
 

 

Abstract— During the last decades artificial neural networks 
have evolved to an accepted and proven technology for modelling 
and function approximation. Different kinds of network architectures 
exist to support certain domains and applications in an efficient way. 
This paper assumes the traditional multilayer feedforward artificial 
neural network (ANN) architecture with one input layer, one or more 
fully interconnected hidden layers and one output layer. Each layer 
consists of several classic perceptron nodes using a differentiable 
transfer function like the logistics function. Very often it is useful to 
have an ANN model in an open equation form available, that allows 
a deeper analysis of the model and to do more complex experiments 
and simulations. The following paper presents an algorithm that 
makes it possible to transform an ANN into its open form equivalent, 
called process model architecture network or PMA network. It has 
been used as an integral part in several industrial control projects. A 
PMA network can be used for system simulation, scenario analyses 
or inverse model based control. An example application is discussed. 
 

Keywords—artificial neural networks, inversion, model based 
control, open equation transformation.  

I. INTRODUCTION 
VER the last decades artificial neural networks have 
emerged as an established powerfool tool in a broad 
range of engineering and scientific applications 

especially for process modelling and control. ANNs are also 
well known and widely used for data mining tasks or used for 
generic nonlinear function mapping applications. To find a 
function to map data set A to data set B can be done with 
different mathematical algorithms, ANNs are proved to be the 
best algorithms for nonlinear unknown relationships between 
data set A and data set B.  
One of the most popular algorithms to build artificial neural 
network models is the algorithm for building and training an 
artificial neural network based on feedforward multilayer 
perceptrons. It is an excellent technology and has been proven 
as universal approximators. The error backpropagation 
learning algorithm presented by Rumelhart [9] is typically 
used for network learning. Cybenko [1] and Hornik [3] proved 
that any continuous mapping over a compact domain could be 
approximated as accurately as necessary by a feedforward 
artificial neural network with one hidden layer and 
differentiable activation function. These findings make the 
ANN technology so powerfull and generic, because it makes it 
possible to find a proper mapping function, even for difficult 
or impossible to describe systems, because not all involved 
parameters or disturbances of the observed system are known 

or could be measured.The theory of artificial neural networks 
has developed over the last 3 decades and is now well 
established. They are a way to describe and simulate a simple 
biological model of a real nervous cell and its network. The 
electrical charge over the connected dendrite to the nerve cell 
body represents one  input value to the perceptron. Excitatory 
dendrits have a positive energy load or positive input value 
and inhibitorical dendrits have a negative electrical load or a 
negative input value. The nerve cell itself calulates a new 
energy level based biochemical conditions. The mathematical 
model uses the summation function and a scale or connection 
weight for each input node. The electrical output of the 
nervous cell is then transported over the Axon to other 
nervous cells.  
 

 
Fig.1 a typical perceptron. 
 
The mathematical model describes the output value of each 
perceptron as a result of the threshold function applied to the 
weighted sum of input values to the perceptron according to 
equation (1) and (2) below. 
 

      (1) 
 

     (2) 
 
A feedforward artificial neural network is organized in 
typically 3 layers. One input layer, one output layer and in 
between at least one or more hidden layers. Each layer 
consists of several perceptrons or nodes. The number of nodes 
of the input layer depends on the number of independent 
variables of the model and the number of nodes of the output 
layer depends on the number of dependent variables. The 
hidden layers in between are responsible for the processing 
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and mapping. Each node of the input layer is connected to 
each node of the following hidden layer and each node of the 
hidden layer is connected to each node of the output layer.  
 

 
Fig.2 a typical feedforward 3 layer ANN built from many 
perceptrons 
 
This kind of network, as shown in fig.2 is also called fully 
interconnected network. To build the proper functional 
mapping from the independent to the dependent variables a 
training process is used, which find the proper connection 
weights between the input and output nodes. Typically the 
trained ANN is interpreted as a black box. For the network 
training an adaptive backpropagation algorithm [9] with 
dynamic learning rate and momentum is used to speed up the 
network training process. 

