
 

 

  
Abstract - In the recent years affordable wireless commercial 

EEG headsets have become widely available, thus opening the 
possibility of mass EEG signal application for various tasks. With the 
help of these devices the life of disabled people that are not able to 
walk or talk can be vastly improved by measuring and recognizing 
certain brain patterns with their manifestation in EEG signals. In this 
paper we present a survey on the recent advances in the field for 
recognizing brainwaves like in the cases that EEG signals are to be 
used for directional movements that can be used to control a 
mechanized wheelchair, or for typing on virtual keyboard by 
presenting on a screen alphabet symbols and recognizing the p300 
signal, that is a specific brain signal appearing when the right 
presented pattern like the right letter symbol emerges, thus enabling 
the disabled person to communicate easier with others. With this 
paper we aim to present what is currently done and what could be 
done in the near future to improve the life of disabled people. 
 

Keywords - EEG, medical application  

I. INTRODUCTION 
N the recent years electroencephalography is becoming a 
very viable option for brain-computer interface control. 

This is due to the mass production release of cheap wireless 
headsets with electrodes for electroencephalography signals 
(EEG) taken from the human scalp as representation of the 
brain activity with EEG as the Emotiv Epoc and Emotiv 
Insight. In this paper it will be presented what possible 
applications can be done of the mass produced EEG caps for 
applications aimed to improve the life of disabled people.  

Before describing the different methods and techniques for 
analyzing the EEG signals it will be considered the basic 
types of existing EEG signals [1]. 

In the encephalography it uses a set of electrodes (usually 
from 8 to 20), which put on the human scalp by previously 
known order. Transmitted electromagnetic waves reflect the 
spontaneous bioelectrical activity of human’s brain and  
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register as waves with small amplitude. Depending on its 
frequencies’ band they divide on gamma (γ), beta (β), alpha 
(α), theta (θ) and delta (δ) waves. 

The amplitude of the respective wave is reciprocally 
connected with its frequency.  

Gamma waves (γ) have a frequency in the range 35 - 100 Hz 
and amplitude up to 15 μV. These waves arise very rarely so 
they are not studied in details yet. 

Beta waves have a frequency in the range 13 – 30 Hz and 
amplitude between 5 and 30 μV (see Fig. 1). 

 
Alpha waves have a frequency in the range 8 – 13 Hz 

(usually around the 10 Hz) and amplitude between 20 and 100 
μV (see Fig. 2). The look like as a sequence of spindles. The 
length of the spindle is approximately 0.5 – 1 s. 

 
Theta waves have a frequency in the range 4 – 8 Hz and 

amplitude between 10 and 30 μV (see Fig. 3). 

 

Delta waves have a frequency in the range 0.5 – 4 Hz and 
amplitude between 50 and 500 μV (see Fig. 4). 

 
Alpha-waves detects predominantly from the occipital lobe 

during wakeful relaxation with closed eyes. They reduce when 
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Fig. 1 Beta (β) EEG waves 

 
Fig. 2 Alpha (α) EEG waves 

 
Fig. 3 Theta (Θ) EEG waves 

 
Fig. 4 Delta (∆) EEG waves 
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the eyes are opened or during the sleep or drowsiness state. 
When the eyes are open the quantity of alpha-waves 

significantly decreases and it replaces with beta-waves. This 
process is known as a desynchronization. 

Beta-waves origin in different points placed on the whole 
brain cortex in wakeful state and open eyes. They are appeared 
more strongly in the front part of the head, where they can be 
detect in closed eyes. In powerful intellectual activity and in 
psychically stress in EEG signals appear more β-waves and 
less α-waves even in closed eyes. The process when in closing 
eyes increases the α-rhythm is well-known as synchronization. 

Theta-waves detect mainly in persons in active age in the 
first 3 phases in the sleep, but sometimes they origin in 
wakeful state and detect from the temporal or front part of the 
head during the violent emotion. 

