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Abstract—In this paper an optimal design of two-stage speed 

reducer is presented. The novelty of this work consists in the 
complex and complete approach of the optimal design of gearings. 
The chosen objective function was the volume bounded by the inner 
surface of the reducer housing. For this example of optimal design, 
eleven genes were taken into consideration and a set of thirty six 
constraints were formulated. In solving the optimization problem we 
used an original two-phase evolutionary algorithm (2PhEA) inspired 
from the evolutionary concept of “punctuated equilibrium”. 2PhEA is 
implemented in Cambrian v.3.2 which is in operation at the Optimal 
Design Centre of the Technical University of Cluj-Napoca, Romania. 
 

Keywords—Evolutionary algorithms, helical gears, optimal 
design. 

I. INTRODUCTION 
HE main goal of this paper lies in emphasizing once again 
the advantages of the optimal design of all sorts of 

products as compared to the classical design. In this particular 
case, we deal with the optimal design of a two-stage speed 
reducer, which is an important mechanical part widely used in 
aerospace industry, automobile industry, lathe, etc. A two-
stage speed reducer optimization problem induces a number of 
challenges especially when the design problem involves gear 
kinematics, geometry and strength. The resulting optimization 
problem involves design variables which can be integer 
(number of teeth), discrete (normal module), and real (gear 
width). Many researchers have reported solutions to this 
problem.  

In the chronological order the first who dealt with this 
problem was Osman [21], in 1978. He made a design 
synthesis of a nine-speed gear drive. The objective of the 
synthesis was to minimize the size of all gears from the mesh 

and speed ratio equations so that the size of the largest gears is 
kept to a minimum. Due to the mesh and speed ratio 
equations, it is found that only the following three 
independent parameters need to be selected: x1, x2 and x3 (x1–
gear ratio, x2, x3 –constraints). Because of practical 
considerations, the minimization of |x2 - x3| was found to result 
in the reduction of the cost of manufacturing the gear drive. 
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In [1], Aberšek described an expert system (STATEX) to 
design and manufacture a gear box. In the first stage of the 
process, genetic algorithms were used to determine the 
optimal dimensions of a gear box (with special requirements) 
then, the expert system took technological requirements into 
account, related to the selection of cutting tool and cutting 
conditions, the special sequence of machining, the tolerances 
etc. 

Other researchers that reported solutions to optimal design 
of one stage speed reducer problem were Kuang et al. in [11] 
and Liand in [16]. However, the solutions reported in [11] and 
[16] are non-feasible. 

Li and Symmons in [15] performed the optimized design of 
helical gear reducer using the minimum centre distance as the 
objective function. 

In [17], [22] and [23] an optimal design problem of a one 
stage speed reducer is presented. In these papers the objective 
was to minimize the weight of the reducer. In [17], [22] and 
[23] the authors used a set of seven variables as follows: face 
width, module of teeth, number on pinion teeth, length of 
input shaft between the bearings, length of output shaft 
between bearings, diameter of shaft 1 and diameter of shaft 2. 
The objective function was subjected to a simply formulated 
(from a mechanical point of view) set of 11 constraints. 
Mezura in [17] utilized this problem only to test one of 
previous version of his Simple Multimembered Evolution 
Strategy (SMES) software. 

Vu in [18], [19] and [20] presented a study of the 
optimization and regression techniques for optimum 
determination of partial ratios of two-step, three-step and four-
step helical gearboxes in order get different objectives 
including the minimum gearbox length, the minimum gearbox 
cross section dimension and the minimum mass of gears. In 
order to reach the above mentioned objectives, Vu started 
from the moment equilibrium condition of the mechanic 
system, which includes all the gear units and their regular 
resistance condition. However the author made a couple of 
simplifications which could affect the optimization results. 
One of these simplifications was made in the calculus of the 
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reducer gearing mass. In this calculus the gears were 
considered as simply cylinders with the base diameter equals 
to the pitch diameter of the gear and with the height equals to 
the gear’s width. In fact the mass calculus is more complicated 
and the result is significant different from the simplified 
variant. 

