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Abstract—A large number of methodologies have been 

suggested over time for determining the elastic properties of either 
isotropic or anisotropic materials. Currently, there is still great 
interest in this topic, mostly toward the development of new 
methodologies for the characterization of composite materials for 
which the traditional tests are generally expensive and time-
consuming. In the present paper, the feasibility of using the so-called 
“mixed numerical/experimental technique”, a promising and recently 
introduced methodology, is investigated. In particular, the paper 
reviews the recent progress made at the University of Calabria where 
approaches based on both static and dynamic tests have been 
developed. 
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I. INTRODUCTION 
KNOWLEDGE of the elastic properties of materials is 

important for many reasons. It is essential for both 
structural design and experimental mechanics but it also 
allows the assessment of the performance of newly developed 
materials and can provide information on the quality achieved 
during the manufacturing process and can serve for structural 
health monitoring. Great effort has been devoted to 

developing methodologies for the elastic characterization of 
materials. Such methodologies are commonly classified into 
approaches based on static tests and approaches based on 
dynamic tests (Fig. 1). 
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The static approaches are mostly based on the direct 
measurement of stresses and strains undergone by suitable 
specimens, during certain mechanical tests (tensile, 
compression, bending, torsion, etc). ASTM [1] and ISO [2] 
provide many standards for determining the elastic properties 
of isotropic as well as composite materials. These norms 
recommend the use of standard sized and shaped specimens. 
In the case of composite materials, they involve the analysis of 
a large number of specimens and consequently tedious and 
time-consuming procedures [3]. Nevertheless, these tests often 
yield poor results for properties such as shear modulus 
encouraging the development of specific methods to improve 
the accuracy in the identification of such a modulus (rail 
shear, picture-frame shear, off-axis tensile shear and Iosipescu 
shear tests are, just a few examples of these). 

The above-mentioned methodologies usually require a 
significant range of stress-strain data to determine useful 
averaged values of the moduli. This necessarily involves 
destructive tests, as the deformation of the specimen must be 
measured until it fails, that is, until it deforms plastically or 
fractures. In either event, the sample is destroyed, and then is 
unavailable for further testing or other purposes. 

In comparison with static approaches, dynamic approaches 
have the advantage of allowing the use of specimens with a 
greater variety of shapes and dimensions, and supplying, non-
destructively, very precise measurements at a wide range of 
temperatures. Dynamic approaches can be classified into two 
groups: wave propagation based methods and modal vibration 
(or resonant) testing.  

Much research has been dedicated to evaluating the 
possibility of measuring the material elastic properties by the 
methods belonging to the first group. Among these, the more 
commonly used is based on the measurement of the ultrasonic 
speed of wave propagation through the material or, in 
particular, the measurement of the transit time; i.e. the time 
that an ultrasonic impulse takes to cross a sample from the 
emitting transducer to the receiving transducer. Knowing the 
dimensions and the density of the specimen and the transit 
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Fig. 1 Classification of the methodologies employed to determine the elastic 
properties of solids. 
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time of the transversal and longitudinal waves it is possible to 
calculate the Young modulus and the shear modulus of the 
material. Although these techniques are robust and quick to 
perform, they suffer the disadvantage of being sensitive to 
possible local inhomogeneities of the material between the 
transducers. In spite of the availability of ASTM standards [4] 
and patents [5, 6, 7], such methods are still not so largely 
used.  

Ease of use and inexpensive equipment have recently 
increased the use of modal vibration testing in both research 
laboratories and industrial contexts. Such tests consist of 
making a specimen vibrate mechanically, in the sonic and/or 
ultrasonic frequency field, at one or more vibration resonant 
modes. A knowledge of the resonant modal shapes and/or the 
values of the associated frequencies together with the sizes 
and mass of the sample allow the determination of the elastic 
constants of the material. ASTM had provided standardized 
procedures for testing isotropic materials [8-9], while no 
standards have, till now, been provided for anisotropic 
materials.  

Independently of the approach followed (static or dynamic) 
an ideal methodology for determining the material elastic 
properties is a methodology which allows the simultaneous 
measure of all the unknown elastic parameters by testing a 
single specimen non-destructively. It would be even better if 
the methodology is also suitable for characterizing specimens 
of various shapes. This would be very useful when the 
production of proper bulk specimens is not feasible or when, 
the object to be analysed must not be damaged and reduced in 
a conventional testing geometry and, therefore, should be 
tested as it is. 

