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Abstract - In this paper we state the properties of fault 

diagnosis through differential algebra and how it can be used 

in conjunction with the Bond graphs modeling to design fault 

tolerant controllers. This controller is applied to a DC motor 

because it is a well known system has a wide range of 

applications. The faults are estimated through a reduced order 

observer to reject their effect on the system. This paper 

represents the first phase in a Bond Graphs´ based approach to 

determine the diagnosability condition.  
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I. INTRODUCTION 

 
A physical system may fail when its observed 

behaviour is different from its expected behavior. Fault 

diagnosis consists on locating the physical fault in a 

structural or mathematical model of this system. Linear and 

nonlinear systems diagnosis has been studied for more than 

three decades, see for instance [1, 3, 8, 9, 27]. In this work 

we deal with nonlinear systems and some of its basic 

definitions may be found on [20, 26, 34]. In [4] is given a 

review of the different fault diagnosis approach for 

deterministic nonlinear dynamic systems. Another appealing 

approach is the one based on differential geometric 

methods, shown in [2, 3, 5, 6, 7, 8, 9, 10, 11]. Alternatively 

some authors have proposed solutions to the fault detection 

and identification problem for a nonlinear system class in a 

differential and algebraic setting, see [12, 13, 14, 15, 16, 17, 

29]. For instance, in [12, 13] an approach has been 

considered to solve the diagnosis problem. It consists in 

translating the solvability of the problem in terms of the 

algebraic observability of the variable modeling the fault. In 

[16, 17, 18, 19, 20] the methodologies employed for the 

observer design only include full order observers without 

considering uncertainty estimation. The information 

provided about the fault dynamics by the algebraic 

observers is normally used by a controller, in this case a 

fault tolerant controller, whose work would be to negate the 

effects of the fault and maintain a system in nominal levels. 

There are different methodologies to obtain a fault tolerant 

control, see for instance [28, 31, 32].  In our paper, the fault 

dynamics is considered as an uncertainty. In the proposed 

procedure, the construction of a full order observer is not 

necessary, instead, a reduced-order uncertainty observer is 

constructed using differential algebraic techniques applied 

to the fault estimation in the diagnosis problem. Using these 

estimations, a trajectory tracking controller was constructed 

through algebraic methods. This controller´s objective is 

that given a system of the form  

 

 
 

 

and a reference output trajectory , , to find a 

dynamic output feedback such that the output y(t) of the 

closed loop system tracks  asymptotically.                                                     

  

The main achievement of this work is to fuse algebraic 

differential techniques of diagnosis with Bond Graphs 

modeling. This will be used to verify the diagnosability 

condition, this condition would imply that, the fault is 

algebraically observable with respect to a differential field 

, and thus the coefficients of the differential 

polynomial are known, see [21]. This paper would be the 

initial phase for the purpose described. 

 

 The need for applying Bond Graphs modeling 

methodology to obtain the differential transcendence degree, 

comes from the difficulty that presents verifying the 

diagnosis condition in some systems, let us remind that the 

theorem found in [21] gives a non constructive proof of the 

diagnosis condition, which, sometimes makes more difficult 

to verify that this theorem is satisfied than to obtain the 

condition itself. The Bond Graph methodology allows a 

graphical construction of the model and to visually verify 

the relationships among outputs, known inputs and faults, 

thus the differential transcendence degree.  

 

  The system classes to which this approach can be 

applied include input dependant systems and its derivatives 

in polynomial form. In this work, we present an application 

to a DC motor, which is widely used in robotics where 

speed and positional control are of utmost importance. The 

proposed faults are a parasitic current in the field section 

and a nonlinear friction. A friction coefficient was not 

chosen because this would represent a motor under ideal 

conditions, instead, the LuGre´s mathematical friction 

model was used, see [23], to show the operation of the 

motor and of the approach under more realistic conditions. 

After that, with the same model of the motor, controller and 

observer we analyzed its behaviour when there was a 

Gaussian white noise at the measurement simulating a faulty 
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sensor. Here we used the algebraic observer as a noise filter 

just by making some adjustments over the observer gains. 

     

The rest of this paper is organized as follows: in section 

2 the differential algebraic definitions are given, as well as 

faults diagnosability definitions and Bond graphs 

terminology. In section 3, the DC motor model is obtained, 

as well as the differential transcendence degree through 

Bond graphs of the output vector. In section 4 we obtain the 

reference tracking algebraic controller, and are shown the 

numerical simulations and the parameters used. In section 5 

this paper is closed with concluding remarks and future 

work.   