In [14], Li et al presented an optimal design problem of a 
two-stage speed reducer. The purpose of the paper is to obtain 
the multi-objective optimization design scheme of a gear 
reducer with a Fuzzy Genetic Algorithm (FGA). The authors 
used fuzzy technique to adjust the weights of objective 
functions, crossover probability, mutation probability, 
crossover positions and mutation positions in the process of 
running the genetic algorithm utilized for their paper. The 
design variables used in the optimization problem are: normal 
module, helix angle, tooth width, number of teeth – variables 
corresponding of both stages of the reducer, and transmission 
ratio, in total a set of 9 variables. However they use a set of 
only 7 constraints too little related to the design realities. 

The approach chosen by the authors of this paper for the 
design problem makes it one of the most round works from all 
above mentioned papers. As opposed to the researchers 
mentioned above who were only interested in the 
programming and mathematical aspects of the problem, we 
also took into consideration the strength component utilizing 
in the constraints calculi DIN 3990 [24] norms. With DIN 
3990 we obtained a design problem with a higher level of 
complexity. We dealt separately with the gearing (which in 
this case represents a two pairs of gears – a two-stage speed 
reducer) and the shafts. The separate treatment is related to 
our experience (when we could find a reducer gearing optimal 
design solution it was easy to reach the matching shafts 
solution). The reducer shafts will be the topic of another 
paper. Thus, the objective consists in minimizing the volume 
defined by the reducer housing inner surface. It is known that 
a reducer is a part of an industrial application that has to 
occupy the smallest space possible; its weight is given by its 
housing, which is by far the heaviest part of the assembly. In 
the following subsections, we outline the formulation of the 
optimal reducer design problem in a systematic manner. 

Note that for our design problem we used a set of 36 
constraints and for the shafts problem a set of 61 constraints 
(i.e. a total of 97 constraints), while in [17], [22] and [23] 
there were used only 11 simplified ones. Even in the work 
[14], which is the most complete from all above presented, 
they used only a number of 7 restrictions.  

II. TWO-PHASE ENHANCED EVOLUTIONARY ALGORITHM 
Optimization problems with a very large number of 

constraints can be very difficult to solve. In order to remove 
this shortcoming, a two-phase enhanced evolutionary 
algorithm (2PhEA) inspired from the evolutionary concept of 
punctuated equilibrium is presented in this paper. 

Punctuated equilibrium [12] is a theory about how new 
species evolve that was first advances by paleontologists Niles 

Eldridge and Stephan Jay Gould in 1972 [5]. Before 
punctuated equilibrium, most scientists assumed that 
evolutionary change occur slowly and continuously in almost 
all species, and that new species originate either by slow 
divergence of small, isolated groups or by slow evolutionary 
transformation of whole species. But studies of the fossil 
records have shown that the biological evolution is a strong 
non-equilibrium process with long periods of stasis 
interrupted by avalanches of large changes in biosphere. 
According to the proponents of punctuated equilibrium [5] 
[7], for the majority of time species are in evolutionary stasis, 
with little or no change occurring and hence little or no 
increase in adaptation to their environments. Occasionally, 
often due to some environmental catastrophe (or planetwide 
climatic change [8]), there will be punctuations, periods of 
rapid evolutionary change during which speciations occur. So, 
punctuationists claim that (i) except when speciation occurs, 
species are in stasis and do not become increasingly adapted 
to their environments, and (ii) gradual natural selection alone 
is insufficient for speciation, which requires a punctuation 
event. Therefore the biological evolution can be considered as 
a kind of self-organized criticality (SOC) dynamics [6] and, 
therefore, SOC gives an insight into emergent complexity in 
nature. Bak [2] contended that the critical state was the most 
efficient state that can actually be reached dynamically, and in 
this state, a population in an apparent equilibrium evolves 
episodically in spurts. Local change may affect any other 
element in the system, and this delicate balance arises without 
any external, organizing force. 