However, the elastic constants can be determined directly 
and quickly if the relationships relating the elastic properties 
to the measured quantities are known in the form of analytical 
equations. In such a case, the elastic problem becomes a 
simple inverse problem and the unknown properties can singly 
be backed out of each equation or can be simultaneously 
determined by solving a system of equations. Unfortunately, 
often, the determination of the analytical equations depends in 
a complicated way on the boundary conditions and the shape 
of the specimen and so they can be obtained for simple 
geometries and boundary conditions only. Nevertheless, when 
these equations are not available, the inverse elastic problem 
can be solved by recurring to non-direct methodologies using 
iterative optimization procedures. 

Recently, a promising non-direct methodology for 
identifying all the material elastic constants of either isotropic 
or orthotropic any-shaped plates simultaneously, with a single 
experiment and without damaging the plates was proposed. 
Such a methodology is suitable for both static and dynamic 
approaches and was investigated by the author and co-workers 
in several separate papers [10-20]. The static approach 
involves the measurement, by an optical technique, of the 
superficial displacement field of a suitably loaded specimen, 
while the dynamic approach requires the measurement of the 
natural frequencies of the first modes of vibration of the free 

specimen. Such a methodology is based on a process that 
minimizes an error function based on the difference between 
the dynamic or static response of the real plate (measured 
response) and the response of the same plate predicted by a 
numerical model (calculated response). This method updates 
the values of the elastic constants of material in the model 
iteratively, until the calculated response matches the measured 
response. The values of the constants used in the last iteration 
are the elastic properties of the material.  

The present paper synthesizes the current state of the art in 
the field of elastic characterization of materials with a 
particular emphasis on the procedures and equipment 
developed at the University of Calabria. 

II. THE NUMERICAL-EXPERIMENTAL METHOD 
The identification of the elastic constants of a material is an 

inverse problem that can be formulated and resolved as an 
optimization problem [21].  

The flow-chart of a solution procedure is illustrated in Fig. 
2. In synthesis, starting from an arbitrary initial trial set (initial 
solution), the set of elastic constants is updated iteratively 
(new solution) and this is given as input to an analytical or 
numerical model simulating the behaviour of the structure 
until its output (calculated response) fits the experimental data 
(measured response). The last set of constants (the best 
solution) identifies the elastic properties of the material. In 
particular, the process attempts to minimize an error function 
based on the differences between the calculated and measured 
response of the structure under examination and stops when 
this is less than a fixed value. The optimizing technique to be 
used to generate new guess solutions must be selected on the 
basis of the number of unknown parameters and the shape of 
the error function. 

The structure must be excited with a suitable static or 
dynamic input and the response chosen so that, for fixed 
geometry, dimension and material density, it depends, 
exclusively, on the elastic constants of the material. 
Independently of the nature of the response, the numerical 
operations described above can only be done after a set of 
experimental measurements including the measurement of the 
size, shape and mass of the structure and obviously the 
measurement of its response to the input excitation are carried 
out.  

In the following sections, the numerical and the 
experimental procedures and equipment for characterizing 
isotropic or anisotropic plates via static or dynamic tests will 
be illustrated. In each case, the FEM (Finite Element Method) 
is used to simulate the structural response. The numerical 
stage requires a series of operations on a computer. First, a 
CAD model of the plate must be created with the same 
geometry and size as the real plate. Then the density of the 
material is computed as the ratio of the volume of the model to 
the mass of the plate. Then the CAD model is meshed, and 
finally, the topology of the mesh, the material density and the 
trial values of the elastic constants are used as input, for the 
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Fig. 2 Schema of a procedure for the elastic characterization of materials. 

FEM code to calculate the structural response.  

III. APPROACHES BASED ON STATIC TESTS 
The idea of determining the elastic constants of a material 

from the surface displacement fields of specimens subjected to 
a static load has been exploited by many researchers. 
Following the approach first proposed in [22], several 
different methodologies have been developed over time [23-
39]. Recently, inverse procedures based on finite element 
model updating have been proposed for both pointwise [40] 
and full-field measurements. In the last case, experimental 
data (strain or displacement fields) are usually measured on 
the surface of the specimen with an optical method, for 
example, an interferometric technique that enables the full-
field surface displacement of an object to be determined with 
a very high resolution without any contact with the 
investigated surface [41]. 