Delta-waves arise only during the deep sleep (in its 3-rd and 
4-the phases). 

The electromagnetic waves, transmitted from the human 
brain, detects from so called “Emotiv devices” which structure 
and operation will be described in the next section of the 
paper. In this Section 2, in briefly it will be stressed on the 
essence of p300 signals on which base are manufactured 
robots assisting the people with paralysis. Some of existing at 
the moment techniques for processing the EEG signals and 
synthesis the models movement control will be discussed in 
Section 3. The more detail explanation of main features and 
characteristics of classifiers for EEG signals will be made in 
Section 4. The paper will finish with conclusion remarks about 
the advantages and the disadvantages of the existing 
approaches for EEG signal processing on which logic are 
based the devices built-in the wheelchairs for improving the 
life of disabled people.  

II. STRUCTURE AND FUNCTIONALITY OF EMOTIV DEVICES 
The p300 EEG signal is a positive event-related potential. 
When the signal is recorded by electroencephalography, it 
surfaces as a positive deflection in voltage with a latency. It is 
a brain response directly resulted from a perception or a 
thought. This signal mostly occurs when the human detects 
some target, in a sense the p300 wave occurs only when the 
subject is engaged actively in tasks of target detection. While 
the p300 is elicited in many different ways, the most common 
factors influencing it are two stimulus-discrimination tasks 
presented to the subject in an unknown fashion. One occurs 
infrequently (i.e., target) and the other frequently (i.e., non-
target). The p300 has been shown to be fairly stable in locked-
in patients. The amplitude of p300 varies with the 
improbability of the targets. It also has latency and it varies 
with the difficulty of discriminating the target stimulus from 
the standard stimuli. The p300 component refers to the wave 
peaking around 300 ms after some task-relevant stimulus [2, 
3]. Usually it is represented with typical peak latency when 
some young adult subject makes a simple discrimination and is 
around 300 ms starting from 250ms and up to 500ms. For 
P300 the spatial amplitude distribution is highest in the 
occipital region of brain and is symmetric around central 

location Cz recorded based on the 10-20 international system 
[Fig. 5].  

In terms of temporal pattern, p300 wave amplitude is 
typically in the range of 2 to 5 µV. Measurements of p300 
from humans with decreased cognitive ability shows that, the 
p300 is smaller and later than in age-matched normal subjects. 
Even now the intracerebral origin of the p300 signal wave is 
not known and the role it plays in cognition not clearly 
understood and is a topic of ongoing research, because p300 
may be generated from multiple intracerebral clusters, with the 
hippocampus and various association areas of the neocortex all 
contributing to the scalp-recorded potential. The p300 wave 
may represent the transfer of information to consciousness, a 
process that involves many different regions of the brain. 

The p300 is proven to have two subcomponents [3]. The 
subcomponents are the novelty P3, or named P3a, and the 
classic p300, that was renamed to P3b. The P3a is having a 
positive-going amplitude that displays maximum amplitude 
over frontal/central electrode sites with a peak latency in the 
range of 250 to-280 ms. The P3a is associated with brain 
activities that are related to the engagement of attention and 
orientation and the process of novelty processing. The P3b 
signal have a positive-going amplitude, obtained usually to a 
reference behind the ear or the average of two such references, 
peaking at around 300 ms. In P3 the peak varies in latency 
from 250-500 ms or more depending upon the cognitive task. 
The amplitudes of the extracted EEG signals are typically 
highest on the scalp over parietal brain areas. The P3b can be 
used for measurements of how some demanding task is 
influencing on cognitive workload. 