In other words, in terms of evolutionary computation, 
evolution of a species consists of exaptations of jumping from 
one hilltop to another nearby in some fitness landscape. 
Naturally such jumps will be rare, separated by large time 
intervals where species are located at a fitness peak, and the 
resulting evolutionary pattern will show punctuations as 
indeed seen in the fossil record [3]. 

Probably punctuated equilibrium is the best known example 
of evolutionary metastability [4]. From the beginning, the 
theory of punctuated equilibrium has inspired many 
computational approaches. Hereinafter we presented some 
significant results. 

Bornholdt and Sneppen [3] have studied evolution of a 
single genetic network, ideally representing a single species, 
in the absence of any competition. The evolution is driven by 
a noisy environment and the evolutionary step consists of 
random mutations combined with selection of mutants 
preserving the phenotype with respect to a given environment. 
Thus, the only requirement in this minimalistic model is 
continuity in phenotype. This simplification allowed them to 
discuss how the requirement of evolving robust networks in 
itself may lead to an evolution which exhibits punctuated 
equilibrium. 

Jonnal and Chemero [10] describe experiments in artificial 
life in which a neural network is artificially evolved to control 
a virtual creature. With the evolutionary algorithm employed 
in the artificial evolution, it was possible to simulate 

INTERNATIONAL JOURNAL OF MECHANICS

Issue 3, Volume 2, 2008 56



 

 

where: punctuated equilibrium: in some trials, instead of keeping the 
overall rate of mutations µ constant for the entire trial, they 
introduced a probability p that µ increased by some factor m 
over the course of a trial, so that for an individual generation, 
there is probability p that the mutation rate is set to mµ. In all 
but one case, the trials that included occasional punctuations 
had final fitness scores that were better than the scores of the 
trials that had no punctuations. 

Lewis et al [13] utilized the punctuated equilibrium concept 
in developing a new Evolutionary Programming algorithm 
that, in addition to the conventional mutation and selection 
operations, implements a further selection operator to 
encourage the development of a SOC system. The algorithm is 
evaluated on a range of test cases drawn from real-world 
problems, and compared against a selection of algorithms, 
including gradient descent, direct search methods and a 
genetic algorithm. The results were very encouraging. 

Martz et al [9] used genetic algorithms in order to design 
reliability experiments. Genetic algorithms were executed in 
batches of 100 generations in order to allow for punctuated 
equilibrium. The best 10 solutions after a given batch has been 
completed become the initial set of designs for the next batch 
of 100 generations. After several batches of 100 generations 
of solutions have been obtained in this way, we finally report 
the design having the highest utility as our desired near-
optimal Bayesian experimental design. 

The authors of the present paper have a totally different 
point of view on implementing the concept of punctuated 
equilibrium in an evolutionary optimization algorithm. We 
think that the high level of stress in the population (which 
determines sudden and massive changes of the species) is 
comparable to the effect of constrains of an optimization 
problem. Therefore, the main idea behind our 2PhEA 
algorithm is its operation in two phases. In each phase, the 
individual's fitness is determined by another factor. In Phase 
1, the individual’s fitness depends only on the way in which 
an individual is more suitable (or not) in terms of constraints. 
In this phase, the population “fight for survival” and there is 
no interest for the best individual. For this reason, the number 
and level of mutations is high, respectively very high. We 
thought this phase as some kind of “feasible individual 
generator”. The algorithm moves into the second phase when 
the number of feasible individuals of the population exceeds a 
preset threshold. Phase 2 is a common evolutionary algorithm 
(sometimes a simple genetic algorithm).  