Different tests and optical techniques have been used: in-
plane loaded rectangular plate with speckle interferometry 
[42], open-hole uniaxial tensile tests with Moirè 
interferometry [43], and cruciform specimens under biaxial 
tests with digital image correlation technique [44].  

In addition, a method that combines finite element analysis 
and generic algorithms in order to identify the elastic 
constants of materials from the full-field measurement of the 
surface displacements of plates under flexural loads was 
developed and presented in [10] by the author of the present 
paper. The method was tested on a thin square plate subjected 
to an out-of-plane loading condition but it is also suitable for 

characterizing both thin or moderately thick any-shaped 
anisotropic plates subjected to in-plane or out-of-plane 
loading and constraining configurations. In the paper, the 
feasibility of using the displacement component normal to the 
surface detected by speckle interferometry was investigated, 
but the methodology could be coupled with any optical 
technique, whatever the displacement components detected. 
Theoretical aspects of the methodology, numerical simulations 
for testing the accuracy and sensitivity of the method and an 
application to characterize metallic plates were presented.  

It is worth pointing out that the amount of data provided by 
an optical whole-field technique is generally in excess of the 
data strictly necessary for identifying all the unknown elastic 
properties. It follows that any material characterization using 
this approach becomes an over-posed inverse problem. 
Obviously, an accurate solution can only be obtained if the 
problem is well-posed. For this reason, great care needs to be 
taken in choosing the geometry and the way of loading and 
constraining the specimen in order to obtain displacement 
fields containing sufficient information for determining all the 
unknown parameters quickly and unambiguously. In addition, 
to reduce the effect of the measurement uncertainties on the 
solution, the displacement must also be sufficiently sensitive 
to the variation in each elastic parameter. 

The author has proposed in [10] a numerical procedure for 
optimising the loading and constraining conditions of the 
specimen. The procedure consists in determining the 
conditions which minimize the ‘‘correlation index’’. This 
index represents the degree of statistical correlation between 
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the variation in the displacement fields due to a variation in 
the elastic constants and its absolute value is, by definition, 
less than or equal to unity. In the case of isotropic plates the 
correlation index is the same as the well-known correlation 
coefficient, while for orthotropic plates the correlation index 
is the mean of the absolute values of the correlation 
coefficients.  

Such a procedure can be used to identify loading and 
constraining configurations that are practical and simple to 
replicate in the laboratory and also optimized with a view to 
obtaining faster and more stable solutions. Applications of the 
procedure can be found in [11] in which it was used to finding 
a suitable configuration for testing a square plate, and in [12] 
and [13] for testing any-shaped plates. In Fig. 3 the mean 
maps of the correlation coefficients (obtained by considering a 
sufficient number of either isotropic or orthotropic materials) 
of an irregularly-shaped specimen are reported. The fields of 
the out-of-plane components (normal to the surface) of the 
displacements, undergone by the upper surface of the plate, 
were considered. On the left of the figure the shape of the 
specimen is schematically represented: the small squares 
indicate the location of the support points (in these optimized 
configurations the plate was simply supported on three points 
lying on the corners of an isosceles triangle), while the small 
circle represents the point of the application of the load, which 
is varied in the numerical simulation in order to evaluate the 
correlation maps. The maps for isotropic and orthotropic 
materials (with the fibers parallel to the y axis) are reported on 
the centre and on the right of the figure, respectively. More 
dark is the area of the correlation maps, more low is the 
degree of correlation and better will be the choice for the 
loading point. By observing the maps of several differently 
shaped isotropic and orthotropic plates, it has been noticed 
[13] that in the first case a common loading area with a very 
low value of the correlation index is always found, while, in 
the second case, a loading area with a suitable correlation 
index is obtained only for the square shaped plates. As a 
consequence accurate and fast solutions are insured for both 
any-shaped isotropic plates and square orthotropic plates. In 
[13], an experimental set up and the feasibility of testing 
isotropic plates of generic form and orthotropic square plates 
was investigated and the results of the experimental 

assessment are reported and discussed.  
In Fig. 4, the two main steps of the identification procedure 

are illustrated: the experimental measurements and the 
application of the genetic algorithm. The experimental step 
requires the measurements of the dimensions and mass of the 
plate, the applied load and the displacement field. Such data 
are necessary for the construction of the finite element model 
and for the numerical identification procedure starting at the 
second step.  

