
 

 

 

Abstract—This paper illustrates a new criterion for evaluating 

neural networks stability compared to the Bayesian classifier. The 

stability comparison is performed by the error rate probability 

densities estimation using the modified semi-bounded Plug-in 

algorithm. We attempt, in this work, to demonstrate that the Bayesian 

approach for neural networks improves the performance and stability 

degree of the classical neural classifiers.  
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I. INTRODUCTION 

N high dimension spaces, the samples have a limited size, 

the classification in these spaces requires dimension 

reduction in the first step. Artificial neural networks (ANNs or 

NNs) have been in use for some time now, and we can find 

them working in data classification and non-linear dimension 

reduction. Actually, the ANNs partially surpassed the 

statistical methods in the industrial field.   

Various experimental comparisons of neural and statistical 

classifiers have been reported in the literature. Paliwal and 

Kumar presented in [14] a recent review of these studies which 

aims to give a useful perception into the neural and statistical 

methods capabilities. Using these methods to solve complex 

problems has proven quite successful in many application 

areas, as the dimension reduction and classification problems. 

Tam and Kiang showed in [12], by comparing the neural 

networks and the linear classifiers (Discriminant Analysis, 

logistic regression and k Nearest Neighbor) for bank 

bankruptcy prediction in Texas, the benefit of using ANNs in 

predictive accuracy compared to other classifiers.  

A performance evaluation of the neural networks against 

discriminant analysis was presented by Patuwo and al, in [27], 

for some classification problems. Their study proved that 

neural approaches are not better than the discriminant analysis  
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but they are comparable in two-group two-variable problems. 

Most of researchers compare the neural and statistical 

techniques by comparing their accuracy prediction while 

forgetting the NNs instability criterion. This paper studies the 

stability of different network classifier results compared to the 

statistical methods.  

The stabilities evaluation is based on estimating the error 

rate probability density function (pdf) of each classifier. The 

pdf is estimated by applying the Plug-in kernel algorithm, 

which optimizes its smoothing parameter. The 

misclassification error is positive value, so we choose to 

improve the pdf estimation precision by using the modified 

semi-bounded Plug-in algorithm since pdf support information 

is known.  

The next section summarizes the statistical approaches used 

for classification and dimension reduction. Section 3 

formulates the problem and present different neural networks 

structures used in this paper. Here we deal with the Bayesian 

approach for the artificial neural networks. Next, we lead a 

comparative study between the neural and the statistical 

approaches. The stability degree is performed by visualizing 

the results through multivariate Gaussian distributions. Then, 

we intend to test the classifiers stability and performance for 

the handwritten digits recognition problem. Finally, we present 

our works conclusions. 

II. STATISTICAL APPROACHES 

The Traditional statistical classification methods are based 

on the Bayesian decision rule, which presents the ideal 

classification technique in terms of the minimum of the 

probability error. However, in the non parametric context, 

applying Bayes classifier requires the estimation of the 

conditional probability density functions. It is well known that 

such task needs a large samples size in high dimension. 

However, a dimension reduction is required in the first step. 

The Principal Components Analysis (PCA) and the Linear 

Discriminant Analysis (LDA) are generally used to reduce the 

dimension of the feature space. They are applied to the 

original feature space in order to select a limited number of 

discrimination directions before applying non parametric 

Bayes classifier [26]. While PCA seeks for efficient 

representation directions, the Fisher LDA tries to find efficient 
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discrimination directions. The LDA is commonly preferred 

over the PCA. In fact, the LDA is able to recognize the 

different classes, whereas the PCA deals with the data without 

paying any particular attention to the underlying class [1].  

III. NEURAL NETWORKS APPROACHES 

Among various kinds of artificial neural networks, the 

Multi-Layered Perceptron (MLP) has become the most widely 

used network architecture in NNs applications, especially in 

the classification process. For the MLP, all the nodes (or 

neurons) and the layers are arranged in a feedforward manner. 

Thus, all the units in the adjacent layers are connected starting 

from the input layer to the output one. In between, there is, at 

least, one hidden layer. As the hidden layers are capable to 

reduce the data dimension in a non-linear way, these extracted 

primitives can be classified in the output layer by applying a 

non-linear separation.  