In the following we present, in short, how to determine an 
individual’s fitness in both phases of the algorithm. The 
optimization problem consists of an objective function f 
accompanied by certain number of constraints. The search 
space is considered the space of the n – dimensional decision 
vectors: 

n – number of genes (variables); 
The constraints of the problem are: 
nu –  inequality type constraints: 
( ) ui nixg ,1,0 =≤  
ns – strict inequality type constraints: 
( ) suui nnnixg ++=< ,1,0  
ne  – equality type constraints: 
( ) esusui nnnnnixg ++++== ,1,0  
In order to use the use this constraints in our algorithm we 

needed to aggregate them in the following form: 
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where: 
ε  – very small positive quantity. 
In each phase, for each individual a so-called score is 

computed. The partial score of an individual (from those N 
individuals of the population) Njx j ,1, = , regarding to the 

constraint i, esu nnni ++= ,1  is calculated as follows: 
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Eventually, the (individual) score of each individual 
Njx j ,1, =  of the population is: 

( ) ( )∑
++

=

=
esu nnn

i
jij xPSxS

1
 (3)  

Obviously, any feasible individual has null score. During 
Phase 1 the population is sorted by the score, and during 
Phase 2, the population is sorted by score and objective value. 
In both phases the fitness of an individual is set according to 
its rank. 2PhEA is implemented in our Cambrian software. 

In Table I, an example of a population of 7 individuals is 
presented, and it is explained how the rank of an individual is 
established according to its capacity to meet the constraints of 
the optimization problem. Not that the rank of feasible 
individuals (#2 and # 6 in this example) are randomly set. 

 

( ) ( ) ( )( )nxxxx ,,, 21 K=  
Table I Example of population ranking in Phase 1 

Constraint 1 Constraint 2 Constraint 3 Ind 
# Value Partial Score Value Partial Score Value Partial Score 

Ind. Score Rank 
phase 1 
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1 52.3 0.17 22 0.07 512 0.31 0.55 4 
2 31.2 0.10 37 0.12 831 0.50 0.72 5 
3 0 0.00 0 0.00 0 0.00 0.00 1 
4 211.0 0.69 0 0.00 294 0.18 0.87 7 
5 0 0.00 8 0.03 0 0.00 0.03 3 
6 0 0.00 0 0.00 0 0.00 0.00 2 
7 11.8 0.04 253 0.79 18 0.01 0.84 6 
∑ 306.3  320  1655    

 
In order to implement such two-phase algorithm it is 

necessary to design some appropriate adjustable evolutionary 
features, even more because the two phases of the evolution 
require different tuning. This should not be considered a 
shortcoming, but an opportunity for fine control of evolution. 
The original evolutionary features discussed here are the 
fitness function and the genetic operators.  

In the design of the fitness function we consider two aims: 
(i) the function should be as simple as possible, even it is 
adjustable, and (ii) the adjustment should be made by meaning 
of a single parameter. With these in mind we propose here a 
linear adjustable fitness function with a single tuning 
parameter, the selection pressure.   

As it was already mentioned, we assume that the fitness 
Φ(j) of an individual j, Nj ,1=  is set according to its rank in 
the sorted population and represents its probability of 
selection. We consider the selection pressure SP as the ratio 
of the best individual’s selection probability to the average 
selection probability of all individuals in the selection pool 
(the whole population here). Since: 

( ) 1
1

=Φ∑
=

N

j
j  

it results that:  

( )
N
SP

=Φ 1 . 

The proposed linear adjustable fitness function has the 
following form: 
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The value of the threshold p should be in the range [pmin, 
pmax], where: 

12
min +−= N
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Np  
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Np 2

max =  

Note that if pmin or pmax exceeds the bounds of the range, it 
will be set to the appropriate bound. In order to reduce the 
number of parameters, that could make difficult the tuning of 
the selection operator, we set the value of the threshold at: 
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Fig. 1 Fitness function (N = 100, SP = 1.5, p = 67) 

 
In Fig. 1 the graph of fitness function is presented in the 

case of a selection pressure of 1.5. A similar or smaller value 
is used in Phase 1, when it is mandatory to not to prioritize 
none/any of the feasible individuals (in order to preserve the 
diversity of population). In Phase 2 the selection pressure has 
to have a larger value. The more an elitist evolution is 
desirable, the larger the value of the selection pressure should 
be set. 