The components of the experimental apparatus for 
measuring the displacements, which are described in detail in 
[13], are shown in the sketch of Fig. 3. The apparatus was 
assembled on an optical bench supported by pneumatic 
vibration isolators. The laser beam is filtered and expanded 
and the resulting spherical wavefront is divided by a 
beamsplitter into two equal intensity beams. The specimen 
and the reference surfaces are horizontal and are illuminated 
and observed by a 45° oriented mirror with the respect to the 
propagation direction of the beams. The scattered speckle 
wavefronts interfere at the image plane of the CCD of the TV 
camera. The camera is interfaced with a general purpose 
computer image processing system where the real time fringe 
patterns are generated by the subtraction of digitalized images. 
Essentially, the optical setup constitutes a speckle 
interferometer, based on the Michelson design, for measuring 
the out-of-plane component of displacements. The rigid body 
motion of the specimen due to the compliance of the fixture 
was compensated for by modifying the fitness of the genetic 
algorithm according to the least-squares method.  

The applicability and the robustness of the procedure were 
proved with success on aluminium and unidirectional 
Graphite/PEEK laminate specimens. The results obtained for 
both the materials have shown a high repeatability and a good 
agreement with the reference values obtained with other 
measuring techniques. 

A series of numerical simulations carried out considering 
different layer orientations and numbers of layers has shown 
the procedure to be unsuitable for the elastic identification of 
unidirectional laminates with the fibers oriented in the x-axis 
and for multidirectional laminates. 

A very good robustness of the procedure with respect to the 
effects of measurement noise was demonstrated by adding 

 

       
 
Fig. 3 Correlation index maps of isotropic (centre) and unidirectional (right) laminates. 
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Gauss noise to the input displacement field. 

IV. APPROACHES BASED ON DYNAMIC TESTS 
The measurement of natural frequencies of specimens 

vibrating in a single mode has been used for many years and is 
still used today for determining the elastic properties of 
materials. A typical methodology consists in subjecting the 
specimen to a vibration test to measure a single modal 
frequency (usually, the first or fundamental mode frequency) 
and then substituting the measured value into a “frequency 
equation”. Such equations relate the fundamental resonant 
frequency to the sizes and the mass of the specimen and 
generally to only one elastic constant of the material. The 
latter can then be calculated in a direct way if the other 
quantities are known. Unfortunately, the frequency equations 
are known only for some simple specimen geometries and 

boundary conditions. Free-edge specimens such as bars or 
rods [45] and cantilever beam [46] are commonly used for the 
characterization of homogenous and isotropic materials. 
ASTM E1875-00e1 [47] establishes the application 
procedures for determining Young’s modulus, shear modulus 
and Poisson’s ratio of free bars or rods from the fundamental 
flexural and torsional resonant vibrations. The test consists in 
forcing the specimen to vibrate at a single but variable 
frequency by means of a suitable exciter system, while the 
dynamic response is detected by a proper receiving transducer 
and transformed into an electrical signal, which is analysed 
with a suitable system for extracting the fundamental resonant 
frequencies. Finally, the elastic constants are calculated with 
some recommended numerical procedures based on the 
frequency equations. Even if the test procedures can be carried 
out automatically by computerized systems [48], they are 
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Fig. 4 Elastic identification via static test. 
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typically slow and cumbersome. However, the advent of 
computers has made it possible to fast Fourier transform 
(FFT) a signal in real time and this has made impulsive 
excitation more attractive to use. This technique is fast and 
inexpensive and can be used on either small specimens or full-
scale structural components. It is recommended in ASTM 
E1876-01 [49] for characterizing free-edge bars and rods 
following procedures similar to those indicated in ASTM 
E1875-00e1 [47]. 

It is worth noting that ASTM standards cover the 
determination of resonance frequencies and elastic properties 
of specific materials providing test methods that differ one 
from the other in several ways (for example; sample size, 
dimensional tolerances, sample preparation). Moreover, 
nowadays, systems for the elastic characterization of materials 
based on the standards mentioned above are available 
commercially (see, for example, [50] and [51]). These test 
methods are particularly appropriate for materials that are 
elastic, homogeneous, and isotropic and specimens or 
structures must have specific geometries. Sometimes, the 
measurement of elastic properties is carried out directly during 
manufacturing on end products constituted of various 
materials with geometries different from those mentioned 
above and in conditions different from the environmental 
conditions. As a result there have been a certain number of 
international patents [52-57]. 