Based on the results from [11, 19], a MLP with one hidden 

layer is generally sufficient for most problems including the 

classification. Thus, all used networks in this study will have a 

unique hidden layer. The number of neurons in the hidden 

layer could only be determined by experience and no rule is 

specified. However, the number of nodes in the input and 

output layers is set to match the number of input and target 

parameters of the given process, respectively. Thus, the NNs 

have a complex architecture that the task of designing the 

optimal model for such application is far from easy. 

 In order to reduce the difference between the ANN outputs 

and the known target values, the training algorithm estimates 

the weights matrices, such that an overall error measure is 

minimized. The mean squared error (MSE) is the most 

commonly used performance measure. It is defined as: 
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where tj and yj represent the target and network output 

values for the j
th

 training sample respectively, and N is the 

training samples size. For the classification, the NNs training 

algorithms are mostly employed in a supervised learning 

process. The proposed technique requires improvements for 

MLP with the back-propagation algorithm. 

A. Neural Networks limitations  

As the ANN produces a black box model in terms of only 

crisp outputs, it cannot be mathematically interpreted as in 

statistical approaches. The "local representation" is the most 

regular representation mode of the output layer in pattern 

recognition. Each output in this representation neuron 

constitutes one of the classes to which samples can belong 

[14]. The MLP desired outputs are considered as 

homogeneous to a posterior probability. Till today, no proof of 

the quality of this approximation has been presented. 

However, for the users of these networks, this approximation 

is presented as a thresholding function to binarize the obtained 

outputs. Thus, the instability of its classification results as 

against the statistical ones can be explained by the black box 

nature, the non proved approximation, the lack of control over 

its mathematical formulation and the non fixed architecture of 

the optimal NN model. Therefore, a large variance in its 

prediction results samples can be introduced, after the training 

phase, by small changes in the test. In order to reach optimal 

results, the NN classifier might learn the data very well during 

the training stage. As a consequence, this can lead to the NN 

instability: the overfitting may create a high variance while 

testing the new data. Indeed, researches kept looking for 

suitable methods to solve the overfitting related problems. The 

cross validation method, mentioned in [18,21], presents the  

classical solution. The performance and stability classification 

may also be improved by combining several neural classifiers 

[5,8,13,18].  German and al introduced, in [20],   the bias plus 

variance decomposition of the prediction error, which presents 

an interesting solution for the overfitting problem. Intending to 

reduce the overfitting effect of NNs, a probabilistic 

interpretation of NNs learning methods has been proposed by 

Mackay, in [3], thereby using Bayesian techniques. 

B. Bayesian Neural Networks  

MacKay in [3] originally developed Bayesian methods for 

NNs, and these methods were reviewed by Bishop in [2] and 

Mackay in [4]. This approach has been dedicated to improve 

the conventional NN learning methods while adding a penalty 

term to the classical error function. The resulting function can 

be described as follows: 

)()()( wEwEwS wD 
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where ED(w)=MSE and w presents the  parameters of size 

m. The penalty term 
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complexity.  This approach consists to find the optimal value 

of the regularization coefficient µ which gives the best tradeoff 

between the overfitting and the underfitting problems. To find 

this optimal value, probabilistic interpretation of NN learning, 

which controls automatically its complexity, can be used.  

In the Bayesian approach, to each NN parameter wi 

(weights, biases, number of neurons, NN outputs, etc), get 

assigned a probability density function (pdf). This pdf is 

initially affected to a prior distribution, and once the data have 

been observed, it will be converted to a posterior distribution 

using Bayes theorem. 