III. APPROACHES FOR PROCESSING THE EEG SIGNALS  
Method for analysis the behavior of the living organisms 

divide on 2 basic classes: invasive and non-invasive. In 
essence the second type of methods based on the experiments 
on the living organisms, which guarantee completely 
preserving their physical and psychically health. Taking 

 
Fig. 5 Recoding of EEG based on 10-20 system and location of 

the electrodes typically used for p300 detection 
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account of the physical nature of the people, the possibilities 
for implementing the experiments over them, which don’t 
change their living conditions and normal existence, are rather 
limited than the animals. For this reason the persons’ behavior 
analyses only by some non-invasive methods. 

To ensure the adequate and impartial assessment of the 
results from the analysis with non-invasive methods is 
sufficient to formulate the reliable criteria for assessment the 
people’s reactions. Thus it is made by the following 
approaches for implementing the observations: 

• Controlled observation – it creates the situation with the 
preliminarily known conditions, when studies the reactions of 
the people. 

• Longitudinal observations — it traces out the changes in 
the behavior of a group of observed persons for different 
periods of time (months, years and etc.).   

• Populations’ observations – it observed a big amounts of 
people, which satisfy a general criteria (for example: type of 
eating, religion, place of living, family background, social 
environment and etc.).  

•  Clinical observations – it analyses the mentally diseased 
persons and in parallel it implements the analysis of the neural 
system and the brain activity of the individuals, which 
increases the adequateness of the observations. 

All mentioned above types of observations are related 
basically with completely analysis of the physical condition of 
the person from the medical point of view. Current survey is 
devoted to the different approaches for classification of the 
EEG signals, which can be divided in different groups 
according to the using mathematical tool for processing the 
input information. 

Because of the non-linear and dynamic nature of the EEG 
signals, it is very difficult to effectively decipher the subtle 
changes in them by visual inspection and by using linear 
techniques. Therefore, non-linear methods are more suitable to 
analyze these signals. 

3.1. Classifiers of EEG signals, based on the probabilistic 
neural networks (PNN) employing Lyapunov’s exponents [4] 

In this approach the final decision takes on two stages. First, 
it calculates the Lyapunov’s exponential functions as a 
separately vectors and next these vectors feed to the PNN for 
training and future classification of the analyzed EEG Signals. 

  
3.2. Classifiers of EEG signals, based on the recurrent 

neural networks (RNN) employing Lyapunov’s exponents [5] 
In this approach the final decision again takes on two stages. 

First, it calculates non-linear functions, similar to the 
exponential Lyapunov’s functions and then the data feed to the 
Elman’s RNN. Litter trains by the Levenberg–Marquardt’s 
algorithm. The essence of this approach consist of the fact that 
EEG signals discussed as a chaotic signals. The accuracy of 
the classification by RNN is bigger than the respective one, 
made with the classical neural networks, based on the back-
propagation. The results from this classification show that it is 
a reliable tool for analyzing slow EEG signals (i.e. theta and 
delta waves), serving as an early diagnostics of the failures in 
electroencephalography. 

3.3. Classifiers of EEG signals, based on the wavelet neural 
network employing wavelet feature extraction 

In this approach the final decision again takes on two stages. 
First, the EEG signals decompose to the  σ, β, α, θ and δ 
waves applying Wavelet Transformation (WT), and next they 
feed to the neural network (NN) for recognition. 

In [6] is proposed a method, where first EEG signals 
decompose in frequency domain using discrete wavelet 
transform (DWT), and next the resulting harmonics feed as an 
input to the NN, based on the double-loop Expectation-
Maximization (ЕM) algorithm, which is built in the standard 
NN on type Mixture of experts (ME). This NN has 2 outputs, 
finding normal condition and condition with faults. To 
improve the accuracy of the classification, the outputs of the 
NN are calculate by introducing the local weight coefficients, 
so called “gating” functions. Invariant transformations of the 
functions of the probability density in ME neural network 
include permutations of the expert levels and translations of 
the parameters of the “gating” functions. The results of 
classification with this method is higher that the respective 
one, made with the standard ME neural networks. 

