
[19]. Since the conclusions are complicated, we pre-
sent only the initial system and the final form of the 
linearized equations for the disturbances 
 

[ ]Ω−+−=×Ω++ rotupFuuut graddivgrad/12/grad 2 ρ
0divgrad =++ uut ρρρ  

0grad =+ sust  
.rot,,, uuwvu =Ω=  

 
To exclude the entropy, the adiabat relation is used: 

.)/(ln Vckps ρ=  
     For a one-dimensional mean flow the velocity field 
is written as |)(,,| ''' urUwvu += , where the wave 
components have the form 

. Here  
and  are the longitudinal and azimuthal wavenum-
bers,  is the coefficient of longitudinal increase, and 
the circular frequency 

)](exp[)(' ϕωα ntxiruu +−=
n

iα

rir i αααα ,+=

ω  is real. For waves T - G  
and 

rα
ω 0≅  that is why  

and . The values  determine 
the number of vortices or vortex pairs over the jet di-
ameter, small n  correspond to large-scale vortices and 
big ones correspond to small-scale vortices. 

ϕα neru xi
cos))( −

n

vu ,(' =v ,'

ϕα neriww xi
sin)(' −=

     For T - G disturbances it is impossible to simplify 
the equations similar to those for the near-wall bound-
ary layer and neglect viscous dissipation for the normal 
component of the wave velocity as the inviscid ap-
proximation shows that all disturbances, especially for 
low , are of the same order. n
     The linear system of equations of motion and con-
servation in the dimensionless form in a curved cylin-
drical system of coordinates is written as 

Re,//2/ 100
' VRUupiFv =−+ ρ  

Re,/)/( 20 VrinpiFw =+ ρ  
Re,/// 300

' VRUvpivUiFu =+++ ρα  
,0/// 0

'2
0 =+++++ RvuirinwrvvpiFM α         (2) 

,/)2/(/2/ 00
'22

1 RuiRvvrinwrvDvV α−−+−−=  
,//2/ 0

'22
2 RwrinvrwDwV ++−=  

,/)2/( 00
'

3 RviRuuDuV α+−+=  
,)/(/ 222''' vrnrvvDv +−+= α  

νωα /Re, rUUF =−=  
with the boundary conditions  at  
and 

0,,, →puwv 0→r
∞→r . Here and further the prime denotes a de-

rivative of r . As is seen, besides the additional con-
vective terms ~1/ 0  the senior of which is Uu / 0 , 
there appeared terms in viscous parts of the equations 
connected with geometrical effects. The Reynolds 
number introduced above may be easily transformed to 
the parameters at the nozzle exit, to the frequently 
mentioned 

R R

NdRe
)

L /=Re  and  defining the de-
pendences 

xRe
(δxx = . 
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     System (2) for the variables  was 
solved by the orthogonalization method [20,21]. A 
problem of constructing three linearly independent 
vectors to bring the boundary-value problem to its ei-
genvalues in a cylindrical system of coordinates is a 
difficult one. As usual analytical solutions in the do-
mains of constant parameters of the mean flow - in the 
potential nucleus  and in the far field of the jet 

pvwwuu ,,,,, ''

0→r
∞→r  are applied in which the absence of additional 

centrifugal terms in (2) is postulated. According to 
Morris’ method [17] we obtain: 
 

),()( 2211 rZCrZCu nn λλ +=  
),(/)(/)(/ 2321221

'
1 rrZinCrZCrZiCv nnn λλλαλα −−−= +

),(/)(/)()/( 23212211 rrZinCrZiCrZrnCw i
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Here Z are modified Bessel functions of order , 

 (of the first kind) at  and 
 (of the second kind) at 

n
nn IZ =

2=n KZ
0→r

)/( 1+n
n iπ ∞→r . The 

first vectors in this expression correspond to the invis-
cid approximation and invλλ =1

(Re,iα=

 at Re . The for-
mulated boundary-value problem of eigenvalues for 
the determinant (6× 6) makes it possible to study poly-
functional relations  and find 
the critical Reynolds numbers separating instability 
domains ( ) from domains of stability ( ) 
for T - G waves. 

∞→

), nδ
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3   Results and discussion 
 
     Discussing the results we should begin with some 
general considerations. 
     The eigenvalues of  and , vortex configure-
tions for T – G waves are shown in Fig. 11 in inviscid 
frame. Consider now sequentially the results of nu-
merical simulation of this regime with respect to  
value variation [15,16]:  

rα iα

0R

I. High limiting values of  ( >104). In the limit 

0  this case may be correlated with the isobaric 
flow regime when no trajectory curvature is observed. 
It is seen from figure that the values of increments  
are rather small, they decrease slightly with 0  grow-
ing. The weak variation of the disturbance parameters 
gives grounds to claim that such quasi-steady waves 
will be typical of a free optimum axisymmetric 
M =1,5.  