In Fig. 2 the graph of a strong elitist fitness function is 
plotted for a selection pressure of 3.0. 
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The above presented 2PhEA requests adjustable genetic 

operators for recombination and mutation, respectively. These 
two genetic operators are inspired by the Monte Carlo random 
number generators which generate normally distributed 
(statistically independent) numbers.  

In order to present the normal recombination operator let 
us consider two individuals 1x and 2x that will be mated, and 
assume that their k-th gene will suffer the 
recombination: ( ) ( ) ( ) ( )[ ]k

up
k

lo
kk xxxx ,, 21 ∈

x

. Let also assume that 

the parents satisfy the relationship . The obtained 
off-springs are: 

( ) ( )kk x21 ≤

( ) ( ) ( )12111 ln2 uuxy kk ησ ⋅−⋅+=  
( ) ( ) ( )22222 ln2 uuxy kk ησ ⋅−⋅+=  

where: 
u1, u2  – random uniform distributed number on (0, 1), and 
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It is very easy to understand that ( ) ( )( )111 , σkk xNy ∈  

and ( ) ( )( )222 , σkk xNy ∈  (where N(μ, σ) is a normal distribution 
with mean μ and variance σ2). That means that each off-spring 
is part of a normal distribution with one of the parents as 
mean. The standard deviation is adjustable through the value 
of the parameter qc.  If the parameter qc has a small value then 
the off-springs will be generated in the very neighborhood of 
the parents, and if qc has higher value then the off-springs will 
be produced far away from their parents. For this reason in 
Phase 1 we set the qc parameter at higher values (closed to 1), 
and in Phase 2 we used almost always qc = 1/3. 

The two off-springs  should be in the 

range

( ) ( )kk yy 21 ,
( ) ( )[ ]k

up
k

lo xx , . If they exceed these bounds then their values 

will be trimmed. 
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Regarding to the natural mutation operator we constructed 
it in the same manner as the recombination operator. If 

( ) ( ) ( )[ ]k
up

k
lo

k xxy ,∈  is one of the two off-springs obtained after 
recombination and which will suffer a mutation, then the 
mutant is given by the equation: 

( ) ( ) ( )12ln2 uuyz kk ησ ⋅−⋅+=  
where: 

( ) ( ) ( ) ( )( )kk
up

k
lo

k
m yxxyq −−⋅= ,minσ  

Obviously ( ) ( )( )σ,kk yNz ∈  and the mutant ( )kz should be 

in the range ( ) ( )[ ]k
up

k
lo xx , . If the mutant ( )kz exceeds these 

bounds then its value will be trimmed. The strategy of setting 
the parameter qm is the same as those of the setting of qc, and 
the used value were qm = 1/6 … 1/3. 

Fig. 2 Fitness function (N = 100, SP = 3.0, p = 34) 

I. DESIGN PROBLEM FORMULATION 
The aim of our problem is to obtain a two-stage speed 

reducer (Fig. 3) as compact as possible in the following input 
data: 

 
Electrical engine horsepower: 

9.2=P  kW; 
Overall transmission ratio: 

6.7=i ; 
Rotational speed of shaft 1: 

9251 =n  rpm 
Gear necessary life: 

80004,3,2,1 =hL  hours; 
Basic metric rack profile – ISO 53; 
The materials chosen for the pinions are: 
42CrMo4 quenched and tempered at 30001 =HB MPa; 
Allowable Hertzian stress: 7603,1lim =Hσ MPa; 

Allowable bending stress: 5803,1lim =Fσ MPa; 

Fig. 3 The reducer sketch 
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And for wheels are: 
41Cr4 quenched and tempered at MPa; 27002 =HB
Allowable Hertzian stress: 7204,2lim =Hσ  MPa; 

Allowable bending stress: 5604,2lim =Fσ  MPa. 
Safety factor for pitting and bending: 

15.1min =HS ,  
25.1min =FS . 