In [7] is suggested a method, where again first EEG signals 
decompose in time-domain and frequency-domain using DWT, 
and then the data approximates with the most appropriate 
distribution. These results feed to the NN, which realize in 2 
types – one and double layers. To improve the accuracy if the 
classification in two-layers NN the outputs of the 1-st layer use 
as an inputs for the 2-nd layer of the network. This model is 
used for testing the 3 types of patients – clinical healthy and 
awake with open eyes and epileptic diseased in normal 
condition and in collapse, respectively. The accuracy of this 
method is 94.83 %. In general, it guarantees the classification 
accuracy which is bigger than the standard stand-alone NN. 

Analogically as [7] in [8] are tested the same 3 types of 
patients; again firstly is applied the DWT transformation the 
EEG signals, but here it is uses Multi-Resolution Analysis 
(MRA). Then it applies the Parseval’s theorem for data 
approximation with the most appropriate distribution. The 
results from the approximation feed to the NN for future 
recognition. The accuracy of this method is higher than the 
respective ones gotten by other analogous classifiers. 

In the literature exists other class mathematical models, 
based on the decomposition the initial EEG signals as a 
separately harmonics and feeding to the specific class neural 
networks (adaptive NN) for their recognition [9, 10]. These 
adaptive NN use fuzzy logic in classification. Here the final 
solution also takes on 2 stages. The training of this adaptive 
NN based on the back-propagation technique in combination 
with the least squares method, which ensure the higher 
accuracy of the classification. Testing is made on 5 types of 
EEG signals, which recognize on the output of the first NN. To 
increase the accuracy of the classification it is added 6-th 
classifier, on which input feeds the outputs of the 5-th outputs 
of the previous NN. This guarantees the adaptively of the 
suggested NN with respect to the input data. The performance 
of this classifier is estimate with regard to the time for training 
the NN and the accuracy of the recognition.  The results show 
that this mathematical model ensure higher classification 
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accuracy of EEG signals than the respective one, gotten by 
using the standard NN with determine coefficients. 

The proposed model of classifier in [11] is analogous of 
these which are suggested in [9] and [10], with the main 
difference consist of the fact that the decomposed EEG signals 
feed to the Artificial Neural Network (ANN), which makes the 
classification. Results show that this model guarantees enough 
high accuracy which gives a proof for its application as a 
reliable classifier. 

In [12] is suggested new type of classifier, where the final 
conclusion makes by the decision tree method. The initial data 
processes by fast Fourier transformation (FFT) and the 
resulting harmonics feed to the tree structure for decision 
making and classification. This approach uses 5- and 10-fold 
cross-validation and the accuracies are 98.68 % и 98.72 %, 
respectively. This declares him as a reliable classifier. 

 

3.4. Classifiers of EEG signals, based on the support vector 
machine (SVM) extraction 

This approach bases on forming the eigenvector by existing 
energy levels in the energy spectrum of the initial EEG signal. 
SVM technique guarantees higher accuracy than other 
classifiers, because it uses so called structural risk 
minimization (SRM) principle, based on the mathematical 
induction principle. Here it searches the upper bound of the 
common error, presented as a sum of the error (formed during 
the training of the model) and the respective confidence 
interval. 

In [13] is proposed relatively new classifier of EEG signals, 
based on SVM model, where it gives an account of the cross-
correlation between the coefficients. The accuracy of 
classification of this method is 95.96 %. 

The suggested in [14] classifier bases on the multiclass 
SVM model with error correlation, which appears as a 
difference between recognized and actual signal. Final 
decision also makes on two stages. First, the initial data 
decompose by using wavelet transformation (WT) and the 
respective harmonics approximates with exponential 
Lyapunov’s functions. Second, the litters feed to the SVM 
model for training and classification. The results from the 
classification are compared with analogous, by probabilistic 
neural network (PNN) and multy-layers NN, based on the 
perceptron. The conclusion of this comparison is that the new 
technique has a higher accuracy than the other two models. 

