

Abstract— During the last decades artificial neural networks
have evolved to an accepted and proven technology for modelling
and function approximation. Different kinds of network architectures
exist to support certain domains and applications in an efficient way.
This paper assumes the traditional multilayer feedforward artificial
neural network (ANN) architecture with one input layer, one or more
fully interconnected hidden layers and one output layer. Each layer
consists of several classic perceptron nodes using a differentiable
transfer function like the logistics function. Very often it is useful to
have an ANN model in an open equation form available, that allows
a deeper analysis of the model and to do more complex experiments
and simulations. The following paper presents an algorithm that
makes it possible to transform an ANN into its open form equivalent,
called process model architecture network or PMA network. It has
been used as an integral part in several industrial control projects. A
PMA network can be used for system simulation, scenario analyses
or inverse model based control. An example application is discussed.

Keywords—artificial neural networks, inversion, model based
control, open equation transformation.

I. INTRODUCTION
VER the last decades artificial neural networks have
emerged as an established powerfool tool in a broad
range of engineering and scientific applications

especially for process modelling and control. ANNs are also
well known and widely used for data mining tasks or used for
generic nonlinear function mapping applications. To find a
function to map data set A to data set B can be done with
different mathematical algorithms, ANNs are proved to be the
best algorithms for nonlinear unknown relationships between
data set A and data set B.
One of the most popular algorithms to build artificial neural
network models is the algorithm for building and training an
artificial neural network based on feedforward multilayer
perceptrons. It is an excellent technology and has been proven
as universal approximators. The error backpropagation
learning algorithm presented by Rumelhart [9] is typically
used for network learning. Cybenko [1] and Hornik [3] proved
that any continuous mapping over a compact domain could be
approximated as accurately as necessary by a feedforward
artificial neural network with one hidden layer and
differentiable activation function. These findings make the
ANN technology so powerfull and generic, because it makes it
possible to find a proper mapping function, even for difficult
or impossible to describe systems, because not all involved
parameters or disturbances of the observed system are known

or could be measured.The theory of artificial neural networks
has developed over the last 3 decades and is now well
established. They are a way to describe and simulate a simple
biological model of a real nervous cell and its network. The
electrical charge over the connected dendrite to the nerve cell
body represents one input value to the perceptron. Excitatory
dendrits have a positive energy load or positive input value
and inhibitorical dendrits have a negative electrical load or a
negative input value. The nerve cell itself calulates a new
energy level based biochemical conditions. The mathematical
model uses the summation function and a scale or connection
weight for each input node. The electrical output of the
nervous cell is then transported over the Axon to other
nervous cells.

Fig.1 a typical perceptron.

The mathematical model describes the output value of each
perceptron as a result of the threshold function applied to the
weighted sum of input values to the perceptron according to
equation (1) and (2) below.

 (1)

 (2)

A feedforward artificial neural network is organized in
typically 3 layers. One input layer, one output layer and in
between at least one or more hidden layers. Each layer
consists of several perceptrons or nodes. The number of nodes
of the input layer depends on the number of independent
variables of the model and the number of nodes of the output
layer depends on the number of dependent variables. The
hidden layers in between are responsible for the processing

An Algorithm to Transform an Artificial
Neural Network into its Open Equation Form

and its Potential Applications
Wolfram C. Rinke

O

INTERNATIONAL JOURNAL OF NEURAL NETWORKS and ADVANCED APPLICATIONS Volume 2, 2015

ISSN: 2313-0563 28

and mapping. Each node of the input layer is connected to
each node of the following hidden layer and each node of the
hidden layer is connected to each node of the output layer.

Fig.2 a typical feedforward 3 layer ANN built from many
perceptrons

This kind of network, as shown in fig.2 is also called fully
interconnected network. To build the proper functional
mapping from the independent to the dependent variables a
training process is used, which find the proper connection
weights between the input and output nodes. Typically the
trained ANN is interpreted as a black box. For the network
training an adaptive backpropagation algorithm [9] with
dynamic learning rate and momentum is used to speed up the
network training process.