 

 
II. BASIC DEFINITIONS 

 

2.1 DIFFERENTIAL ALGEBRA 

 
We start by introducing some basic algebraic 

differential definitions; these can be found in [12, 13, 14, 

18, 21]. 

 
Definition 1. A differential field extension L/k is given by 

two differential fields k and L, such that: (i) k is a subfield of 

L, (ii) the derivation of k is the restriction to k of the 

derivation of L. 

 

Example. ℚ, ℝ and ℂ are trivial differential field extensions 

where ℚ ⊂ ℝ ⊂ ℂ. 

 

Definition 2. Let L/k be a differential field extension. A 

differential trascendental family, which is the greatest with 

respect to the inclusion, is called a differential trascendental 

base of L/k. The cardinality of the base is called the 

differential trascendental degree of L/k and is denoted by 

  

difftrd
o
(L/k)                                                                         (1) 

 

Example. Consider the following system: 

 

 

 

                                                                               (2) 

 

Where u is an input variable which is by definition, 

differentially transcendental over R. From equation (2), it is 

not difficult  to obtain the following relationships:  
 

                                                                                 (3)                                     
                                                       (4) 

                                                           (5) 
 

Then, according to Definition 2 and from Equations (3) 

and (4), it can be concluded that x1 and x2 are both 

differentially algebraic over ℝ , since both x1 and x2 

satisfy an algebraic polynomial with coefficients in the 

differential field ℝ . We can see that x3 is differentially 

transcendental over ℝ, since x3 satisfies an algebraic 

polynomial over ℝ  (see (5)), and not over ℝ. Then it is 

concluded that the cardinality of the transcendental base of 

the extension ℝ /ℝ related to system (2) is equal 

to 1: 

 

difftrd
o ℝ /ℝ = 1 

 
Definition 3. The differential output rank ρ of a system is 

equal to the differential transcendence degree of the 

differential extension  over the differential field k, i.e. 

 

 

 

Property 1.  The differential output rank ρ, of a system is 

smaller or equal to min(m,p): 

 

 

 

where m, p are the total number of inputs and outputs, 

respectively. 

 

Definition 4. A system is left-invertible if, and only if, the 

differential output rank is equal to the total number of 

inputs, i.e.  

 

 
 

Property 2. If a system is differentially left-invertible then 

the input u can be recovered from the output by means of a 

finite number of ordinary differential equations. This 

property was obtained in [33]. 

 

Definition 5. A dynamics is a finitely generated differential 

algebraic extension ( ). Any element 

of G satisfies an algebraic differential equation with 

coefficients being rational functions over k in the elements 

of u and a finite number of their time derivatives. 

 

Example: Let consider the input-output system 

, equivalent to the system: 

 

 

 

                                                                                 (6) 

  

This system has a dynamics of the form ℝ /ℝ  
where G = ℝ ,   y k = R. Any solution of (6) 

satisfies the following differential algebraic equation: 
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Definition 6. Let a subset {u,y} of G in a dynamics 

G/k . An element in G is said to be algebraically 

observable with respect to {u,y} if it is algebraically over 

k . Therefore, a state x is said to be algebraically 

observable if, and only if, it is algebraically observable with 

respect to {u,y}. A dynamics G/k , with output y in G is 

said to be algebraically observable if, and only if, the state is 

algebraically observable  with respect to {u,y}. 

 

Example. System (6) with output  is 

algebraically observable, since x1 and x2 satisfy two 

differentially algebraic polynomials with coefficients in 

, i.e. 

 

 

 

 

 

Statement of the problem  

 

Let us consider the class of nonlinear systems described 

by: 

 

 
                                                                   (7) 

 

Where  is a state vector, 

 where 

u is a known input vector and f is an unknown fault vector, 

 is the output, A and h are assumed to 

be analytical vector functions. 

 

Definition 7. (Algebraic observability). An element 

 is said to be algebraically observable if f satisfies 

a differential algebraic equation with coefficients over 

 

 

Definition 8. (Diagnosability). A nonlinear system is 

said to be diagnosable if it is possible to estimate the fault f 

from the system equations and the time histories of the data 

u and y, i.e. it is diagnosable if f is algebraically observable 

with respect to “u” and “y”. 

 

 In other words it is required that each fault vector 

component be able to be written as a solution of a 

polynomial equation fi and finitely many time derivatives of 

u and y with coefficients in k 

 

 

 

Theorem 1. If system (7) is observable then it is 

diagnosable, if and only if, f is observable with respect to u, 

y, and x. [13] 

Remark 1. This is an immediate consequence of the 

general transitivity property of the observability condition 

[13]. 

