
 

 

  
Abstract—In this work, a recursive Levenberg-Marquardt (LM) 

learning algorithm in the complex domain is developed and applied 
to the learning of an adaptive control scheme composed by Complex-
Valued Recurrent Neural Networks (CVRNN). We simplified the 
derivation of the LM learning algorithm using a diagrammatic 
method to derive the adjoint CVRNN used to obtain the gradient 
terms. Furthermore, we apply the CVRNN control scheme for a 
particular case of a nonlinear, oscillatory mechanical plant to validate 
the performance of the adaptive neural controller and the learning 
algorithm. The obtained simulation results using a flexible robot arm 
confirm a good performance of the derived control schemes and 
learning algorithms to suppress the occurred robot oscillations and 
tracking error. 
 

Keywords—Complex-valued Levenberg-Marquardt learning, 
direct adaptive neural control, diagrammatic rules, recurrent 
complex-valued neural network topology, system identification of 
nonlinear oscillatory plants.  

I. INTRODUCTION 
 

HE  rapid growth of available computational resources has 
led to the developments of a wide number of Neural 
Networks (NN) based modeling, identification, prediction 

and control applications [1-3]. Some other applications of 
neural and fuzzy-neural networks have been done for 
oscillatory chaotic systems, [4], [5]. The main NN property, 
namely the ability to approximate complex nonlinear 
relationships without prior knowledge of model structure, 
makes them a very attractive alternative to the classical 
modeling and control techniques [6-8]. Among several 
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possible network architectures the ones most widely used are 
the Feed-Forward NN (FFNN) and Recurrent NN (RNN) [6]. 
In the last decade there has been a rise in applications using 
Recurrent Complex-Valued NNs (RCVNN) [9-15]. Most of 
them deal with oscillatory systems which, by their physical 
nature, are convenient to be treated in the complex domain, 
such as electromagnetic waves, light waves, images 
processing, electric power systems, evaporator systems and 
mechanical systems [9-11]. In [12], the authors derived a 
Complex-Valued Backpropagation (CVBP) algorithm used for 
pattern classification. However, the learning algorithm 
presented some problems because the activation functions 
presented singularity points in their domains. Some other 
articles [13], [14] and [15], propose different activation 
functions that avoid singularity points. To simplify the 
Levenberg-Marquardt (LM), learning for the RCVNN, the 
present work proposes the use of diagrammatic rules (see [16]) 
to construct an adjoint network and propagate the complex 
output error through it in order to obtain the weight 
adjustment, with two different RCVNN topologies considered, 
each with different activation functions avoiding singularities. 

The based on optimization LM learning techniques is used 
for nonlinear oscillatory plant identification and oscillation 
suppression by means of a direct integral term (I-term) 
adaptive neural control using RCVNN. Lastly, some 
comparative simulation results of RCVNN identification and 
control of flexible-joint robot are given and discussed, and a 
validation stage is presented in order to confirm the good 
quality of the control scheme and the proposed learning 
algorithms. 

 

II. TOPOLOGY AND LM LEARNING OF RCVNN  

 
The general RCVNN topology in consideration is an extension 
of the real-valued Recurrent Neural Network topology, given 
in [8]. The considered RCVNN topology has real-valued input 

( )U k  and output ( )Y k  signals, complex valued internal 
state X( )k  and hidden state ( )Z k  vectors, and complex 
valued , , CJ B weight matrices. It is defined as follows: 
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( 1) ( ) ( )X k JX k BU k+ = +  (1) 

diag( ), 1, 1, ,i iJ J J i N= < =   (2) 

( ) ( ) ( )PE k Y k Y k= −  (3) 

[ ]( ) ( )Z k X k= Γ  (4) 

( ) ( )V k CZ k=  (5) 

[ ]( ) ( )Y k V k= Φ  (6) 

The vectors and matrices dimensions of the RCVNN 
topology are given as follows: n nJ ×∈  is the feedback 
weight matrix, n mB ×∈  is the input weight matrix, 

p nC ×∈  is the output weight matrix, nX ∈  is the 
internal state vector, nZ ∈  is the hidden state vector, 

mU ∈ is the network input, LY ∈ is the network output, 
][⋅Γ  a complex-valued activation function, and ][⋅Φ  a real-

valued activation function )tanh()( ⋅=⋅f ; Lmn ,,  are the 
number of internal states, inputs and outputs respectively.. The 
inequality in (2) is a stability preserving condition, imposed on 
the diagonal blocks of the matrix J . This condition is imposed 
also to all the weights of the matrices ,B C . 

We consider two particular RCVNN with different 
activation functions. In the same way as in the real-valued 
case, [8], we apply complex-valued diagrammatic rules so to 
derive an adjoint network for each case. 

The performance index to be minimized is given by: 

21 1( ) [ ( )] , ( )
2 j

j ke

k E k k
N

ζ ζ ζ= =∑ ∑  (7) 

The instantaneous Means Squared Error (MSE) ( )kζ is 
used in real-time applications, while the total MSEζ is used 
for one epoch eN in off-line applications. 

 

A. Topology and LM Learning of RCVNN with First Type 
Activation Function 
The first type activation function is defined as follows: 

2 1: z 0 ,
(z) tanh(z), z 2

pz i
f

p

π− = ± = ∈  
 ∀ ∈ 




  (8) 

This activation function has singularities in some points of 
the complex domain and because of this, we avoided them. 
The topology of RCVNN using this activation function is 
given on Fig.1. 