The procedure for taking the final decision in [15] is the 
same as the respective one from [14] with only difference that 
analyzed EEG signals decompose by using Burg AR method, 
and then the separately harmonics feed to the SVM model, 
based on the least square method. The performance of this 
classifier estimates by the accuracy of recognition of the input 
data and Receiver Operating Characteristic (ROC), which is 
99.56 %. 

Usually EEG signals are noisy and likely to contain outliers 
which distort the information. The developed in [16] classifier 
suggest possibility for decreasing the influence of the noise 
added to the EEG signal, which guarantees the more exact 
classification. Here as an mentioned above methods of this 

group first it applies WT to the initials EEG signals and next 
the separately harmonics feeds to the neural network, which in 
this case is fuzzy VM (FVM) model with radial functional core 
for classification of the “parasitical” signals, where uses small 
part of the support vectors as a criterion for choosing the 
kernel parameter and the trade-off parameter, together with the 
membership parameter based solely on training data. 

The classification of EEG signals in [17] makes by using 
SVM model with Gaussian (RBF) kernel. The accuracy of 
classification controls by two hyper parameters - the penalty 
parameter C and the kernel width σ which take very small or 
very large values. The results show that the hyper parameter 
space that leads to an efficient heuristic method of searching 
for hyper parameter values with small generalization errors. 
The analysis also indicates that if complete model selection 
using the Gaussian kernel has been conducted, there is no need 
to consider linear SVM. 

In [18] is presented a new algorithm that automatically and 
reliably removes artifacts from EEG based on blind source 
separation and support vector machine. Performance on a 
motor imagery task is compared for artifact-contaminated and 
preprocessed signals to verify the accuracy of the proposed 
approach. The results showed improved results over all 
datasets. Furthermore, it is investigated the online applicability 
of the suggested algorithm. 

Proposed in [19] classifier of EEG signals is realized with a 
recently developed machine learning algorithm referred to as 
Extreme Learning Machine (ELM). It classify five mental 
tasks from different subjects using EEG signals. Performance 
of ELM is compared in terms of training time and 
classification accuracy with a Backpropagation Neural 
Network (BPNN) classifier and also Support Vector Machines 
(SVMs). For SVMs, the comparisons have been made for both 
1-against-1 and 1-against-all methods. Results show that ELM 
needs an order of magnitude less training time compared with 
SVMs and two orders of magnitude less compared with 
BPNN. The classification accuracy of ELM is similar to that 
of SVMs and BPNN. The study showed that smoothing of the 
classifiers' outputs can significantly improve their 
classification accuracies. 

 

3.5. Classifiers of EEG signals, based on the analysis of the 
eigenvectors  

Historically these classifiers apply for pattern recognition 
where very often requires extracting different features from 
“raw” data and their classification in separately groups 
according to appointed criterion. One of existing approach in 
this group is based on extracting eigenvectors, corresponding 
to the initial data and feed them to the expert system for their 
recognition. In last 10 years this techniques applies more and 
more frequency for classifying the EEG signals. 

In [20] is presented the expert systems (mixture of experts - 
ME and modified mixture of experts - MME) for classifying 
EEG signals. Two models are benchmarked for their 
performance on the classification of the studied EEG signals. 

Decision making is performed in two stages: feature 
extraction by eigenvector methods and classification using the 
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classifiers trained on the extracted features and then the inputs 
of these expert systems composed of diverse or composite 
features were chosen according to the network structures. The 
results from analysis demonstrate that the MME trained on 
diverse features achieved accuracy rates which were higher 
than that of the ME. 

In [21, 22, 23] the final decision makes on 2 stages: feature 
extraction by eigenvector methods and classification using the 
classifiers trained on the extracted features. The proposed 
approached in [21] uses multiclass SVM neural network, but 
the suggested technique in [22] and [23] based on the 
Probabilistic Neural Network and recurrent neural network, 
respectively. In all three cases the results from classification 
guarantee high accuracy of recognition, which implement them 
for reliable classification tool for EEG signal. 
 