Tooth root surface factors: 
02.14,3,2,1 =RY . 

Hardness ratio factor for the teeth flank: 
1=wZ . 

II. USEFUL RELATIONSHIPS 
In order to aggregate the objective function and the 

constraints used in this optimization problem, some 
preliminary parameters have to be first determined. 

In the following are presented the relationships, used in the 
reducer gearings calculi. Because the relationships are 
identical for both the reducer stages we present here only the 
relationship corresponding to the first stage of the reducer. In 
these relations the symbols have 2 types of indexes as follows: 

– Indexes “1” or “2” referring to the gears (pinion and 
wheel) of the first stage (as standard pitch diameters d1, 
base diameter db1, working pitch diameters dw1, etc.); 

– Index symbolized with “_1” representing the common 
elements for the gears of the first stage (as normal 
module mn_1, centre distance a_1, preliminary blank 
width b_1 etc.). 

By replacing “1”, “2” with “3” and “4”, and “_1” with “_2” the 
useful relationship for the second stage of the reducer could 
be obtained. 

A. Geometrical values 
Transmission ratio for the second stage: 
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Root diameters, [mm]: 
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Outside diameters, [mm]: 
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Radial outside cylinder pressure angle: 
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Standard pitch circular tooth thickness in normal direction 
and in radial direction, [mm]: 
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Outside cylinder circular tooth thickness in normal direction 
and in radial direction, [mm]: 
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Overlap contact ratio: 
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⋅
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Total contact ratio: 
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Base cylinder helix angle: 
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Working pitch cylinder helix angle: 
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B. Elements of the equivalent spur gears 
Standard pitch diameter of the equivalent spur gears, [mm]: 

2,11_2,1 nnn zmd ⋅=  

Base diameter of the equivalent spur gears, [mm]: 
nnbn dd αcos2,12,1 ⋅=  

Outside diameter of the equivalent spur gears, [mm]: 
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Working pressure angle of the equivalent spur gearing: 
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Working centre distance of the equivalent spurs gearing, 
[mm]: 
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Radial contact ratio of the equivalent spurs gearing: 
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C. Strength parameters 
The strength parameters (ZR, Zv, YFa, YSa, Yδ, Yδst, Zx, and Yx) 

used in this optimization problem are according to DIN 3990. 
To obtain the proper value for the above mentioned factors we 
used the corresponding diagram from DIN. Each curve from 
these diagrams was digitalized. After that, we developed a 
function f which interpolates between the curves from 
diagrams and return the right value of the parameters. 

We developed this function because the difference between 
the values of the parameters obtained with the proper formula 
from DIN and the value given by the function f are significant. 

Surface roughness factor for pressure contact and for 
bending, [μm]: 
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Roughness factors: 
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Sliding speed factor: 
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v
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Velocity factors: 
),(f 2,1lim1_2,1 Hv vZ σ=  

Tooth profile factor: 
),(f 2,12,12,1 nnFa xzY =  

Dimension factor of root stress: 
),(f 2,12,12,1 nnSa xzY =  

Factor of material sensibility to stress concentration at the 
tooth root: 

),(f 022,12,1 σδ SaYY =  
Factor of material sensitiveness to stress concentration at 

INTERNATIONAL JOURNAL OF MECHANICS

Issue 3, Volume 2, 2008 61



the tooth root in static loading: 
),,(f 021_2,12,1 σεαδ nSast YY =  

Dimension factor for pitting and for bending: 
) treatmentH.,(f 1_1_ nx mZ =  
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Number of loading cycles: 
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Life factors for pitting: 
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Life factors for bending: 
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Allowable pitting stresses, [MPa]: 
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Load distribution factor: 
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Zone factor: 
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Helix angle factor for pitting: 
( ) 21