IV. PERFORMANCE AND STABILITY COMPARISON 

Some classifiers are instable, small changes in their training 

sets or in constructions may cause large changes in their 

classification results. Therefore, an instable model may be too 

dependent on the specific data and has a large variance. In 

order to analyze and compare the stability and performance of 

each classifier, we have to illustrate their error rate probability 

densities in the same figure. The classifier, whose curve is on 

the left, is the most efficient one. Also, a classifier with the 

largest density curve is the least stable one. Therefore, a good 

model should find a balanced equilibrium between the error 

rate bias and variance.  
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A. Non-parametric density estimation  

The first step before comparing is to train the two 

classifiers, then we proceed by measuring the error rate 

produced by each classifier with each one of N independent 

test sets. Let’s consider (Xi)1≤i≤N  the N generated error rates of 

a given classifier (Bayes or ANN). These error rates are 

random variables which have the same probability density 

function (pdf), fX(x). These (Xi)1≤i≤N are supposed to be 

independent and identically distributed.  

We suggest to use the kernel method proposed in [10,25],   

to estimate the pdf of the error rates for each classifier. In this 

method, an approximation of the integrated mean square error 

(IMSE) is optimized in order to estimate the involved 

smoothing parameters hN. The kernel estimator of the 

probability density is defined by:                                        
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In our study, K(.) is chosen as the Gaussian kernel:                                                 
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It’s very important to choose the optimal smoothing 

parameter *
Nh . Moreover, different methods were proposed to 

minimize the integrated mean square error 
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optimal bandwidth. The smoothing parameter *
Nh  becomes as 

follows:  
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B. Conventional Plug-in algorithm 

The choice of the optimal value for the smoothing parameter 

will determine the goodness level of the estimation. It seems 

very difficult to find a direct resolution for the equation (4) to 

calculate this optimal value. So we choose to determine it by 

the recursive resolution:  The Plug-in algorithm. Actually, a 

fast variant of known conventional Plug-in algorithm has been 

developed [24]. In order to approximate the function J(f), a 

double derivation of the kernel estimator analytical expression 

is applied directly. The different steps of conventional Plug-in 

algorithm are as following: 

Step 1: initialisation of M(K) and J(f). 

Step 2: computing
)0(

Nh . 

Step 3: estimation of the pdf )0(f . 

Step 4: re-estimation of )()( fJ k . 

Step 5: return to the second step. 

Step 6: stopping the algorithm when the difference between 
)(k

Nh and 
)1( k

Nh is very low (less than 1%). 

C. Modified semi-bounded Plug-in algorithm  

The set of the observed error rates (Xi)1≤i≤N of each classifier 

is a set of positive values. There won’t be any interest to use 

the kernel density estimation method in this situation. During 

the estimation of the probability densities, which are defined in 

a bounded or semi-bounded space dU  , some convergence 

problems may occur at the edges: the Gibbs phenomenon. 

Several researchers have tried to solve this issue and some 

methods got described in order to estimate the probability 

densities under topological constraints on the support. Two 

interesting solutions mentioned in [22, 23] present interesting 

results: the orthogonal functions method and the kernel 

diffeomorphism method. The kernel diffeomorphism method is 

based on a suitable variable change by a C1-diffeomorphism. 

Although, the value of the smoothing parameter must be 

maximized, otherwise there won’t be any warranty to get a 

good estimation quality. The Plug-in diffeomorphism 

algorithm which is a generalization of the conventional Plug-in 

algorithm [16] is used to perform the optimization of the 

smoothing parameter. 

For complexity and convergence reasons, we suggest a 

modified semi-bounded Plug-in algorithm. This algorithm 

version is based on the variable change of the positive error 

rates: )(XLogY  . In order to specify a new classification 

quality measure, we perform a sequence of three steps: 

Step 1: using the variable change )(XLogY  , the kernel 

estimator expression becomes: 
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Step 2: iterate the conventional Plug-in algorithm for the 

transformed data. 

Step 3: compute 
x

Logxf
xf Y

X

)(ˆ
)(ˆ   

V.  SIMULATIONS 

The comparison between the statistical and neural classifiers 

used in the present work (PCA-Bayes, Fisher-Bayes, MLP and 

Bayesian NN) is summarized by the multivariate Gaussian 

mixture classification problem. With the same train set 

(including 1000 samples for each class), we look to find the 

optimum transformation that represents the dimension 

reduction for both PCA and LDA methods before applying the 

Bayesian rule, and then to fix the optimal NN model 

parameters for both classical and Bayesian NN. 