II. PROBLEM FORMULATION 
Model based control algorithms as part of advanced control 
strategies for industrial plants or chemical plants like gas and 
oil processing plants are current state of the art since the early 
ninety’s with the invention of matrix controllers. The 
implementation and configuration of such controllers is quite 
complex and complicated. The basic idea behind such 
controlling algorithms is to transfer the closed form equations 
set into an open form equations set. [4][5] Open form equation 
sets are very common in chemical engineering for 
optimization applications because of their power and 
flexibility. 
Apart from process control and optimization applications in 
industrial or other technical disciplines, there are also other 
application areas like in marketing or tourism research. 
Researchers have the need and are looking for technologies to 
build sufficient market and consumer models beyond basic 
statistics for market analyses, what-if scenario analyses or 
other simulation tasks. In many applications it is useful to 
have a simulation model of the observed systems. 
Experimenting with the real observed system is not always 
possible, because of concluded costs of production loss or 
other involved financial or technical risks. For example it is 
almost impossible to run tests on a processing plant or try 
certain strategies of control, when the unit is in full production 
mode. Testing on those plants or process units is very cost 
intensive, risky because of potential damage and needs also 

careful planning in advance. This is a typical situation you 
find in the process control industry all over the world.  
You will also find a similar scenario in market research. The 
models that are for example built from customer behavior 
research resulting from quantified questionnaires and are 
typically available as descriptive statistics. These results 
cannot be used for simulation, unless they are approximated 
by some means of mathematics. Typically linear models are 
very popular, because they are easy to understand and simple 
to calculate. The drawback is a too simplified model of the 
observed system and complex interactions could not be 
modelled sufficiently. Artificial neural network technology is 
an approved way to build complex models for all kind of 
observable systems. They are a very powerful model building 
technology, which are described as a set of equations. But 
how do we get this equation set into its open form equivalent 
for analyses and optimization applications? A solution to this 
problem is presented and discussed in the next chapters of this 
paper. 

III. PROBLEM SOLUTION 
 

A. Basic Equations and ANN Equivalents 
Initially we have an observable system, which consists of a set 
of n independent variables x and m dependent variables y. 
Where each dependent variable y can be described as a 
function f of n independent variables x as following: 
 
fi(x1, x2, …. , xn) = yi   for all i from 1, … ,m  (3) 

with 
neti(x1, x2, …. , xn) = yi   

as the ANN equivalent to fi 

 
where all dependent variables y have to be independent to the 
other dependent variable. If this is not the case we define the 
system as a MISO (multiple input – multiple output) systems 
or the equivalent ANN  

 
f(x1, x2, …. , xn) = (y1, y2, …. , ym)         (4) 
 with 
net(x1, x2, …. , xn) = (y1, y2, …. , ym)  

as  the ANN equivalent to f   
 
For a complex system or unknown system it is likely that it 
does not fulfill the requirement that all dependent and 
independent variables are independent to each other. 
Therefore we have to define a MIMO (multiple input – 
multiple output) system architecture as the proper equivalent 
model. We assume the open form equivalent of the equation 
(4) is as follows 
 

G(x1, x2, …, xn, y1, y2, … , ym) = 0     (5) 
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B. Algorithm to Build the Open Form Equivalent 
The equation in (5) can be formed into a set of n+m functions 
with n+m-1 variables, where each variable of (5) is 
represented as following: 
 

g1(x1, x2, …, xn, y1, y2, … , ym-1) = ym      (6) 
g2(x1, x2, …, xn, y1, y2, … , ym) = ym-1 

   …… 
gm-1(x1, x2, …, xn, y1, y3, … , ym) = y2 
gm(x1, x2, …, xn, y2, y3, … , ym) = y1 
gm+1(x2, x3, …, xn, y1, y2, … , ym) = x1 
gm+2(x1, x3, …, xn, y1, y2, … , ym) = x2 

   ……… 
gm+n-1(x1, …, xn-2, xn, y1, y2, … , ym) = xn-1 
gm+n(x1, x2, …, xn-1, y1, y2, … , ym) = xn 

 
Each equation gj is again modeled by a MISO type ANN gnetj 
with j from 1 to n+m . 
 

gnet1(x1, x2, …, xn, y1, y2, … , ym-1) = ym     (7) 
 gnet 2(x1, x2, …, xn, y1, y2, … , ym) = ym-1 

