
 

 

 

Abstract—This paper presents a new algorithm for MRAC 

(Model Reference Adaptive Control) method based-on neural 

networks using a variable learning rate. The proposed mechanism 

adaptation algorithm demonstrates that if the learning rate is large, 

learning may occur quickly, but it may also become unstable or if the 

learning rate is small learning adapt reliably, but it may take a long 

time and thus, it can invalidate the purpose of real-time operation. To 

overcome these problems we propose a neural controller using 

variable learning rate. This corresponding algorithm depends on the 

error between the actual plant output and the output of the reference 

model. The control strategy is based on two-steps; the first is 

initialization parameters of the neural controller using reduced 

number of observation. In the second phase, the parameters of the 

neural controller are directly tuned from the training data via the 

tracking error. The simulation results show that the proposed 

algorithm using variable learning rate is simple to implement and 

may be extended to multivariable system. 

 

Keywords—Nonlinear system; neural network; variable learning 

rate; adaptive control; model reference 

I. INTRODUCTION 

HE control of complex dynamic plant is a major concern 

in control theory [1]. In a consequence, a large number of 

control structures such as direct inverse control [2], model 

reference control [3, 4], sliding mode control [5], internal 

model control [6], feedback linearization [7], backstepping [8], 

indirect adaptive control [2, 4, 8-13], and direct adaptive 

control [5, 14-17] have been proposed. 

One of these methods may be based on Neural Network 

(NN). The NNs are used for modeling and control of complex 

physical systems because of their ability to handle complex 

input-output mapping without detailed analytical models of the 

systems [18, 19]. The NN controllers have emerged as a tool 

for difficult control problems of unknown nonlinear systems 

[20]. There are several control strategies for neural networks 

which some of them are: feedforward control, direct inverse 

control, indirect adaptive control based on NN identification, 

direct adaptive control with guarantied stability, feedback 

linearization and predictive control [20-22].        

In the industrial process there are many systems having 
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nonlinear properties [20, 23-31]. For instance, the systems to 

be controlled have constant, unknown or slowly-time uncertain 

parameters [23-31]. Unless such parameter uncertainty is 

gradually reduced on-line by an appropriate adaptation or 

estimation mechanism, it may cause inaccuracy or instability 

for the control systems [32]. For this reason, an adaptive 

neural networks controller is applied in this paper. 

The Model Reference Adaptive Control is a technique well 

established in the framework of linear systems [33]. In the 

direct MRAC approach, the parameters of the linear controller 

are adapted directly to drive the plant output to follow a 

desired reference model. This structure can be extended by 

utilizing the nonlinear function approximation capability of 

feedforward neural networks such as the Multi-Layer 

Perceptron (MLP). The MRAC have been adopted by many 

researchers in controlling nonlinear plants [3, 4, 34-37]. It is 

not only applied with neural networks while it is applied else 

approaches. The neural networks are widely used methods for 

the characterization of nonlinear systems [19].  

As long as, the MRAC is well used in some plants which are 

with unknown parameters, partially known or tainted by noise. 

In this paper, a new algorithm of the MRAC method is 

proposed for nonlinear system. The new adaptation mechanism 

of the proposed method is detailed. The neural network 

provides the capability to describe highly nonlinear plants. 

One of the neural parameters is the learning rate 0 1 . 

Indeed, the tuning of the weights depends of this parameter. 

For instance, if the learning rate is large ( 1 ), learning may 

occur quickly, but it may also become unstable or if the 

learning rate is small ( 0 ) learning adapt reliably, but it 

may take a long time and thus, it can invalidate the purpose of 

real-time operation. To overcome these problems we propose a 

neural controller using variable learning rate. The control 

strategy used to define the adaptation law is based on the 

tracking error between the actual plant output and target 

output, which is the response of the reference model. Then, 

tuning of the weights is based on the standard delta rule or 

steepest descent algorithm to minimize the tracking error. 

This paper is organized as follows. In the second section, 

the presentation of the MRAC method is presented. In the third 

section, the proposed adaptation mechanism is showed. An 

Example is provided in the forth section, and conclusions are 

given in the last section. 