All the direct methods mentioned above involve beam 
specimens and resonant frequency measurements. It is worth 

noting that some direct methods based on single modal testing 
involving both resonant frequencies measurements and mode 
shapes measurements have been developed for characterizing 
rectangular plates. In these methods, approximate analytical 
solutions providing explicit parameter dependencies are 
proposed (e.g., solutions obtained applying the Rayleigh 
method [55] or the concept of sinusoidal equivalent length 
[58, 59]). These methodologies have, unfortunately, the 
disadvantage of requiring sophisticated techniques to measure 
the mode shapes but, in compensation, they are also suitable 
for the elastic characterization of anisotropic plates. 

As highlighted above, direct methods based on single 
modal testing are easy to apply to simple structures such as 
beams or rods, but generally it is difficult to apply them to 
more complex structures such as plates and shells (Fig. 5). 
More precisely, they are not applicable when the frequency 
equations are known but modal frequencies depend on more 
than one elastic constant or when the frequency equations are 
unknown in a closed form. In these cases, direct or indirect 
methods based on multiple mode testing must be used (the 
possible applications of the current available methodologies 
are summarized in Fig.5).  

ASTM [47] and [49] provide procedures for isotropic 
circular thick plates with free edges by which Young’s 
modulus and Poisson’s ratio are obtained directly from the 
first two resonant frequencies of vibration excited by forced 
continuous wave and impulse, respectively. The shear 
modulus is then calculated exploiting the well-known 
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relationship for isotropic materials relating it to Young’s 
modulus and Poisson’s ratio. Recently, Nieves et al. [61] 
reported a direct methodology for characterizing free short 
cylindrical isotropic specimens by using only two of the first 
resonant frequencies. More recently, Alfano and Pagnotta [62] 
have proposed a direct method for testing thin isotropic 
rectangular plate with free edges. Such method is based on 
suitable approximated frequency equations obtained by 
correcting the Warburton formulas [68] with proper factors 
obtained from an accurate finite element analysis. The 
procedure requires the measurement of at least two of the first 
four natural frequencies in order to determine the Young 
modulus and Poisson ratio of the material sample. The 
experimental assessment of the method was carried out on 
square plates made with a variety of different materials [63, 
66] and on aluminium rectangular plates [67]. In the papers 
tables and formulas for practical use are reported. 

It is worth noting that Grediac and al. [102, 103] treated the 
more general case of anisotropic plate specimens of any 
shape. In these cases the frequency equations are not known 
but they proposed an original approach based on the Virtual 
Field Method. This method without requiring initial estimates 
of the stiffness or iterative computations allows the direct 
determination of the flexural stiffness from natural frequencies 
and mode shape measurements. Unfortunately, this 
methodology is not very practical to use because it has the 
disadvantage of requiring sophisticated and expensive 
techniques to measure the mode shapes. 

When the frequency equations are not available, the inverse 
problem can be also solved indirectly using iterative 
optimization procedures.  

Ohno [69] first introduced a technique using such a kind of 
identifying procedure. This technique, known now as RUS 
(acronym of Resonant Ultrasound Spectroscopy) [70-73], 
identified the elastic constants through a process minimizing 
the difference between the calculated and the measured 
frequency spectrum of parallelepiped-shaped samples. The 
values of the material elastic constants were updated 
iteratively in a numerical model able to calculate the 
resonance frequencies of the sample, until the calculated 
frequencies approximated as closely as possible the measured 
frequencies. The resonance measuring system for very low 
dissipation materials consisted in a little rectangular 
parallelepiped specimen lightly held between two 
piezoelectric transducers. One transducer was used to generate 
an elastic wave of constant amplitude and varying frequency, 
whereas the other was used to detect the resonances. The 
identification of all the elastic constants took place 
simultaneously without damaging the specimen. 
Consecutively, Migliori invented a resonance spectrometer 
which can also be used with high dissipation materials [74] 
and developed software dedicated to derive the elastic 
constants from natural resonant response data using the 
subroutine implemented by Ohno. Today, the RUS technique 
allows small anisotropic cubic, spherical or cylindrical 
specimens to be characterized and appropriate instrumentation 

packages are commercially available. 
Successively, numerous different dynamic approaches, the 