3.6. Classifiers of EEG signals, based on the autoregressive 
models  

In [24] are proposed 2 models for classification of the EEG 
signals extracted during mental tasks. These methods use fixed 
autoregressive (FAR) and adaptive AR (AAR) models. 
Experiments are made by solving of 5 different tasks from 4 
subjects, as each subjects solve 2 different mental tasks. It uses 
4 different methods for classification: FAR coefficients 
computed with Burg’s algorithm, based on the 125 data points, 
without segmentation and with segmentation of 25 data points; 
AAR coefficients computed with Least-Mean-Square (LMS) 
algorithm using 125 data points, without segmentation and 
with segmentation of 25 data points and Multilayer Perceptron 
(MLP) neural network (NN) trained by the backpropagation 
(BP) algorithm. The best results are gotten for FAR - 92.70 %, 
while for AAR the accuracy is only 81.80 %. This indicates 
that FAR using 125 data points without segmentation give 
better classification performance as compared to AAR, with all 
other parameters constant. 

In [25] is suggested a new time-varying autoregressive 
(TVAR) modelling approach for signal processing and power 
spectral estimation. It is based on the fact that the time-
dependent coefficients of the TVAR model are represented 
using a novel multiwavelet decomposition scheme. Then the 
time-varying modelling problem is reduced to regression 
selection and parameter estimation, which can be effectively 
resolved by using a forward orthogonal regression algorithm. 
Two examples, one for an artificial signal and another for an 
EEG signal, are given to show the effectiveness and 
applicability of the new TVAR modelling method. 

In [26], are proposed two fundamentally different 
approaches for designing classification models (classifiers); 
the traditional statistical method based on logistic regression 
and the emerging computationally powerful techniques based 
on artificial neural networks (ANNs). Logistic regression as 
well as feedforward error backpropagation artificial neural 
networks (FEBANN) and wavelet neural networks (WNN) 
based classifiers were developed and compared in relation to 
their accuracy in classification of EEG signals. In these 
methods it is used FFT and autoregressive (AR) model by 
using maximum likelihood estimation (MLE) of EEG signals 

as an input to classification system with two discrete outputs: 
epileptic seizure or nonepileptic seizure. By identifying 
features in the signal we want to provide an automatic system 
that will support a physician in the diagnosing process. By 
applying AR with MLE in connection with WNN, it is 
obtained novel and reliable classifier architecture. The network 
is constructed by the error backpropagation neural network 
using Morlet mother wavelet basic function as node activation 
function. The comparisons between the developed classifiers 
were primarily based on analysis of the receiver operating 
characteristic (ROC) curves as well as a number of scalar 
performance measures pertaining to the classification. The 
WNN-based classifier outperformed the FEBANN and logistic 
regression based counterpart. Within the same group, the 
WNN-based classifier has higher accuracy than the FEBANN-
based classifier, and the logistic regression-based classifier. 

The suggested in [27] procedure for classifying the EEG 
signals is similar to this one, which is described 3.3, i.e. 
wavelet neural network employing wavelet feature extraction. 
Here introduces a multilayer perceptron neural network 
(MLPNN) as a final classifier. First, EEG signals decompose 
into frequency sub-bands using discrete wavelet transform 
(DWT). Second, the wavelet coefficients clustere using the K-
means algorithm for each frequency sub-band. The probability 
distributions is computed according to distribution of wavelet 
coefficients to the clusters, and then used as inputs to the 
MLPNN model. The results based on the five different 
experiments for evaluation the performance of the proposed 
model in the classifications of different mixtures of healthy 
segments, epileptic seizure free segments and epileptic seizure 
segments. It is shown that the proposed model resulted in 
satisfactory classification accuracy rates. 