II. PROBLEM FORMULATION
Model based control algorithms as part of advanced control
strategies for industrial plants or chemical plants like gas and
oil processing plants are current state of the art since the early
ninety’s with the invention of matrix controllers. The
implementation and configuration of such controllers is quite
complex and complicated. The basic idea behind such
controlling algorithms is to transfer the closed form equations
set into an open form equations set. [4][5] Open form equation
sets are very common in chemical engineering for
optimization applications because of their power and
flexibility.
Apart from process control and optimization applications in
industrial or other technical disciplines, there are also other
application areas like in marketing or tourism research.
Researchers have the need and are looking for technologies to
build sufficient market and consumer models beyond basic
statistics for market analyses, what-if scenario analyses or
other simulation tasks. In many applications it is useful to
have a simulation model of the observed systems.
Experimenting with the real observed system is not always
possible, because of concluded costs of production loss or
other involved financial or technical risks. For example it is
almost impossible to run tests on a processing plant or try
certain strategies of control, when the unit is in full production
mode. Testing on those plants or process units is very cost
intensive, risky because of potential damage and needs also

careful planning in advance. This is a typical situation you
find in the process control industry all over the world.
You will also find a similar scenario in market research. The
models that are for example built from customer behavior
research resulting from quantified questionnaires and are
typically available as descriptive statistics. These results
cannot be used for simulation, unless they are approximated
by some means of mathematics. Typically linear models are
very popular, because they are easy to understand and simple
to calculate. The drawback is a too simplified model of the
observed system and complex interactions could not be
modelled sufficiently. Artificial neural network technology is
an approved way to build complex models for all kind of
observable systems. They are a very powerful model building
technology, which are described as a set of equations. But
how do we get this equation set into its open form equivalent
for analyses and optimization applications? A solution to this
problem is presented and discussed in the next chapters of this
paper.

III. PROBLEM SOLUTION

A. Basic Equations and ANN Equivalents
Initially we have an observable system, which consists of a set
of n independent variables x and m dependent variables y.
Where each dependent variable y can be described as a
function f of n independent variables x as following:

fi(x1, x2, …. , xn) = yi for all i from 1, … ,m (3)

with
neti(x1, x2, …. , xn) = yi

as the ANN equivalent to fi

where all dependent variables y have to be independent to the
other dependent variable. If this is not the case we define the
system as a MISO (multiple input – multiple output) systems
or the equivalent ANN

f(x1, x2, …. , xn) = (y1, y2, …. , ym) (4)
 with
net(x1, x2, …. , xn) = (y1, y2, …. , ym)

as the ANN equivalent to f

For a complex system or unknown system it is likely that it
does not fulfill the requirement that all dependent and
independent variables are independent to each other.
Therefore we have to define a MIMO (multiple input –
multiple output) system architecture as the proper equivalent
model. We assume the open form equivalent of the equation
(4) is as follows

G(x1, x2, …, xn, y1, y2, … , ym) = 0 (5)

INTERNATIONAL JOURNAL OF NEURAL NETWORKS and ADVANCED APPLICATIONS Volume 2, 2015

ISSN: 2313-0563 29

B. Algorithm to Build the Open Form Equivalent
The equation in (5) can be formed into a set of n+m functions
with n+m-1 variables, where each variable of (5) is
represented as following:

g1(x1, x2, …, xn, y1, y2, … , ym-1) = ym (6)
g2(x1, x2, …, xn, y1, y2, … , ym) = ym-1

 ……
gm-1(x1, x2, …, xn, y1, y3, … , ym) = y2
gm(x1, x2, …, xn, y2, y3, … , ym) = y1
gm+1(x2, x3, …, xn, y1, y2, … , ym) = x1
gm+2(x1, x3, …, xn, y1, y2, … , ym) = x2

 ………
gm+n-1(x1, …, xn-2, xn, y1, y2, … , ym) = xn-1
gm+n(x1, x2, …, xn-1, y1, y2, … , ym) = xn

Each equation gj is again modeled by a MISO type ANN gnetj
with j from 1 to n+m .