1_1_ cos ββ =Z  

Dynamic load factor: 
)classprecision ,100/(f 2,12,11_ zvK v ⋅=α  
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Tooth flank load distribution factor for pitting and for 
bending: 
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Dimension factor of root stress for pitting and for bending: 
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Hertzian stress, [Mpa]: 
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Load distribution factor: 
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Bending stress, [MPa]: 
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D. Control elements 
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Teeth number for span measurement: 
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Normal and radial span measurement for no backlash 
gearing, [mm]: 
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Curvature profile radii in the measurement points of span in 
radial direction, [mm]: 

2,12,1 5.0 NtNt W⋅=ρ  
Curvature profile radii in the first and in the last point of 

contact, [mm]: 
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Curvature profile radii, [mm]: 
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III. OPTIMAL DESIGN OF TWO-STAGE SPEED REDUCER 
In order to perform the optimal design of the two-stage 

speed reducer it is necessary to set up: the variables (genes) 
that uniquely describe the problem, the objective function and 
the problem constraints. 

Hereinafter, since the optimization will be performed using 
evolutive algorithms, instead of the term variable we will use 
the term gene. 

A. Genes 
The design problem genes are presented in Table II. 
 
Table II Genes of the optimization problem 

No
. 

Genes Range 

Genes corresponding to the first stage 
1 Transmission ratio, i12s 1.12 – 40 
2 Working centre distance, aw_1 71 – 400 

3 Normal addendum modification 
coefficient, xn1 

– 0.5 – 1 

4 Length width coefficient, ψa_1  0.2 – 0.8 
5 Standard pitch cylinder helix angle, β_1 7° – 15° 
6 Number of teeth of pinion, z1 25 – 56 

Genes corresponding to the second stage 
7 Working centre distance, aw_2 71 – 400 

8 Normal addendum modification 
coefficient, xn3 

– 0.5 – 1 

9 Length width coefficient, ψa_2  0.2 – 0.8 
10 Standard pitch cylinder helix angle, β_2 7° – 15° 
11 Number of teeth of pinion, z3 25 – 56 
 
Note that the genes with number 1,2,6,7 and 11 (see Table 

II) have only standardized values in the appropriate mentioned 

range. 

B. Objective function 
The expression of the volume defined by the inner surface 

of the reducer housing is: 
rfrr LAV ⋅=  (4) 

where: 
Afr – frontal surface area of the reducer housing (Fig. 4), 

[mm2]; 
Lr  – width of the housing reducer, [mm]. 

C. Constraints 
The solutions of the optimization program have to satisfy 

the following constraints listed bellow. All values of these 
constraints have to be negative or maximum zero. 

C1–2. The relative error of the actual transmission ratio has 
to be between – 2.5% and +2.5%. 
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C3–4. The Hertzian stress (σH_1,2) should be less or equal to 
the allowable Hertzian stress (σHP_1,2) for both gearings. 

1
2,1_

2,1_
4,3 −=

HP

Hg
σ

σ
 (6) 

C5–8. The bending stress (σF1,2,3,4) at the tooth base has to 
be less or equal to the allowable bending stress (σFP1,2,3,4) for 
all gears. 

1
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σ

 (7) 

C9–12. The normal addendum modification coefficient 
should be in such range that the undercutting of all gears teeth 
does not get worse. 

1
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C13–16. The profile shift should be in such a range that the 
tooth thickness at the top of all gears does not decrease under 
a certain value. 
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⋅
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C17–18. Radial contact ration should be greater than a 
certain imposed value. 
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ε
ε
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C19–20. The normal addendum modification coefficient, 
xn2, 4 should be in the range of [–0.5…1]. 

1
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−
=
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C21–32. For the span measurement, the following 
conditions should be satisfied: 
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C33–34. The number of the pinion teeth z1,3 and the number 
of the wheel teeth z2,4 should be co-prime numbers. 
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C35. The non – interference condition between the high-
speed big gear and the output shaft. 
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C36. The level of oil inside the reducer housing should be 
in the range of [Hmin, Hmax]. 