so-called mixed numerical-experimental techniques, for 
characterizing square or rectangular plates of great dimensions 
have been introduced in the literature. These approaches 
require the measurement, in the sonic field, of a small number 
of natural frequencies of the free plate. De Wilde et al. [75, 
76] and Deobald and Gibson [77] almost simultaneously 
proposed two similar approaches for determining the elastic 
constants of composite plates with free edges. Gibson and 
Ayorinde [78], in particular, obtained a patent for a method 
and apparatus that allow the determination of the four 
independent elastic constants (longitudinal and transverse 
Young’s moduli, in plane shear modulus and major Poisson’s 
ratio) of a composite material from the modal resonance data 
of freely-supported rectangular thin plate. The impulse 
excitation technique together with dedicated software for 
calculating properties from the vibration data, still today, 
constitute one of the most popular vibration systems for 
determining composite elastic constants. The analytical 
approaches based on the Rayleigh–Ritz [75-81] or Rayleigh 
[82-86] methods and the numerical approaches based on the 
finite element method [14-20, 87-95] have been adopted for 
determining the elastic constants of materials. 

Thick rectangular plates were used to determine all five of 
the engineering elastic constants of transversely isotropic 
materials. In this case, the transverse properties, such as the 
through-the-thickness shear modulus, are determined by 
including not only the effects of bending, but also transverse 
shear and rotary inertia effects in describing the vibration 
behaviour of the plates [14, 90-93, 96-98]. 

It has been shown that Poisson’s ratio and the transverse 
shear modulus are not as sensitive, with regard to the 
eigenfrequencies, as the other parameters. A way to 
circumvent this low sensitivity and identify the material 
properties accurately consists in using a specific size of the 
plate [58, 80, 98] and/or processing either the natural 
frequencies or the mode shapes of the plate [83-86]. The 
optimal design of the plate has to be determined in advance by 
preliminary tests. A method was presented in [99] whereby 
the Poisson’s ratio and the other in-plane elastic properties 
were determined by matching the experimental modal testing 
results with theoretical modal analysis calculations for a set of 
plate bending modes and one in-plane compression mode. A 
great part of these techniques involves the measurement of 
natural frequencies of samples or structures while only a few 
of them also involve mode shape observation. Whatever the 
method employed, the apparatus for testing a material must 
always be constituted by the same components: a devise to 
induce the solid to vibrate, a device for detecting the vibration 
of the specimen and, a system for extracting the modal 
parameters from the vibration and calculating the elastic 
constants. 

Continuous variable excitation (generally, forced sinusoidal 
or random stationary excitation) is commonly obtained by 
loud-speakers or piezoelectric actuators fed by a variable 
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frequency oscillator, while impulse excitation is produced 
striking the object with a suitable impulser (e.g., a hammer).  

Vibrations are generally detected by means of a signal 
pickup transducer that can be in direct contact with the 
specimen or not. Contact transducers are commonly 
accelerometers using piezoelectric or strain gauges, while 
non-contact transducers are commonly acoustic microphones, 
but laser, magnetic, or capacitance methods are also used. 
Pickup transducers transform the mechanical vibration into an 
electric signal that is successively analyzed in order to 
determine the resonant frequencies by a system consisting in a 
conditioner/amplifier, signal analyzer, and a frequency 
readout device. More inexpensively, the electrical signal can 
be addressed to an ordinary personal computer provided with 
a sound card and then analyzed and processed by a suitable 
virtual instrument. This latter must operate as a spectrum 
analyzer and then it must transform the sampled time function 
into a frequency spectrum by a fast Fourier transform 
algorithm and identify the values of the natural frequencies of 
vibration. Such procedures can be implemented in any 
environment (for example: LabViewTM, MATLABTM, etc.) 
using the proper library functions. 

The observation of the mode shapes is generally more 
difficult than frequency measurements and requires specific 
and more complex equipment [58, 59, 83-86, 100, 103].  

As regards the procedures for the elastic identification, it 
must be pointed out that many of these procedures involve 
iterative optimization processes requiring a starting point. 
Sometimes the solution depends on the starting point 
(especially when the error function presents more than one 
minimum) in such cases particular attention must be paid to 
the choice of the initial guess point. A suitable way to 
overcome this disadvantage is to use Genetic Algorithms 
(GAs). Due to the way the GA explores the region of interest, 
it avoids getting trapped at a particular local minimum and is 
able to locate the global optimum. GAs do not require initial 
estimates, but instead work within a suitable set of bounds 
which can often be rather broad. For these reasons, during the 
past few years, GAs have been used, by the author of the 
present paper and by many other researchers, for determining 
the elastic constants (and not only these) with static 
approaches [10-13], wave propagation based methods [104-
107] and resonant tests [14, 93]. Reference [14], in particular, 
describes a method combining finite element analysis, genetic 
algorithms and vibration test data. The effectiveness of such a 
method was successfully verified on thin and thick laminate 
plates of materials such as carbon/epoxy, glass/epoxy and 
aluminium. One disadvantage of GAs is their high 
computational cost, but this drawback will certainly become 
less critical in the near future with advances in computer 
technology. 