   ……… 
gnet m-1(x1, x2, …, xn, y1, y3, … , ym) = y2 

gnet m(x1, x2, …, xn, y2, y3, … , ym) = y1 

gnet m+1(x2, x3, …, xn, y1, y2, … , ym) = x1 

gnet m+2(x1, x3, …, xn, y1, y2, … , ym) = x2 
   ……… 

gnet m+n-1(x1, …, xn-2, xn, y1, y2, … , ym) = xn-1 

gnet m+n(x1, x2, …, xn-1, y1, y2, … , ym) = xn 
 
In the next step the degree of freedom is defined for a model 
simulation and the input vector as a starting point for the 
iteration. 
 
 I0 = (0i1, 0i2, …. , 0in+m)            (8) 
 
where I0 is the initial input vector and where ij is the jth input 
parameter of model G as defined in (5)  
 
Next we define vector F to specify the dependent or 
independent variables used in the model simulation as 
following: 
 
 F = (f1, f2, …. , fn+m)       (9) 
 
with f=0 dependent variables and f=1 for independent 
variables in G 
    
Finally we introduce two termination conditions for the 
iteration algorithm. The first condition T limits the number of 
iteration steps t with  
 

T>0 and T ∈N              (10)   
with N as the set of natural numbers.    

 
And the second condition is a stability criteria ε with  
 
             (11) 

with R as the set of real numbers. 
 
The input vector I for iteration step t is defined as 
 
 It = (ti1, ti2, …. , tin+m)            (12) 

where It is the input vector of the iteration t and 
 tij is defined as 

 
 tij = (1 - fj) * gnetj

t-1
 + fj * t-1ij       (13) 

where gnetj
t is the value of the jth ANN mode 

 gnet at iteration t 
 

 
Fig.3 NS-Diagram to describe the transformation 
 
In Fig.3 the algorithm is shown as a Nassi-Shneiderman (NS) 
diagram. 

C. Algorithm to Evaluate the Open Form Equivalent 
Based on the above transformation and conditions the iterative 
algorithm to calculate the values of the dependent variables is 
as following: 
 

1) Find a proper ANN model that match the function 
according to (4) 

2) Build all MISO ANN models for each parameter of 
the ANN model that was found in step 1 according 
to (7) 

3) Train each ANN model until the requested accuracy 
is reached.  

4) Define the vector F and decide which of the model 
parameters are treated as dependent or independent 
variables. 

5) Define input vector I0 with xi and yj for all i and j. 
Appropriate initial values of y can be found by 
evaluating the ANN defined in (4). 

6) For each gnetj calculate the network value, iff the 
value of fj is 0, which means the model parameter 
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with index j is a dependent variable or the value of 
parameter j is assumed to be stable. 

7) Compare the network value of parameter j at 
iteration step t with its previous value of iteration  
t-1.  

8) If following condition | gnetjt - gnetjt-1 | < ε is 
valid, the value of gnetjt is assumed to be stable. 

9) Prepare the input vector It+1 for the next iteration 
step. 

10) If all ANN models have stabilized or the number 
of maximum iterations has been reached, the 
iteration algorithm terminates otherwise follow 
step 10. 

11) Repeat steps 6 to 9 for all ANN models, which 
have not stabilized yet during the iteration process. 

 
After the algorithm has terminated, the input vector I holds the 
final values for the simulated dependent variable. All the 
ANN models representing each variable of the observed 
system gnetj is organized in one meta-model, named “process 
model”. It contains all the required information as shown in 
Fig.6. 
 

 
Fig.4 NS-Diagram to describe the meta model evaluation 

IV. SAMPLE APPLICATION 
A typical process control scenario shows a bypass 

controlled counter flow heat exchanger. A typical counter 
flow heat exchanger layout is shown in Fig5 below. 