 The diagnosability conditions of  f  with respect to u, y, 

and x are generally expected to be simpler than those of f 

only in terms of u and y. In particular, if the system is 

observable then it is possible to reduce the number of time  

derivatives of the data in the fault differential algebraic 

equation.  

 

 A powerful tool to determine if a system is diagnosable 

is the following theorem. 

 

Theorem 2. System (7) is diagnosable if, and only if,  

 where µ is the number of 

components of the fault f.  

For proof of this theorem see [21]                        

 

This theorem can be viewed as a generalization of left 

invertibility as stated in the following corollary. 
 

Corollary . The definition 4 of left invertibility could be 

easily obtained redefining u as an empty set and  f as , then 

we have  

ρ 
 

With µ as the total number of inputs. 

 
 
2.2 BOND GRAPHS 

 

Now we would turn to some basic definitions of the 

Bond graph modeling method, for the full explanation see 

[22, 25]. 

A bond graph is a description of the physical dynamical 

system using lines and arrows. It is an energy-based 

graphical technique for building mathematical models of 

dynamic systems. It shows the energy´s flow among  

components to create a model of a system. Bond graphs is 

better suited to analyze physical systems than the 

conventional block diagram because they are designed to 

work on the principle of conservation of energy and any 

addition of energy or change would be easily noted. 

Through this technique, almost any type of physical system 

can be modeled, even the very difficult as long as they 

exchange energy. 

Each bond represents a bi-directional flow, systems 

which produce a "back force" on the input are easily 

modeled without introducing extra feedback loops. 

Bond graphs use also the principle of power continuity, 

this is for the case when a system dynamics operate on 

widely varying time scales. If this happens, fast continuous 

time behaviors can be modeled as instantaneous phenomena 

by using a special hybrid bond graph. 
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A bond is a connector that simultaneously connects two 

variables, the effort e and the flow f. A bond is shown in 

Fig. 1 

 

 

Where this bond graph is used to address 1-port 

elements, and at the port a single pair of effort and flow 

variables exists.  

The junctions serve to interconnect other multiports 

into subsystem or system models. In the Bond Graph 

modeling there are the 0-junction and the 1-junction. These 

are important for the understanding of modeling through 

Bond Graphs because their objective is to display a physical 

system as a relation of series and parallel connections, see 

Fig. 2. 

 

 

 

 

 

 

On the 0-junction: 

 

 

On the 1-junction: 

 

 

so the 0-junction and the 1-junction can be viewed as the 

Kirchoff´s currents law and voltage law respectively. 

There are two representations for the two port elements, 

which work under the principle that power is conserved. 

These are useful when we need to express a change on 

energy type. See Fig.3.  

 

 

 

 

For the 2-port elements the relations would be: 

 

 

 

 The electrical transformer and gyrator bonds are 

represented in Fig. 4. 

 

 

 

 

 

 

 

 

The mathematical relation for these elements are: 

 For the electrical transformer:  

 

 

where m is the transformer modulus 

 For the gyrator: 

 

 

where r is the gyrator modulus. 

 

 

Our objective is to apply Bond graphs to obtain the 

differential transcendence degree in a DC motor and know if 

it complies with the diagnosability condition, so we need 

first to construct the Bond Graphs model of a DC motor.  

 

In this process, see Fig. 5 a) ,we used a 1 junction  to 

represent the constant current that flows through the 

armature components of the DC motor and the different 

voltages . In  Fig. 5 b), the bond for the construction of the 

field subsystem was also a 1-junction because the current 

remains constant. After that, in Fig. 5 c)  we added a 

Gyrator 2-port element representation for the translation of 

electrical energy to mechanical movement and how this 

effort must be used to overcome LuGre´s friction fL and 

inertia J.  

 

To finish the model we only need to add an active Bond  

from the field subsystem to the Gyrator subsystem to 

represent how small efforts and changes in the field 

subsystem of the motor affect in a greater way the Gyrator 

subsystem. The final Bond Graph model is shown in Fig. 6 

 

 
III. DC MOTOR 

 

Now, the reduced order observer design, which was 

applied to the DC motor model, will be described, see Fig. 