gnet1(x1, x2, …, xn, y1, y2, … , ym-1) = ym (7)
 gnet 2(x1, x2, …, xn, y1, y2, … , ym) = ym-1

 ………
gnet m-1(x1, x2, …, xn, y1, y3, … , ym) = y2

gnet m(x1, x2, …, xn, y2, y3, … , ym) = y1

gnet m+1(x2, x3, …, xn, y1, y2, … , ym) = x1

gnet m+2(x1, x3, …, xn, y1, y2, … , ym) = x2
 ………

gnet m+n-1(x1, …, xn-2, xn, y1, y2, … , ym) = xn-1

gnet m+n(x1, x2, …, xn-1, y1, y2, … , ym) = xn

In the next step the degree of freedom is defined for a model
simulation and the input vector as a starting point for the
iteration.

 I0 = (0i1, 0i2, …. , 0in+m) (8)

where I0 is the initial input vector and where ij is the jth input
parameter of model G as defined in (5)

Next we define vector F to specify the dependent or
independent variables used in the model simulation as
following:

 F = (f1, f2, …. , fn+m) (9)

with f=0 dependent variables and f=1 for independent
variables in G

Finally we introduce two termination conditions for the
iteration algorithm. The first condition T limits the number of
iteration steps t with

T>0 and T ∈N (10)
with N as the set of natural numbers.

And the second condition is a stability criteria ε with

 (11)

with R as the set of real numbers.

The input vector I for iteration step t is defined as

 It = (ti1, ti2, …. , tin+m) (12)

where It is the input vector of the iteration t and
 tij is defined as

 tij = (1 - fj) * gnetj

t-1
 + fj * t-1ij (13)

where gnetj
t is the value of the jth ANN mode

 gnet at iteration t

Fig.3 NS-Diagram to describe the transformation

In Fig.3 the algorithm is shown as a Nassi-Shneiderman (NS)
diagram.

C. Algorithm to Evaluate the Open Form Equivalent
Based on the above transformation and conditions the iterative
algorithm to calculate the values of the dependent variables is
as following:

1) Find a proper ANN model that match the function
according to (4)

2) Build all MISO ANN models for each parameter of
the ANN model that was found in step 1 according
to (7)

3) Train each ANN model until the requested accuracy
is reached.

4) Define the vector F and decide which of the model
parameters are treated as dependent or independent
variables.

5) Define input vector I0 with xi and yj for all i and j.
Appropriate initial values of y can be found by
evaluating the ANN defined in (4).

6) For each gnetj calculate the network value, iff the
value of fj is 0, which means the model parameter

INTERNATIONAL JOURNAL OF NEURAL NETWORKS and ADVANCED APPLICATIONS Volume 2, 2015

ISSN: 2313-0563 30

with index j is a dependent variable or the value of
parameter j is assumed to be stable.

7) Compare the network value of parameter j at
iteration step t with its previous value of iteration
t-1.

8) If following condition | gnetjt - gnetjt-1 | < ε is
valid, the value of gnetjt is assumed to be stable.

9) Prepare the input vector It+1 for the next iteration
step.

10) If all ANN models have stabilized or the number
of maximum iterations has been reached, the
iteration algorithm terminates otherwise follow
step 10.

11) Repeat steps 6 to 9 for all ANN models, which
have not stabilized yet during the iteration process.

After the algorithm has terminated, the input vector I holds the
final values for the simulated dependent variable. All the
ANN models representing each variable of the observed
system gnetj is organized in one meta-model, named “process
model”. It contains all the required information as shown in
Fig.6.

Fig.4 NS-Diagram to describe the meta model evaluation

IV. SAMPLE APPLICATION
A typical process control scenario shows a bypass

controlled counter flow heat exchanger. A typical counter
flow heat exchanger layout is shown in Fig5 below.