 

 

Fig.5 Schematic of a bypass controlled heat exchanger 
 

This application demonstrates the usage and flexibility of 
the described algorithm. The system and data used in this 
example is part of a real and existing monitoring application 
and the heat exchanger is part of the preheater chain of a 
crude distillation unit of a crude oil refinery in Austria. The 
observed heat exchanger system is described by following 
variables: 

 
FC       feed of the cold side in tons per hour 
FH      feed of the hot side in tons per hour 
DENS_COLD  online density of the cold flow one hour 

average  
DENS_HOT  online density of the hot feed in one hour 

average values 
TC_IN input temperature as hour average (cold 

side) 
in degree Celsius 

TC_OUT output temperature as hour average (cold 
side) in degree Celsius 

TH_IN input temperature as hour average (hot side) 
in degree Celsius 

TH_OUT output temperature as hour average (hot 
side) 
in degree Celsius 

VLV_OPEN percentage of opening the valve located in 
the hot bypass stream 

 
For a rigorous equation based model several additional 

variables are required to describe the process. Like the heat 
transfer coefficient or the size of the transfer zone of the heat 
exchanger. But for the ANN based observation model these 
parameters are not required, as they are implicitly modeled. 
First we build the MIMO model, which models and calculates 
or predicts the TC_OUT and TH_OUT variables. This is done 
with a three layer ANN, using one hidden layer. The data for 
training was directly collected from the process control 
system. 
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Fig.6 Configuration form to configure meta data. 
 

The open form equivalent data configuration form shown in 
Fig.6 has all meta information as currently implemented in the 
modelling toolkit, that was used for the simulation. There is 
some extra information shown in the bottom of the form that 
is used for a constraint based optimizer. This optimizer sits on 
top of the meta model, but it is not necessary for the open 
form equivalent model described in this article. 
 

 
Fig.7 Simulated valve position dependent of TC_IN 
 

In Fig.7 the setpoint of the bypass valve is shown, which 
calculated by the inverted model. In this case the input 
temperature of the cold stream is modified over its input range 
for the simulation. 

 

 
Fig.8 Simulating the control curve for valve with fixed flows and 
target temperature 
 
In Fig.8 the result from model simulation of the two 
dependent variables TH_OUT (output temperature of the hot 
stream) and VLV_OPEN (open position of the bypass valve) 
is shown. The open form model has also learned the control 
algorithm that is used for the bypass valve, which seems to be 
linear. The simulator tries to increase the bypass of the hot 
stream to reduce the amount of heat transfer to keep the 
TC_OUT setpoint at about 88°C.  

In Fig.9 the model results of the simulated output 
temperature of the hot stream and the control surface for the 
bypass valve (overlaid color surface) is shown together in a 
4D plot. For this simulation the independent variables for the 
input temperature on the cold side (TC_IN) and the hot side 
(TH_IN) of the heat exchanger are varied over their value 
range. The open form model predicts the bypass valve 

position to keep the outlet temperature on the cold side of the 
stream (TC_OUT) close to its setpoint. 

 

 
Fig.9 Control surface of the bypass valve 
 

The sensitivity analysis [3] of the bypass valve position 
(VLV_OPEN) in relation to the outlet temperature of the cold 
stream (TC_OUT) of the heat exchanger is shown in Fig.10.. 
For this analysis all other independent variables remain 
constant. 

 

Fig.10 Sensitivity plot of the simulated output temperature of the 
cold stream 

V. CONCLUSION 
This paper present a novel algorithm to transform a multilayer 
feed forward artificial neural network into its open form 
equivalent meta model. The resulting architecture leads to one 
separate ANN model per variable that depends on the 
remaining variables of the observed system. The additional 
meta structure is used to keep track of the open form model 
configuration, like the iteration limits or the list of dependent 
and independent variables used for a simulation run. The 
presented architecture does not interfere with the internal 
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structure of the ANN or its perceptron connections, because 
the resulting architecture from the algorithm is a network of 
networks configured in a recurrent way. The open form model 
can be easily combined with an optimization algorithm like 
simulated annealing. A non-trivial control application is 
presented and discussed. The results and the power of the 
open form ANN model and the transformation algorithm is 
shown. 

Model inversion is a commonly used in optimization 
applications in the process control industry. The open form 
model has also a broad range of applications in other research 
disciplines like marketing or empirical modelling. It is a 
powerful tool to model the results of empirical studies. Any 
feedforward ANN models can be transformed into its open 
form equivalent and used for scenario analyses or what if 
analyses after the transformation. 
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