110
36 −

Δ
=

H
g  (19) 

where: 
ΔH – difference between the upper and lower level of oil, 

inside the reducer case, [mm]. 
minmax HHH −=Δ  (20) 

where: 
Hmax –  upper level of oil, [mm]; 
Hmin –  lower level of oil, [mm]. 

D. Results 
In solving this optimization problem, our own Cambrian 

v.3.2 software was used. Written in Java, Cambrian is a 
platform that allows the assembling of all sort of evolutive 
algorithms in an original manner. 

The values found for all considered genes are presented in 
Table III. 

 
Table III Gene values obtained after optimization 

No. Genes Value 
Genes corresponding to the first stage 

1 Transmission ratio, i12s 2.8 

2 Working centre distance, aw_1  80 mm 

3 Normal addendum modification 
coefficient, xn1 

0.84 

4 Length width coefficient, ψa_1  0.49 
5 Standard pitch cylinder helix angle, β_1 13.5° 
6 Number of teeth of pinion, z1 27 

Genes corresponding to the second stage 
7 Working centre distance, aw_2  100 mm 

8 Normal addendum modification 
coefficient, xn3  

1 

9 Length width coefficient, ψa_2  0.74 
10 Standard pitch cylinder helix angle, β_2 12.75° 
11 Number of teeth of pinion, z3 34 
 
In Table IV, the main characteristics of the reducer gearings 

(classical and optimal solutions) are shown side-by-side. 

IV. CONCLUSIONS 
The comparative study of the solutions shown in Table IV 

leads to the following conclusions: 
The volume of the inner surface of the reducer housing 

calculated with the classical method is 12.269 · 10-3 m3, while 
the optimal design solution offers a smaller volume, equal to 
9.964 · 10-3 m3, i.e. a 18.787% reduction. 

The optimal design solution has the first stage transmission 
ratio almost equal to the second stage. That confirms the 
recommendations found in literature. 

In the optimal design solution the shape of the reducer 
housing is rather like a “cube” than a “parallelepiped”, which 
means that the available space will be used more efficiently.  

 
Table IV Classical and optimal design solutions 

No. Denotation Classical 
solution 

Optimal 
solution 

Main characteristic of the first stage 
1 Transmission ratio 
 i12 1.605 2.814 

2 Centre working distance 
 aw_1, [mm] 100 80 

3 Normal module 
 mn_1, [mm] 2 1.5 

4 Number of teeth of the pinion 
 z1 38 27 

5 Number of teeth of the wheel 
 z2 61 76 
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Fig. 4 Optimal and classical design solutions 
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6 Standard pitch cylinder helix angle 
 β_1, [deg] 15° 13.5° 

7 Pinion width 
 b1, [mm] 45 44 
    

8 Wheel width 
 b2, [mm] 40 39 

9 Root diameters 
 df1, [mm] 71.681 40.42 
 df2, [mm] 118.786 112.106 

10 Outside diameters 
 da1, [mm] 80.214 47.143 
 da2, [mm] 127.319 118.829 

Main characteristic of the second stage 
11 Transmission ratio 

 i34 4.516 2.794 
12 Centre working distance 

 aw_2, [mm] 112 100 
13 Normal module 

 mn_2, [mm] 1.25 1.5 
14 Number of teeth of the pinion 

 z3 31 34 
15 Number of teeth of the wheel 

 z4 140 95 
16 Standard pitch cylinder helix angle 

 β_2, [deg] 15° 12.75° 
17 Pinion width 

 b3, [mm] 68 79 
18 Wheel width 

 b4, [mm] 63 74 
19 Root diameters 

 df3, [mm] 39.492 51.539 
 df4, [mm] 178.37 141.006 

20 Outside diameters 
 da3, [mm] 45.005 58.243 
 da4, [mm] 183.883 147.71 

21 The volume of the reducer housing 
 Vreducer, [m3] 12.269·10-3 9.964·10-3 
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