7. The algebraic observer is of great importance since it can 

monitor the variables that the motor needs to work, 

particularly field and armature voltage and current, feeding 

information to the controller. 

 e 

f 

Fig.1   Bond  for 1 port element 

0 
f3 

e 

e 

e 

f2 

f1 
1 

f 

e3 

e2 

e1 

f 

f 

Fig. 2.  0-junction and 1-junction 

TP 
e1 

f1 

e2 

f2 

Fig.3   Bond for 2-port elements 

TF 
e1 

f1 

e2 

f2 
GY 

e1 

f1 

e2 

f2 

Fig. 4   Bond for transformer and gyrator 
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Let us define the DC motor model proposed by [22] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                (8) 

 

Where Le is the field inductance, Re is the field 

resistance, La is the armature inductance, Ra is the armature 

resistance. The state variables are x1 =ie, x2 = ia, y x3 = ω. It 

is considered that all the states are available; this means that 

the output vector is given as: 

 

yi = xi ,  for i = 1, 2, 3. 

 

In this model two faults are considered: F1 is a parasitic 

current, to obtain FL we consider the LuGre´s friction  fL and 

the inertia J as follows: 

 

 

 

The LuGre mathematical model, which has been 

previously validated through experimentation and represents 

a nonlinear friction (It must be noted that the motor load is 

included in the nonlinear friction), a more detailed 

description of this model is on [23, 24].  

 

 

 

                                               (9) 

 

On table 1, can be seen the parameters used for model 

(9).  

  

According to Theorem 2 it is enough to find an 

algebraic relation fault-output; in the proposed model this 

relation is simple to see, in Fig. 8 and 9 the fault appears 

explicitly on the output node.  

 

Once confirmed that the system is diagnosable, the 

following step is to obtain a reduced order observer to  

 

  

 Se/Sf 
ia 

1 

I:La 

R:Ra 

a) 

 

 

 

b) 

Se/Sf 

I

e 

R:Re 

I:Le 
MSe2 

1 

 

 

 1 
kLeie 

GY 

I:J 

FL 
ω 

c) 

Fig. 5  Bond modeling of a DC motor, a)armature subsystem 

modeling, b) field subsystem modeling, c)shaft and friction 
subsystem modeling. 

  Motor diagram using Bond graphs  
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Fig. 7.  DC motor diagram 
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estimate the faults. The convergence proof for this observer 

can be found in [21] so we will not show it here. 

 The general form of the reduced order observer is: 

 

                                                                  (10) 

 

Where denotes the fault estimate  and  

determines the convergence ratio desired by the observer. 

 It must be noted that  is replaced on the observer 

because of its diagnosis condition, this means, an algebraic 

differential equation whose coefficients are in the 

differential field  

 

Note.  Sometimes the output time derivatives (which 

are unknown), appear in the fault algebraic equation, and 

then an auxiliary variable is needed. The system dynamics 

(10) together with   

 

  with    and                    (11) 

 

constitute a proportional asymptotic reduced-order fault 

observer for system (10), where  is a change of variable to 

which depends on the estimated fault f, and the state 

variables. 

 

The diagnosis condition for fault  is shown next: 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

And the observer of  is given next: 

 

 

 

Applying the change of variable: 

 

 

 

It is evident that recovers from 

 

 

 

In the same way for , we must have the diagnosis 

condition. 

 

 

For FL the observer is: 

 

 

 

Where the observer gains are 

.  

 

 

Obtaining a fault tolerant control 

 

Now the algebraic controller construction will be 

shown, This controller is used to compensate for the faults 

of a parasitic current , and the nonlinear friction . The 

algorithm used in this controller design can be seen on [20]. 

Let us define the error dynamics as:  

 

 

 

If  > 0 then the error dynamics is asymptotically stable. 

Then we can propose the following reference tracking 

control for : 

 

TABLE 1.  

PARAMETERS USED IN THE LuGre FRICTION MODEL 

Parameter Value Unit  
σ0 5000 [s-2]  
σ1   [s-1]  
σ2 0.4 [s-1]  
α0 5000 [s-1]  
α1  [s-1]  
α2 0.4 [s-1]  

 

Se/Sf 
Ie 

R:Re 

I:Le 
MSe2 

1 

Fig. 8 Differential transcendence of output 1 

1 

I:J 

FL 

ω 

Fig. 9 Differential transcendence of output 3 
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With 

   where     

 

Then 

                         (12) 

 

Substituting   on   we obtain: 

 

 

Similar terms can be reduced: 

 

 

 

From where, it is clear to see that if  then the 

system is stable and  allow us to have a good tracking 

of the reference signal. 

Now let us suppose that it is desired that  follows a 

time variant reference   then: 

 

 

 

 

We repeat the procedure for the next controller, 

proposing the following tracking reference signal controller 

. 