Example is provided in the forth section, and conclusions 

are given in the last section. 
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II. PRESENTATION OF MRAC METHOD  

In figure 1, a multilayer Perceptron is taken in order to 

concept a nonlinear controller which based on neural network 

[38]. The adopted general structure of MRAC method is 

showed here. The nonlinear plant is time-varying system. 

Figure 1 shows the configuration of the MRAC control system. 

The used controller is a multilayer Perceptron (MLP) and it 

contains three layers: the input layer contains 1N neurons; the 

hidden layer contains 2N neurons and one neuron in the output 

layer. Each neuron of each layer is connected to all neurons of 

the following layer.  

 

 

 

 

 

 

 

 

 

Fig. 1. Model reference adaptive control 

A nonlinear system given by the following form: 

 

( 1) ( ), ( 1),..., ( ), ( 1),...,y k s y k y k u k u k  

with: 

:s               unknown function of nonlinear plant   

( ) :cu k        input vector of nonlinear plant  

( 1) :y k     output vector of nonlinear plant   

( 1) :ym k output vector of reference model   

:r               input vector of neural networks controller   

 

The output of the 
thl node, of the hidden layer, is given by the 

following equation, ( 21l , ,N ): 

           

1

1

N

l lj j

j

f ( h ) f ( w x )                                                             (1) 

with: 

 

1

1

N

l lj j

j

h w x   

The output of the controller is given by the following equation: 

        

2 1

2

1 1

1

                

N N

c lj j l

l j

N

l l

l

u ( k ) f ( f ( w x ) z )

f ( f ( h )z )

                                       (2) 

or in the compact form: 

             
T

cu ( k ) f z F(Wx )                                                 (3) 

with: 

1 1

1; 1,...,
T N

jx x R j N   

2 1

2; 1,...,
T N

lZ z R l N  

2 1

2 1; 1,...,   1,...,
N N

ljW w R l N and j N  

: a scaling coefficient used to expand the range of NN 

output, 

2 1

2( ) ( ) ; 1,...,
T N

lF Wx f h R l N  

 

The output of the controller cu ( k ) is a law control which is 

used as an input signal for the nonlinear plant. The used 

training is based on the descent gradient method in order to 

minimize a function cost ( E ) and the tuning of the synaptic 

weights of the neural controller is based on the standard delta 

rule defined as [19].  
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with: 

            
2 2

1 1

1 1

2 2

N N

k k

E ( e( k )) ( y( k ) ym( k ))  

In these expressions, is a positive constant value which 

represents the learning rate (0 1)  and '( )F Wx represents 

Jacobian matrix of ( )F Wx . 
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III. THE PROPOSED ADAPTATION MECHANISM   

The aim of the controller is to find the suitable control law 

which is given by the following equation: 

 

   
1

2

1 1c c cu ( k ) f u ( k ),...,u ( k n ), r( k ), y ( k ),

..., y ( k n )
     (6) 

 

Although the changing of the parameters model, the control 

law must be suitable in order to let the output of plant follow 

the required trajectory of the model reference, i.e. the 

convergence of the error between the actual output of plant 

and the reference model is zero, this condition is given by the 

following equation. 

 

           1 1 1 0( k ) ( k ) ( k )

k k
lim e lim ( ym y )                    (7) 

 

At time instant 1( k ) , is introduced a new 

data 1 1 1( k ) ( k ) ( k )
c( u , y , r ) , if  

 

                    1 1( k ) ( k )ym y                                      (8) 

 

If the condition (8) is not satisfied, 1( k )e , the tuning 

of the synaptic weights of the neural controller is necessary in 

order to reduces the error. The updates of the synaptic weights 

are given by the equation (9) and (10) [19, 38].   

 

                     1 1( k ) ( k ) ( k )
lj lj ljw w w                              (9) 

 

                       1 1( k ) ( k ) ( k )
l l lz z z                              (10) 

 

with: 

 

 T
lj l lw f '( h )F'(Wx )z x e( k )   

 

 l lz f '( h )F(Wx )e( k )   

 

 

2 21

            

' T
l

T
T T ' ' T
l l

/( f ( h ) F (Wx ) F(Wx )

z x F (Wx ) F (Wx ) z x x )

  

Algorithm: 

1. Initialize the parameters of the neural model of the 

controller using M observations, 

2. Test the condition  1 1( k ) ( k )ym y , 

3. if this condition is satisfied, apply the control law 

11 1c c cu ( k ) f u ( k ),...,u ( k n ),..,r( k ), y( k ),

2,..., y( k n ) and the increment the time k , 

4. otherwise return to step 1 and look for the appropriate 

model using M  observations, 

5. if at the instant ( 1k ), a package is inserted, 

6.  testing if the error ( 1)k

ce  converges to zero or not, 

7. if yes, increment the time, 

8. otherwise do an update parameters using those obtained 

at the time k , 

9. apply whenever the control law,  

10. end. 