After the training phase, we generate 100 supervised and 

independent test sets (including 1000 samples for each class). 

For each test set, the classifier performance is evaluated by its 

error rate calculated from the confusion matrix. The error rate 

probability densities, retained for both approaches, are 
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estimated using the modified semi-bounded Plug-in algorithm 

in order to compare the stability degree.  

Figure 1 shows the estimated error rate probability densities 

generated for the different classifiers on a mixture of two 

homoscedastic Gaussians (Fig.1.a and Fig.1.b) and two 

heteroscedastic Gaussians (Fig.1.c). The classifiers 

performance and stability were often compared with the 

presentation of the theoretical error probability. This latter is 

calculated using the discriminant functions. Figure 2 illustrates 

the results of two heteroscedastic superposed Gaussians 

(Fig.2.a and Fig.2.b) and two truncated ones (Fig.2.c). The 

stability and performance of the classifiers are also analyzed 

by presenting their error rate means and variances in table 1 

and table 2.  

By analyzing the results shown in Figure 1 and table 1, the 

statistical classifiers (ACP-Bayes and Fisher-Bayes) admit the 

smallest error rate means: they are proved to be more efficient 

than the neural ones. However, the error rate probability 

density functions of the neural models are on the left for the 

complex cases of the two heteroscedastic superposed 

Gaussians and the truncated ones. We deduce then the 

efficiency of these models. Although, the neural approach 

remains the least stable classifier that presents the greatest 

variance and thus the widest curve for all the six cases. 

However, the Bayesian approach of NN improves its stability 

and performance 

 

Fig. 1 Error rate densities of PCA-Bayes (in green(--)), Fisher-Bayes (in blue(..)), MLP (in pink(*)), Bayesian NN (in purple(+)) and 
theoretical error rates (in red). 

Table 1 Comparison results of ANN, statistical classifiers and theoretical error rates. 

Cases 
Distributions Theoretical error PCA-Bayes Fisher-Bayes MLP Bayesian NN 

Gaussian 1 Gaussian 2 Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance 

a μ1=(0,..,0),∑1=I10 μ2=(1,..,1),∑2=I10 0.0283 0.0598 0.0564 0.2253 0.0573 0.2205 0.0746 0.2267 0.0610 0.1984 

b μ1=(1.5,..,1.5),∑1=I10 μ2=(2,..,2),∑2=I10 0.1065 0.0111 0.2134 0.0491 0.2128 0.0489 0.2201 0.0575 0.2174 0.0517 

c μ1=(1.5,..,1.5),∑1=2*I10 μ2=(3,..,3),∑2=3*I10 0.0332 0.0051 0.0647 0.0239 0.0650 0.0195 0.0693 0.0246 0.0646 0.0214 

 

 
 

Fig. 2 Error rate densities of PCA-Bayes (in green(--)), Fisher-Bayes (in blue(..)), MLP (in pink(*)) and Bayesian NN (in purple(+)). 

 
Table 2 Comparison results of ANN and statistical classifiers. 

Cases 
Distributions PCA-Bayes Fisher-Bayes MLP Bayesian NN 

Gaussian 1 Gaussian 2 Mean Variance Mean Variance Mean Variance Mean Variance 

a μ1=(1,..,1),∑1=2*Identity μ2=(1,..,1),∑2=3*Identity 0.4271 0.1414 0.4241 0.1037 0.4012 0.1289 0.3863 0.1261 

b μ1=(0,..,0),∑1=Identity μ2=(0,..,0),∑2=2*Identity 0.3734 0.1054 0.3753 0.0983 0.3110 0.1140 0.3026 0.1094 

c 

μ1=(0,0,0) 

∑1=[0.06 0 0  

         0 0.01 0 

         0 0 0.01 ] 

μ2=(0.1,0.1,0.1) 

∑2=[0.01 0 0  

          0 0.06 0 

          0 0 0.05 ] 

0.1041 0.2804 0.0985 0.2612 0.0768 0.2877 0.0745 0.2709 

(a) (b) 

(a) (b) (c) 

(c) 
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VI. APPLICATION TO HANDWRITTEN DIGIT RECOGNITION 

In this section, we study the handwritten digit recognition 

problem, which is still one of the most important topics in 

the automatic sorting of postal mails and checks 

registration. The database used to train and test the different 

classifiers described in this paper was selected from the 

MNIST database. For the training and test sets, we select 

randomly, from the MNIST training and test sets 

respectively, single digit images (the both sets contains 

1000 images for the 10 digit classes). Random sampling 

images are shown in Fig.3. 