In [28] is proposed a classifier of EEG signals, where the 
evaluation based on the combination of complexity analysis 
and spectrum analysis of the on EEG signals which can 
perform robust evaluations on the collected data. Principle 
component analysis (PCA) and genetic algorithms (GAs) are 
applied to various linear and nonlinear methods. The best 
linear models resulted from using all of the features without 
other processing. For the nonlinear models, applying PCA for 
feature reduction provided better results than applying GAs. 
The feasibility of executing the proposed methods on a 
personal computer for on-line processing was also 
demonstrated. 

 

3.7. Classifiers of EEG signals, based on the Hilbert-Huang 
transformation models  

The implementation and testing of the algorithm proposed 
in [29] is made in MATLAB environment. The analysis in 
question presents a classification of normal and ictal activities 
using a feature rely on Hilbert-Huang Transform. Through this 
method, information related to the intrinsic functions contained 
in the EEG signal has been extracted to track the local 
amplitude and the frequency of the EEG signal. Based on this 
local information, then the weighted frequencies are calculated 
and is performed a comparison between ictal and seizure-free 
determinant intrinsic functions. Used methods of comparison 
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the t-test and the Euclidean clustering. The t-test results in a P-
value < 0.02 and the clustering leads to accurate (94 %) and 
specific (96 %) results. The proposed method is also 
contrasted against the Multivariate Empirical Mode 
Decomposition that reaches 80 % accuracy. Finally the 
proposed approached is compared with the exiting similar 
classifiers with respect to the accuracy, fast response and easy 
use. 

The presented in [30] classifier of EEG signals uses 
empirical mode decomposition (EMD) method. The intrinsic 
mode functions (IMFs) generated by this method can be 
considered as a set of amplitude and frequency modulated 
(AM–FM) signals. The Hilbert transformation of IMFs 
provides an analytic signal representation of the IMFs. The 
two bandwidths, namely amplitude modulation bandwidth 
(BAM) and frequency modulation bandwidth (BFM), 
computed from the analytic IMFs, have been used as an input 
to least squares support vector machine (LS-SVM) for 
classifying seizure and nonseizure EEG signals. This method 
provides better classification accuracy than the method 
adopted by Liang and coworkers in their study published in 
2010 [17, 18, 26, 29]. 

3.8. Classifiers of EEG signals, based on the recursive 
analysis models  

The main important feature of the epilepsy is that it is a 
common neurological disorder which is characterized by the 
recurrence of seizures. In [31] uses the recorded EEG signals 
in Recurrence Plots (RP) and it extracts Recurrence 
Quantification Analysis (RQA) parameters from the RP in 
order to classify these signals into normal, ictal, and interictal 
classes. Recurrence Plot (RP) is a graph that shows all the 
times at which a state of the dynamical system recurs. Studies 
have reported significantly different RQA parameters for the 
three classes. However, more studies are needed to develop 
classifiers that use these promising features and present good 
classification accuracy in differentiating the three types of 
EEG segments. The proposed method uses ten RQA 
parameters to quantify the important features in the EEG 
signals.These features were fed to seven different classifiers: 
Support vector machine (SVM), Gaussian Mixture Model 
(GMM), Fuzzy Sugeno Classifier, K-Nearest Neighbor 
(KNN), Naive Bayes Classifier (NBC), Decision Tree (DT), 
and Radial Basis Probabilistic Neural Network (RBPNN). The 
results show that the SVM classifier was able to identify the 
EEG class with an average efficiency of 95.6 %, sensitivity 
and specificity of 98.9 % and 97.8 %, respectively. 

4. MAIN FEATURES AND CHARACTERISTICS OF EEG SIGNALS 
CLASSIFIERS 

Classifiers of EEG signals, based on the neural networks 
employing Lyapunov’s exponents (see 3.1 and 3.2) are the 
earliest appeared methods for analyzing the EEG signals, but 
in spite of this fact they are reliable classifiers of these signals. 