0R 0R
R ∞→

iα
R

0
     Only one vortex in the interval πϕ 20 ≤≤ n  is 
shown in the figure. The second vortex of this pair is 

symmetric to that shown in the figure and counter-
rotating. 
At low values a vortex pair with approximately equal 
ratio of azimuthal and radial motion is formed near the 
nozzle exit in the near-root region. The vortex center is 
close to coordinate MAXU ' . Advection swirls the vor-
tices in this pair, thus, right- and left- rotating vortices, 
overlapping, change their places to form a vortex core. 
The azimuthal overflow enhances, and the radial one 
decreases considerably. Further downstream the vortex 
orientation does not change. 
 

 
 
Fig. 7. The wavenumbers  and increments  in 
inviscid frame within a wide range  (

rα iα
0R 2,0=δ ;n=16 

(1); n=8 (2); n=24 (3)). Solid lines M=1,5; dashed – 
M=3. 
 
 
IV. Low values of 0  ( ). There is the re-
gime of Taylor-Goertler waves. The longitudinal in-
crements  increase considerably for disturbances 
with < 50. 

R 501 0 << R

iα
0R

     Precisely these 0  values are observed in noniso-
baric underexpanded jets at N >1. The features of Tay-
lor-Goertler waves have been substantially studied in 
[12-16]. 

R

     It was found that the increase of centrifugal forces 
(reduction 0 ) results in vortex localization in the 
mixing layer at small 0  and the downstream dynam-
ics demonstrates the gradual expulsion of the vortex 
into the external region, the process being attenuated 
by  reduction. 

R
R

0

     The downstream reconstruction of the vortex pat-
tern at 0  shown that in the initial root vortex with the 
same order of v and w the radial component is consid-

R

R
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erably reduced and azimuthal one increases. Thus the 
gas particles trajectories in external regions become 
nearly circular as if they flow around the second 
counter-rotating vortex originated near the internal 
boundaries with a considerable radial motion. The cen-
ter of the second vortex shifts gradually from internal 
boundaries to the center of the layer δ  and further to 
the external boundary.  
     At R0=5 the single vortex is formed in the mixing 
layer, its center shifts gradually from the layer middle 
(r~1) towards the external boundary. The ratios of v 
and w are approximately equal there the both compo-
nents grow downstream as well as the axial component 
u. 
 

 
Fig. 8. Search of stationary T-G waves with 0=ω  at 

 1 – Re=1765,  2 - Re=2365, .250 =R ,25=n .30=n  
 
 
     Inviscid parameters of the main branch of distur-
bances [8, 12] obtained at small and finite frequencies 
expressed by the Strouhal number 0/2Sh arπω= , 
where 0  is the speed of sound on the line of the 
maximum velocity were taken as initial basic eigen-
values. It was necessary to make sure that they were 
really close to the parameters of stationary distur-
bances. Figure 8 confirms it.  

a

At Sh   and  does not considerably 
change. It proves that results of the inviscid analysis 
are correct.  

0→ 0→rα iα

     The figure 9 shows the dependences  for 
one of the typical variants of calcula-
tion

(Re)iα

15.0,250 == δR  and 5.10 =M . 
      It is seen (the critical Reynolds numbers  are 
on the axis ) that large-scale vortices (small ) 
lose their stability at lower  and in a certain range 
of Re they have greater increments in comparison to 
small-scale vortices.  The asymptote  
shows the limits of  when the increments do not 
depend on Re (as in the case of the inviscid approxi-
mation). It happens quickly enough for small  but 

with an increase of the mode number the effect of vis-
cosity increases and for  the limit corresponds 
to a high Reynolds number: . This fact may 
be used to explain experimental data. The results of 
rough estimates of the effect of viscosity in [12] have 
been proved. 

cRe

const=

n

0=iα n
Re

iα
iα

30=n
Re

iα
=

510≈

 
Fig. 9. Dependences of (Re) for T - G vortices with  

=== n,5.1MR ,15.0,25 00 δ 5, 10, 20, 30 (1-4). 
 
 
     A more detailed interpretation of this conclusion is 
shown in Fig. 10. The coefficients  for different 
mode numbers  in a wide range of numbers Re are 
shown. The limiting dashed line shows the inviscid 
increments. 

iα
n

 

 
 
Fig. 10. Coefficients  of different modes for the 
same (see Fig. 9) parameters at Reynolds numbers: 
Re=443, 1000, 2000, 5000, 6000 (1-5). 

iα

     It is seen what values of Re make it possible to use 
the inviscid values. Thus it has been found that viscos-
ity leads to a decrease of the increments of T - G dis-
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turbances at moderate Re and it influences small scale 
waves. 
 

 
Fig. 11. Curves neutral stability and lines of equal in-
crease ( ). consti =α
 
 
     The neutral curve and the line of equal increase are 
shown in Fig. 11. The stability region is above the neu-
tral curve =0, the instability region is below. It has 
been found that the mode  is marginal and waves 
with  and 2 are unstable at any parameters of ex-
haustion for .  
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Fig. 12. Critical Reynolds number at different δ  and 

. =5 (family I) and =25 (family II); 0R
=

0R
.0;2.

0R
6.0;40δ  (1-3). 