 

 
        Fig. 3 Random sample images of MNIST database. [28] 

  

Choosing the suitable features represents on itself a quite 

difficult step in handwritten digit recognition problems. We 

must verify that the chosen features validate, under the 

geometrical transformations, a non-exhaustive set of criteria 

such as fast computation, stability, completeness, powerful 

discrimination and invariance. Ghorbel in [6] presented an 

invariant descriptors family which satisfies the various 

criteria listed above. Therefore, we will describe each image 

by this type of invariants and by Fourier descriptors (FD). 

We select a high descriptors size (D = 14).  

 

The train set has two goals. The first goal is to find the 

optimum transformation that represents the two dimension 

reduction for LDA Fisher before applying the Bayesian rule. 

The second goal is to fix the parameters of the optimal NN 

model for both classical and Bayesian NN. Thus, we have 

used a MLP and a Bayesian NN with three layers having, 

respectively, 14, 12 and 10 neurons. We intend to compare 

the classifiers stability by evaluating their respective 

performances for 100 times using the k-folds cross 

validation algorithm (k=10 in our study). We use the CV 

algorithm from the MNIST test set to select the test sets 

(N=1000 images for each class). With these sets, we 

calculate the misclassification rate (MCR) of each classifier. 

Figure 4 shows the classifiers error rate probability 

densities estimated using the modified semi-bounded Plug-

in algorithm for Fourier descriptors and Ghorbel 

descriptors, respectively. In table 3, we summarize the MCR 

means and variances obtained for the two types of 

descriptors using the three classifiers (Fisher-Bayes MLP 

and Bayesian NN). We note the best results for these 

classifiers with Ghorbel descriptors. The results show also 

the performance of the MLP against the Bayesian classifier, 

but the superiority of its error rate variances proves their 

low stability against the statistical approaches. For these two 

complex cases, the linear reduction dimension method 

(Fisher LDA) fails to find the optimal projection subspace. 

Whereas, the Bayesian and classical NN perform well due 

to their non linear reduction dimension capability. Although 

and in addition to providing a better performance, the 

Bayesian NN is relatively more stable than the classical NN. 

Thus, we can approve that the stability and performance of 

the conventional NN increases with the Bayesian approach 

for ANNs. 

 

 

Fig. 4 Error rate densities of Fisher-Bayes (in blue(..)), MLP (in pink(*)) and Bayesian NN (in purple(+)) for Fourier descriptors (in the left) 

and Ghorbel descriptors (in the right). 

 

Table 3: Comparison results of neural and Bayesian classifier on the MNIST database. 

 

 Fourier Descriptors Ghorbel Descriptors 

Mean Variance Mean Variance 

Fisher-Bayes 0.3163 0.1957 0.3157 0.1877 

MLP 0.2864 0.2027 0.2836 0.1892 

Bayesian NN 0.2803 0.1951 0.2765 0.1852 

 

(a) (b) 
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VII. CONCLUSIONS 

This paper provided a novel approach to comparing 

neural and Bayesian classifiers. The use of the semi-

bounded Plug-in algorithm tends to be a good criterion for 

the stability comparison of the different classifiers. This 

algorithm produces a sufficient precision for the densities 

estimation and the stability aspect. 

By stochastic simulations, we proved that the statistical 

approaches are more stable compared to the neural 

networks. Also we found that using the Bayesian approach 

to model NNs improves their performance and stability. In 

this study, we provided a new conception to compare the 

stability results of the neural networks against other 

classifiers classes. Combining the classifiers to improve 

their stabilities can be a quiet interesting point to focus on in 

our future works.  
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