 

It’s clear that the proposed algorithm is simple to implement, 

but it requires an initialization phase. This step is necessary to 

find the initialization parameters neural controller like the 

number of neuron in each layer and the synaptic weights 

ljw and lz . This step proceeds in off-line training. 

IV. RESULTS AND DISCUSSION    

In this section, a nonlinear time-varying system is used to 

study the performance of the proposed MRAC. 

A. Example of time-varying system  

The time-varying nonlinear system is described by the 

input-output model in the following equation.  

 

2 2

0 1

( ) ( 1) ( 2) ( 1)( ( 2) 1) ( )
( 1)

1 ( ) ( 1) ( ) ( 2)

y k y k y k u k y k u k
y k

a k y k a k y k

       (11) 

 
                             

0

1

( ) 1 0.2cos( )

( ) 1 0.2sin( )

a k k

a k k

                                  (12) 

 

     The trajectory of 0a ( k ) and 1a ( k )  are given in the 

following figure. 
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Fig. 2. 0a ( k ) and 1a ( k ) trajectories 
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The multilayer Perceptron network topology with sigmoid 

activation function was chosen. The variation of error with 

number of hidden neurons is shown in the following figure. 

The lowest error corresponds to 13 neurons in the hidden 

layer. Hence it is selected as optimal architecture of RNN. The 

RNN selected here consists of five neurons in the input layer, 

13 neurons in the hidden layer and one neuron in the output 

layer.  

  The neural model of the nonlinear time-varying time-delay 

system is presented in figure 4.  

The model reference is given by the following equation. 

 

 1 2 1 21 1 2r c r ry ( k ) ( )y ( k ) y ( k ) y ( k )     (13) 

      with cy is a setpoint sequence, 1 0 0693.  and 

2 0 0286. . 
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Fig. 3. Variation of error with hidden neurons 
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Fig. 4. The time-varying plant output 

      The output of the reference model and the output of the 

nonlinear plant are presented in figure 5. The error between 

the plant output and the model reference output is showed in 

figure 6. The control law is presented in figure 7. 
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Fig. 5. The plant output and the reference model 
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Fig. 6. The error estimation 
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Fig. 7. The control law 

B. Effect of disturbances      

In this section a noise  is added to the output of the plant in 

order to test the effectiveness of the proposed algorithm. 

To measure the correspondence between the system output 

and the estimated output, a Signal Noise Ratio ( SNR ) is taken 

by the following equation: 

                     

( ( ) )
0

( ( ) )
0

N
y k y

k
SNR N

k
k

                                (14) 

with ( k ) is noise of measurement of symmetric terminal , 

( k ) , , y and  are an output average value and a  

noise average value respectively. In this paper, the taken SNR 

is 5%. 
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Fig. 8. The plant output and the reference model 
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Fig. 9. The error estimation 
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Fig. 10. The control law 

 

The output of the reference model and the output of the 

nonlinear plant are presented in figure 8. The error between 

the plant output and the model reference output is showed in 

figure 9. The control law is presented in figure 10. 

In all figures, it is clear that the plant output follows the 

reference model output although the time-varying parameters 

and the added noise. This simulation result shows the 

efficiency of the proposed algorithm, and its simplicity to treat 

complex nonlinearity.   

V. CONCLUSION  

This paper has presented a new algorithm for model 

reference neural network adaptive controller for different cases 

of nonlinear system with and without noise. The proposed 

neural controller is based on a variable learning rate. The 

proposed mechanism adaptation is based on the convergence 

of the error between the actual output of plant and the output 

of the model reference. The tuning of the synaptic weight 

depends on the variation of the parameters of the plant. The 

simulation results conforms the effectiveness.   
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