                 (13) 

 

Substituting u2 we obtain: 

 

                                                            (14) 

 

With λ2 > 0, the controller designed for u2 will be good 

as a tracking reference control. 

 

For the case shown here λ1=10 and λ2=250. 
 

 
 

IV. NUMERICAL SIMULATIONS 

 

The parameters used for the first part of the 

experiments 
1 
are shown on Table 2. 

  

In this section, firstly are shown the results of applying 

the controller and observer to the system and analyzing the 

results from the perspective of the currents to maintain a 

close following of the reference signal. On Fig. 10 and 11 

the field and armature current are shown. The objective of 

the controller is to force the field current to follow a 

constant reference signal even though the parasitic current 

fault is present, because the control of a DC motor is 

through the armature current. On Fig. 12 can be seen the 

graphic of the LuGre´s friction against its estimated, which 

closely follows the reference friction.      

 
 

 

 

 
 

 

 

On Fig. 13 it is shown the reference signal´s simulation 

for velocity,  for which a sine function was chosen, which 

has an amplitude of 200, representing a top angular velocity 

of 200 rad/sec, on the Figure 13 are shown the motor 

velocities using the controller and considering the fault 

effects.  

 

And on Fig. 14 are shown the field and armor voltages 

that represent the system control vector. This part of the 

simulations has been useful for showing that this control is 

able to follow the reference with a minimal error as can be 

appreciated on the figures.  

 

Now let us change the conditions for a new test of this 

controller and its reduced order observer. Let us suppose 

now that the element in charge of obtaining the 

measurements is faulty and it is adding Gaussian noise.  

This would be represented as zero mean Gaussian noise, and 

is present at the field current, see Fig. 15. 
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Fig. 11. Armature current 
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Fig. 12. LuGre´s friction 
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In this part the reduced order observer was applied, but 

not to follow the noise but to filter it, with its gains adjusted 

as β1 = 10 and  β2 = 50, This observer was able to discard a 

good part of the noise and to follow the real signal with a 

good estimated signal, as Fig. 16 shows. After that, a 

controller was applied with the goal of following a reference 

even though the noise and the two original faults.  
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

The LuGre´s friction model is still used to represent the 

nonlinear friction and as can be appreciated in Fig. 17, the 

added noise causes some oscillations and the observer gains 

are adjusted at lower levels to avoid noise amplification. On 

Fig. 18 and 19 are shown the armature current and voltage 

respectively, they also struggle but are able to follow the 

change of speed given by the reference. 

 

 On Fig. 20 is shown a comparison of the velocities, the 

reference and the real one. The remarkable property is that 

the reference is a sine saturated to represent constant parts, 

and that even though the noise at the measurement, the 

parasitic current and the nonlinear friction, the real behavior 

follows very closely the reference only with little problems 

following the constant part, with an error in steady state of 

0.5% of the desired velocity (< 1 rad/sec). The controller 

was adjusted with λ1 = 10 and λ2 = 250. 

 

 A last test run of the simulation was performed where 

we saw how the system behaved without consideration for 

the fault. In Fig. 21, is shown that the angular velocity of the 

motor is affected and not able to reach the constant part 

desired, the motor can not compensate the friction and the 

noise in the measurement is not eliminated. The controller´s 

performance improves when utilizing the faults estimates.  
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Fig. 13. Field and armature voltages comparison 

TABLE 2 

DC MOTOR PARAMETERS 

Parameter Value Unit  

Le 20.5245 [H]  
Re 320.6955 [Ω]  
La 0.00436 [H]  
Ra 4.12844 [Ω]  
k 1 [dimensionless]  
J 0.000043665 [kg·m

2
]  

 

Fig. 14. Comparison of velocities 
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Fig. 15. Field current with Gaussian noise. 

Fig. 16. Field current filtered. 

Fig. 17. LuGre´s friction. 
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V. CONCLUDING REMARKS 

 

On this article, we have introduced a first approach to 

the relation between fault diagnosis using differential 

algebra and Bond graphs. Also, a tracking reference 

controller was designed that is able to use the fault estimates 

to negate their effects on a DC motor angular velocity. A 

second test was developed where the observer was used as a 

noise filter in a scenario simulating Gaussian noise at the 

input. As future work, it is planned to develop a 

systematical method to obtain the differential transcendence 

degree of  through Bond graphs for more 

complex systems. 
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Fig. 20. Velocities comparison.  

Fig. 21. Velocity without considering faults effects.  
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