At this stage classifiers of EEG signals, based on the 
wavelet distributor and recognizing by neural networks (see 
3.3) uses for prognosis of the epileptic crisis in the patients 
suffering from this disease. 

SVM classifiers (see 3.4) mainly designs for binary 
classification and use for optimal data distribution in two 
classes for difference as the others classifiers which divides the 
analyzed EEG signals in three classes. This restrict their 
application.  

From the beginning of 21-st century the classifiers, based on 
eigenvectors analysis (see 3.5), appear and are coming in 
increasingly as a new tool for recognition of the EEG signals. 

EEG signals classifiers, based on the Hilbert-Huang 
transformation (see 3.7) are reliable tool for processing these 
signals to diagnose brain functionality abnormalities. They 
ensure fast and efficient diagnosis, high accuracy, good 
sensitivity and specificity, time saving and user friendly 
communication interface, as at the same time they are cheaper 
than other similar classifiers. 

Classifiers, based on the recursive analysis models (see 3.8) 
are rather better than the other own types of counterparts, 
because in these models gives an account of recurrence nature 
of the EEG signals. 

In [32] is presented a comparative analysis between existing 
methods for classifying the EEG signals. There uses multilayer 
perceptron neural network (MLPNN) architectures as basis for 
detection of electroencephalographic changes in EEG signals. 
Three types of EEG signals (EEG signals recorded from 
healthy volunteers with eyes open, epilepsy patients in the 
epileptogenic zone during a seizure-free interval, and epilepsy 
patients during epileptic seizures) are classified. The selected 
Lyapunov exponents, wavelet coefficients and the power 
levels of power spectral density (PSD) values obtained by 
eigenvector methods of the EEG signals are used as inputs of 
the MLPNN trained with Levenberg–Marquardt algorithm. 
The classification results confirm that the proposed MLPNN 
has potential in detecting the electroencephalographic changes. 

The high-dimensional and noisy nature of EEG signals 
limits the advantage of nonlinear classification methods over 
linear ones. On this reason in [33] is presented the results from 
comparison between linear and non-linear classifiers of EEG 
signals. On one side, it is used a linear discriminant analysis, 
and on other side - two nonlinear classifiers - neural networks 
and support vector machines. It are solved five mental tasks, 
showing that nonlinear classifiers produce only slightly better 
classification results. As an addition it is discussed an 
approach to feature selection based on genetic algorithms is 
also presented with preliminary results of application to EEG 
during finger movement. 

5. CONCLUSION 
The reliable operation of brain-computer interfaces (BCIs) 

based on spontaneous electroencephalogram (EEG) signals 
requires accurate classification of multichannel EEG signals. 

The significant part of discussed in Sections 3 and 4 
approaches for classification of EEG signals are the most 
widely used in medicine and especially for detection the state 
of the epilepsy suffering people. All of them based on the 
analysis of the EEG signals, generated form their brain. The 
commonly for all proposed approaches consist of the fact that 
almost everyone technique (except Wavelet transformation – 
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see 3.3 – [6] and Support Vectors Machines – SVM – see 3.4 
– [13, 14, 15, 16, 17, 18, 19]) classify the tested people in 
three basic groups – clinic healthy and epilepsy suffering (in 
normal state and in collapse). The final decision makes on two 
stages. First, the “raw” EEG signal decomposed on different 
harmonics, by using different mathematical processing. Next, 
these separately components feed to the different neural 
network for classifying the patients. Usually real detected EEG 
signals are noisy. Then the non-linear classifiers are better that 
linear ones. But the litter are faster and have more simple 
realization.  

At the moment classifiers of EEG signals are applied only 
for diagnosis the abnormal functionality of the brain connected 
to the epilepsy suffering, but with the same success they can be 
applied for recognition of p300 signals and their control for 
improving the life of disable people. The classification results 
can be used for synthesis of control devices, which will be 
built-in the wheel-chairs of the disabled persons. 
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