From the investigation of the behaviour of unidirectional 
orthotropic rectangular laminates a series of considerations 
arose. First of all, it was observed that the natural frequencies 
of unidirectional rectangular thin plates, are, generally very 
sensitive to E1 and E2 (longitudinal and transversal Young’s 

moduli, respectively) and G12 (in-plane shear modulus). As a 
result, these constants can be predicted safely and without 
difficulty (no particular aspect ratios a/b, with a and b the 
plate sides are required). Major Poisson’s ratio ν12, on the 
contrary, does not significantly affect the natural frequencies 
and so, its accurate identification can prove to be troublesome 
(especially when measurement errors are present). A reliable 
estimate of ν12 can be obtained only at specific aspect ratios). 
It has been shown in references [58, 60, 80, 108] that 

Poisson’s ratio is well-determined when   a b = E1 E2( )1 4
. If 

the aspect ratio is not near to the value provided by this 
formula the accuracy of Poisson’s ratio can be very poor, even 
making the estimated values completely inaccurate [78]. The 
considerations reported above hold qualitatively also for 
moderately thick plates, but in this case, due to the transverse 
shear effects, the aspect ratio a/b obtained from the formula 
applies only approximately [108]. Moreover, it must be 
observed that, when dealing with relatively thin plates, the 
dynamic response of the material is rather insensitive to the 
transverse shear modulus G23. It is well known that the 
transverse shear modulus can only be safely predicted from 
experiments with thick plates [98, 101]. It is important that the 
specimen be thick enough that the effects of transverse shear 
become significant. In contrast, it is also essential that the 
specimen is not so thick as to produce in-plane modes (at least 
for the number of natural frequencies required for solving the 
inverse problem) that are much more difficult to detect 
experimentally than out-of-plane modes. It was found that, in 
any case, plates with material axes parallel to the plate axes 
appear more advantageous compared to plates having other 
material directions.  

For the sake of completeness, it must be mentioned that the 
mixed numerical-experimental method can also be used for 
determining the elastic properties of bi-layered materials. 
Applications of this kind are reported in [95], where the 
elastic properties of air-plasma sprayed thermal barrier 
coatings on a substrate of stainless steel have been 
determined.  

Finally, with regard to the multi-directional laminated plates 
it must be emphasized that in this case the estimation of ply 
material constants can prove to be problematic. The 
parameters of such plates tend to be inaccurate and this 
shortcoming depends on the stacking sequence, which 
increases as the number of plies increases. In some cases, it 
may be found that some or most of the parameters are ill 
determined [108].  

Although, the mixed numerical-experimental approaches 
have mainly been developed for the characterization of 
anisotropic materials, they can also be applied to the simplest 
isotropic materials. Applications of this kind are reported in 
most of the papers cited above in which they were always 
carried out with the aim of testing the methodologies 
proposed. The current greater availability of commercial finite 
element codes for carrying out, quickly and accurately, the 
dynamic analysis of complex structures, and the low-cost 
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accessibility to large calculation resources, have opened up 
the possibility of extending the application of the mixed 
numerical-experimental methods to specimens of various 
shapes.  

The process for the identification of the elastic constants of 
isotropic materials developed in the Department of 
Mechanical Engineering of the University of Calabria [14-20] 
is summarized in Fig. 6. As usual it consists of two stages. 
The experimental stage includes the measurement of the sizes, 
shape, resonant frequencies and mass of the plate. The 
numerical stage consists of a series of procedures to be carried 
out on a computer. First, the plate is modelled using geometry 
and size data obtained in the first stage. Then, the model is 
meshed and the density of the material is computed as the 
ratio of the volume of the model to the mass of the plate. 
Mesh topology, material density and trial values of the elastic 
constants are required by the FEM (Finite Element Method) 
code for calculating the resonant frequencies.  

The experimental equipment and procedures are illustrated 
in [19] and [20], in the latter paper the sources of error 
affecting the measurement process are also discussed. The 
components of the equipment are visible in Fig. 6. The plate is 
suspended in air with the two elastic bands fastened to the 
rigid frame. The exciting impulse is imparted repeatedly in 
various points by lightly hitting the plate with an impulser. 