 
 
     In Fig. 12 the neutral curves determining the de-
pendences of the critical Reynolds numbers on thick-
nesses δ  and radiuses of curvature 0  are shown. The 
figure demonstrates that with an increase of thickness 
of the mixing layer in the process of jet spreading, the 
waves become steady, it is noticeable at high modes. It 
is clear that with an increase of 0  the value of cen-
trifugal forces decreases and their effect become 
smaller. This fact agrees with the conclusions of the 
inviscid analysis. 

R

R

 

     The data of dependences of the increments on the 
Mach number of exhaustion shown in Fig. 13 agree 
with the inviscid analysis. Increments of disturbances 
decrease with an increase of  and soon become the 
decrements (nearcritical Re for =1.5 were investi-
gated). 

0M

0M

 

 
 
Fig. 13. Effects of the Mach number of exhaustion ; 
n=5 (1) and 10 (2). 
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    There is a question about constructing a generalized 
picture in which all considered polyfunctional relations 
should be presented. One variant is given in Fig. 14. It 
is known that considering T - G instability the Gertler 
parameter (or number)  is introduced 
which describes the relation of viscous and centrifugal 
effects. The curves  for  separate 
stability regions (to the left below c  lines) and in-
stability regions (to the right above them). These 
curves calculated at small thicknesses 

0
2 Re/ RG =

)(G n =
Re

Rec const

δ  for typical 
values of the radiuses of curvature give basic critical 
values for all possible parameters of the jets. 
 
 

Fig. 14. Regions of Taylor-Goertler instability in a jet 
 
    The results of research make it possible to consider 
the mechanism of distinguishing modes in the spec-
trum depending on the Reynolds number. We may as-
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sume that under conditions when there is no entrain-
ment of inner nozzle vortices into the free flow or 
when there is roughness of the edges inducing initial 
plume of waves with a certain composition, modes 
with the maximum increments will be released in the 
mixing layer of the jet. 
 

 
 
Fig. 15.  Modes with the maximum increment  on 
various thicknesses of the mixing layer at = 25. 

iα
0R

Re = 500, 750, 1000, 2000, 3000, 4000, 5000, 7500, 
10000 (curves 1-9). 
 
 
     Let us consider Fig. 15 which shows these modes in 
a range of 500 <Re< 104 for one radius of curvature 
R0= 25. It becomes clear that at low Re a dominant 
mode appears which has the maximum increment for 
all thicknesses of the layer δ : these are the mode n = 4 
for Re = 500 and the mode n = 6 for Re = 103. With an 
increase of Re, the number of this dominant mode in-
creases too at small δ  but with an increase of the mix-
ing layer thickness its value shifts to a domain of small 
azimuthal numbers. 
 
     In Fig. 16 a more detailed interpretation of this re-
search is presented which shows the relation of the 
increments of the dominant and neighbouring modes at 
various thicknesses δ . It is seen that at Re=103 (Fig. 
16 a) the mode  is maximum increasing in com-
parison to the neighbouring ones and its increment ex-
ceeds the increments of the neighbouring modes. An-
other situation takes place at high Reynolds number 
Re=104 (Fig. 16 b). In addition to the shift of the mode 
of the maximum increment by small n  (points on the 
curves), the absence of dominance of such a mode over 
the neighbouring ones may be noticed. It proves that at 
high Re the evolution of the spectrum of disturbances 
may be more complicated with evolving of a group of 
modes. 

6=n

     Experiments [5-7] in laminar and preturbulent re-
gimes confirm this fact. Direct measurements and 
visualization of flow cross-sections showed that, at 
moderate Reynolds numbers of exhaustion, low-mode 
wave components are realized. We know now that they 
should have great increments in comparison to high-

mode ones and this process is determined by viscosity. 
Numerous photographs [5, 6] illustrate that with an 
increase of Re the scales of vortices decrease. This is 
shown in [7] by direct measurements, structures with 
11 “saw teeth” at =1950 and with 22 “saw teeth” 
at =4100 were discovered. 

dRe

dRe
 

_ 
 
Fig. 16. Increments of various modes for 250 =R . 
a (Re=103, δ =0.1, 0.3, 0.5, 0.65 (1-4); 
b (Re=104, δ =0.1, 0.2, 0.3, 0.5, 0.65 (1-5). 
 
     Taking into consideration this fact let us explain 
data [4, 8]. Because of initial turbulent regime of a 
flow in calculations of T - G stability of these jets 
Reynolds numbers based on turbulent rather than 
physical viscosity should be introduced. It is impossi-
ble to do now because there is no reliable model de-
scribing turbulence in a free flow but we may evaluate 

T  which can be realized in mixing layers. We may 
use simple algebraic Prandtl  model with a correction 
for compressibility [22]: 

Re

[ ] .42/2.109.0,|/|Re 0
122 −−==
−

MdrdU MAXT βδβ
Then, for example, for 1.0=δ  turbulent Reynolds 
number will be 1200Re =T , this is a range in which 
the effect of viscosity is appreciable. Small-scale fluc-
tuations of high azimuthal numbers brought into the 
flow by a high prime background should have smaller 
increments than those predicted by inviscid theory. In 
addition, the increments of these modes decrease faster 
than others do during the spread of the jet and an in-
crease of δ  which leads to damping of the correspond-
ing components of the spectrum. 
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