Fig.5 Schematic of a bypass controlled heat exchanger

This application demonstrates the usage and flexibility of
the described algorithm. The system and data used in this
example is part of a real and existing monitoring application
and the heat exchanger is part of the preheater chain of a
crude distillation unit of a crude oil refinery in Austria. The
observed heat exchanger system is described by following
variables:

FC feed of the cold side in tons per hour
FH feed of the hot side in tons per hour
DENS_COLD online density of the cold flow one hour

average
DENS_HOT online density of the hot feed in one hour

average values
TC_IN input temperature as hour average (cold

side)
in degree Celsius

TC_OUT output temperature as hour average (cold
side) in degree Celsius

TH_IN input temperature as hour average (hot side)
in degree Celsius

TH_OUT output temperature as hour average (hot
side)
in degree Celsius

VLV_OPEN percentage of opening the valve located in
the hot bypass stream

For a rigorous equation based model several additional

variables are required to describe the process. Like the heat
transfer coefficient or the size of the transfer zone of the heat
exchanger. But for the ANN based observation model these
parameters are not required, as they are implicitly modeled.
First we build the MIMO model, which models and calculates
or predicts the TC_OUT and TH_OUT variables. This is done
with a three layer ANN, using one hidden layer. The data for
training was directly collected from the process control
system.

INTERNATIONAL JOURNAL OF NEURAL NETWORKS and ADVANCED APPLICATIONS Volume 2, 2015

ISSN: 2313-0563 31

Fig.6 Configuration form to configure meta data.

The open form equivalent data configuration form shown in
Fig.6 has all meta information as currently implemented in the
modelling toolkit, that was used for the simulation. There is
some extra information shown in the bottom of the form that
is used for a constraint based optimizer. This optimizer sits on
top of the meta model, but it is not necessary for the open
form equivalent model described in this article.

Fig.7 Simulated valve position dependent of TC_IN

In Fig.7 the setpoint of the bypass valve is shown, which
calculated by the inverted model. In this case the input
temperature of the cold stream is modified over its input range
for the simulation.

Fig.8 Simulating the control curve for valve with fixed flows and
target temperature

In Fig.8 the result from model simulation of the two
dependent variables TH_OUT (output temperature of the hot
stream) and VLV_OPEN (open position of the bypass valve)
is shown. The open form model has also learned the control
algorithm that is used for the bypass valve, which seems to be
linear. The simulator tries to increase the bypass of the hot
stream to reduce the amount of heat transfer to keep the
TC_OUT setpoint at about 88°C.

In Fig.9 the model results of the simulated output
temperature of the hot stream and the control surface for the
bypass valve (overlaid color surface) is shown together in a
4D plot. For this simulation the independent variables for the
input temperature on the cold side (TC_IN) and the hot side
(TH_IN) of the heat exchanger are varied over their value
range. The open form model predicts the bypass valve

position to keep the outlet temperature on the cold side of the
stream (TC_OUT) close to its setpoint.

Fig.9 Control surface of the bypass valve

The sensitivity analysis [3] of the bypass valve position
(VLV_OPEN) in relation to the outlet temperature of the cold
stream (TC_OUT) of the heat exchanger is shown in Fig.10..
For this analysis all other independent variables remain
constant.

Fig.10 Sensitivity plot of the simulated output temperature of the
cold stream

V. CONCLUSION
This paper present a novel algorithm to transform a multilayer
feed forward artificial neural network into its open form
equivalent meta model. The resulting architecture leads to one
separate ANN model per variable that depends on the
remaining variables of the observed system. The additional
meta structure is used to keep track of the open form model
configuration, like the iteration limits or the list of dependent
and independent variables used for a simulation run. The
presented architecture does not interfere with the internal

INTERNATIONAL JOURNAL OF NEURAL NETWORKS and ADVANCED APPLICATIONS Volume 2, 2015

ISSN: 2313-0563 32

structure of the ANN or its perceptron connections, because
the resulting architecture from the algorithm is a network of
networks configured in a recurrent way. The open form model
can be easily combined with an optimization algorithm like
simulated annealing. A non-trivial control application is
presented and discussed. The results and the power of the
open form ANN model and the transformation algorithm is
shown.

Model inversion is a commonly used in optimization
applications in the process control industry. The open form
model has also a broad range of applications in other research
disciplines like marketing or empirical modelling. It is a
powerful tool to model the results of empirical studies. Any
feedforward ANN models can be transformed into its open
form equivalent and used for scenario analyses or what if
analyses after the transformation.