The dynamic response of the plate is detected by the 
microphone and sent in the form of an electrical signal to the 
PC sound card. The signal is then analyzed and processed by 
dedicated software that identifies the values of the natural 
frequencies of vibration.  

An optimizing procedure generates trial solutions (couples 
of E and ν) and identifies from among them the solution with 
the lowest error function value. It is worth noting that in the 
case of isotropic material, each resonant frequency only 
depends on two elastic properties and, as a consequence, the 
error function is a function of two variables. The minimization 
process is obviously simpler than the case of composite 
materials and will be very fast and accurate if the minimum of 
the error function is unique and easy to find inside its 
existence domain. The error function assumed influences the 
choice of the optimization procedure and, so it is crucial in 
terms of solution times and accuracy. Different optimization 
methods and error functions were compared in [18], in order 
to select the combination that provides the best compromise in 
terms of solution time, accuracy and stability of the results. 
The best performance was obtained combining the square root 
of the sum of the squares error function with the simplex 
method.  

In the same paper, the effectiveness of the procedure has 
been shown by means of numerical simulations executed on a 

         
 
Fig. 6 Elastic identification via dynamic test [20]. 
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series of typical and atypical shaped plate models. Moreover, 
the robustness of the procedure with respect to the effects of 
measurement noise was assessed. It was observed that the 
shape of the plate negligibly affects the sensitivity to the 
experimental errors of the Young modulus, while the 
sensitivity of the Poisson ratio is highly dependent on it. Thus, 
to avoid incorrect estimations of the Poisson ratio of plates 
with particularly complex shapes, before starting the 
characterization process, a numerical check on the sensitivity 
of the error function to Poisson’s ratio is always 
recommended. The experimental assessment of such a 
methodology was carried out with success on thin rectangular 
plate [15], thin and thick plates of various shapes [17, 19] and 
irregular drilled plates [20].  

V. CONCLUSIONS & FUTURE DEVELOPMENTS 
The goal of this research is to provide a methodology for 

simultaneously determining all the elastic constants of a 
material by testing a single, not-special-shaped specimen with 
an inexpensive and simple-to-use non-destructive technique. 
This potentials is fundamental in the cases in which the 
component made of the material under examination is unique 
and cannot be destroyed, or when the material to be tested is 
such that the production of proper bulk specimens is not 
feasible owing to the high cost of the material and/or its brittle 
nature.  

Mixed numerical-experimental methods are among the 
more promising for achieving this aim. The increased 
availability of commercial finite element codes for 
performing, quickly and accurately, the static or dynamic 
analysis of complex structures and, the increasing economic 
accessibility of large calculation resources encourages studies 
on the applicability of these methods.  

In the present paper, the feasibility of applying such 
methods to characterize plate-shaped specimens is discussed. 
Both static and dynamic approaches are considered. 

As regard static approaches it has been shown that optics 
techniques, for measuring the whole displacement field 
undergone by the surface of the plate under static load, 
combined with finite element method can provide a potential 
alternative to the traditional static or quasi-static 
methodologies for determining the elastic constants of both 
isotropic and composite materials. Drawbacks of this 
approach are the need for expert operators and the high cost of 
experimental equipment but this latter disadvantage will 
certainly become less critical in the near future in virtue of the 
advances in low-cost optical techniques.  

With regard to the dynamic approaches, it has been shown 
that the impulse excitation technique for measuring the 
resonant frequencies of the free plate combined with finite 
element method can be very competitive in comparison with 
the static approaches. The impulse technique is simple, 
inexpensive and fast and can be successfully carried out by a 
non-expert operator. In addition, the identification process 
could be easily integrated into any of the existing commercial 

systems for measuring elastic constants by the sonic resonance 
method.  

Both the presented static and dynamic methodologies 
proved to be very effective for testing isotropic thin plates of 
any-shape. Some preliminary investigations carried out 
recently (the results of which must be assessed and so are not 
included in the present paper) seem to indicate the feasibility 
of extending the applicability of the dynamic methodology to 
thick isotropic plate and three-dimensional isotropic bodies as 
well.  

Furthermore, both the methodologies proved to be suitable 
for unidirectional rectangular thin laminates, but more 
research is necessary to completely investigate the 
possibilities of using them for profitably analysing 
multidirectional rectangular laminates and, more generally, for 
analysing anysotropic plates of any shapes. 
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