REFERENCES
[1] Cybenko, G., Approximation by superpositions of a sigmoidal function.

Mathematics of Control, Signal and Systems, 2:303-314, 1989
[2] Eftekhar B, Mohammad K, Ardebili HE, Ghodsi M, Ketabchi E,

Comparison of artificial neural network and logistic regression models
for prediction of mortality in head trauma based on initial clinical data.
BMC Med Inform Decis Mak, 5:3. PubMed Abstract, 2005

[3] Hashem Sherif, Sensitivity Anlyses for Feedforward Artificial Neural
Networks with Differentiable Activation Functions, Proceedings 1992
IJCNN vol1 pp.419-424, IEEE (1992), ISBN 0-7803-0559-0, 1992

[4] Hornig K., Stinchcombe M., and White H., Multilayer feedforward
networks are universal approximators, Neural Networks, 2:359-366,
1989

[5] Iserman, Ralf, Adaptive Control Systems, ISBN 0-13-005414-3, BPCC
Wheatons Ltd, 1991

[6] Omidvar O., Elliott D. L., Neural Systems for Control, Academic Press,
ISBN 0-12-526430-5, 1997

[7] Pao Yoh-Han, Adaptive Pattern Recognition and Neural Networks,
Addison-Wesley Publishing Company, ISBN 0-201-12584-6, 1989

[8] Patterson, Dan W., Artificial Neural Networks: Theory and
Applications, Prentice Hall Simon & Schuster, ISBN 0-13-295353-6,
1996

[9] Rumelhart, D. E., Hinton, G. E. & Williams, R. J. in Parallel Distributed
Processing: Explorations in the Microstructure of Cognition. Vol. 1:
Foundations (eds Rumelhart, D. E. & McClelland, J. L.) 318−362 MIT,
Cambridge, 1986

[10] Runkler, Thomas A., Data Mining, Vieweg+Teubner Fachverlag,
Wiesbaden 2010, ISBN 978-3-8348-0858-5, 2010

[11] Swingler, Kevin, Applying Neural Networks, Academic Press Harcourt
Brace & Company Publishers, ISBN 0-12-679170-8, 1996

[12] Terrin N, Schmid CH, Griffith JL, D'Agostino RB, Selker HP, External
validity of predictive models: A comparison of logistic regression,
classification trees, and neural networks, Journal of clinical
epidemiology, ISSN 0895-4356, 2003

Wolfram C. Rinke owns a master in computer science from the Technical
University of Vienna, Austria, Europe in 1984 and a degree in data technology
from the Technical University of Vienna, Austria, Europe in 1982. Next, the
author’s educational background is listed. The degrees should be listed with
type of degree in what field, which institution, city, state or country, and year
degree was earned.
 He has over 20 years of professional work experience in applied artificial
intelligence, covering several industries like oil and gas and stock markets. He
was CEO and CTO of two companies implementing industrial artificial
intelligence applications for oil refineries like applications for furnace
scheduling, process monitoring, process scheduling and process diagnoses.
Since 2005 he is member of the regular teaching stuff at the University of
Applied Science Burgenland at Eisenstadt, Austria, Europe. His publications
are about quantification of empirical studies using artificial neural networks
and about a method, the dependency matrix, he invented in the early 90’s as
part of a ANN based process modelling toolkit. His current research interest is
focusing on big data and data mining and its applications.
 Dipl.-Ing Rinke is member of the Austrian Society of Artificial Intelligence
for more than 30 years.

INTERNATIONAL JOURNAL OF NEURAL NETWORKS and ADVANCED APPLICATIONS Volume 2, 2015

ISSN: 2313-0563 33

	I. INTRODUCTION
	II. Problem Formulation
	III. Problem Solution
	A. Basic Equations and ANN Equivalents
	B. Algorithm to Build the Open Form Equivalent
	C. Algorithm to Evaluate the Open Form Equivalent

	IV. Sample Application
	V. Conclusion