 
Fig. 1 Topology of the first type RCVNN 

Applying the diagrammatic rules, [16], to the RCVNN 
topology, we obtain the adjoint RCVNN model, given on 
Fig.2. The adjoint RCVNN is used for the backward 
propagation of the output error signals of the BP algorithm.  

 
Fig. 2 Adjoint topology of the first type RCVNN 

The complex-valued Levenberg-Marquardt (CVLM) 
algorithm for any weight vector W  is described by the 
following equation: 

 ),()]([)()()1( kEkWDYkPkWkW ⋅⋅+=+  

0WWj <  (9) 

Where: 0W  is a restricted region for the weight  jW . The 
gradient terms for the complex-valued network with the first 
type activation function are described by the following 
equations: 

 DkYkD ⋅Φ= )]([')(1  (10) 
 )()]([')( 12 kDCkZkD ⋅⋅Γ= ∗  (11) 
 )()()()(:)]([ 1 kZkDkCkYkCDY ∗⋅=∂∂=  (12) 
 )()()()(:)]([ 2 kXkDkJkYkJDY ∗⋅=∂∂=  (13) 
 

2[ ( )] : ( ) ( ) ( ) ( )DY B k Y k B k D k U k∗= ∂ ∂ = ⋅  
 

(14) 

Where the )(∗  superscript denotes a complex conjugate 
and transposed vector, ID =  is a real-valued identity matrix 
input for the adjoint topology. The matrix P  is computed 
recursively using the following equation: 

 1 1
( ) ( )

( )

( ) [ ( 1) ( 1)

( 1)]
W k W k

W k

P k P k P k S

P k

α − −

∗

= − − − ⋅Ω ⋅

⋅Ω ⋅ −



 (15) 

Where the matrices WΩ  and WS  are given by: 

 
( )

[ ( )]
0 1 0W k

DY W k∗
∗  

Ω =  
  

 (16) 

 
( ) ( ) ( )( 1)W k W k W kS P kα ∗= Λ + Ω ⋅ − ⋅Ω  (17) 

 








=Λ−

ρ0
011  

 
(18) 

Again, the matrices P  and WS  have dimensions 
)( WW NN ×  and )22( ×  respectively, where WN  is the 

number of weights in the vector W . The matrix WΩ  has 
dimension )2( ×WN , the second row of W

∗Ω  consists of 
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)1( −WN  zeroes and a unit element in the i -th position 
computed by: 

 1)mod( +⋅= WNki  (19) 

The parameters for the algorithm should be restricted as 
follows: 

 00.197.0,1010 46 ≤≤≤≤ −− αρ  

( )3 610 0 10P≤ ≤  
(20) 

   

B. Topology and LM Learning of RCVNN with Second Type 
Activation Function 
The second type activation function ([11], [14]) does not have 
any singularity points and it is defined by the following 
equation: 

[ ] [ ]( ) tanh Re( ) tanh Im( ) ,f z z i z z= + ⋅ ∈  (21) 

This activation function doesn’t have any singularities, so it 
doesn’t need any restrictions in its domain as it did the first 
activation function. The block diagram of the CVRNN that 
uses this activation function is shown in Fig.3. 

 

 
Fig.3 Block-diagram representation for the CVRNN with second 
type activation function 

The description of the CVRNN with the constructed 
activation function (21) is given by the following equations: 

 )()()1( kBUkJXkX +=+  (22) 
 )]([)]([)( ImRe kXikXkZ Γ+Γ=  (23) 
 )()( kCZkV =  (24) 
 )]([)( kVkY Φ=  

 
(25) 

The dimensions and domains of each vector and matrix in 
this CVRNN are the same as in the previous network. 
Applying the complex-valued diagrammatic rules we obtain 
the adjoint network, shown in Fig.4. 

 
Fig.4 Block-diagram representation of the adjoint network for the 
CVRNN with second type activation function 

From this adjoint network, we derive the gradient terms 
needed for the CVLM learning algorithm, which are described 
by the following equations: 

 DkYkD ⋅Φ= )]([')(1  (26) 
 

2 Re

Im 1

( ) ( '[ ( )] Re( )

'[ ( )] Im( )) ( )

D k Z k C

Z k C D k

∗

∗

= Γ ⋅

+ Γ ⋅ ⋅



 (27) 

 )()()()(:)]([ 1 kZkDkCkYkCDY ∗⋅=∂∂=  (28) 
 )()()()(:)]([ 2 kXkDkJkYkJDY ∗⋅=∂∂=  (29) 
 

2[ ( )] : ( ) ( ) ( ) ( )DY B k Y k B k D k U k∗= ∂ ∂ = ⋅  
 

(30) 

Where:  ID =  is a real-valued identity matrix input for 
the adjoint topology. Then we apply the CVLM equations 
given by (15)-(19) with parameters restricted by (20). 

 

III. COMPLEX-VALUED NEURAL IDENTIFICATION AND 
CONTROL OF NONLINEAR PLANTS  

A. Plant Identification 
 
The application of the given models of RCVNN for the 
identification of nonlinear oscillatory plants is illustrated by 
Fig.5. The plant here is a flexible joint arm. The input signal of 
the plant is the same as the input signal of the RCVNN model. 
Here the desired target vector is the output of the plant and the 
identification objective is to adjust the complex weight 
parameters of the RCVNN in a way that the RCVNN output 
follows the plant output with minimum Mean Squared Error 
(MSE). The RCVNN training is then validated by a 
generalization step, where an unknown input signal is used and 
a MSE is computed with fixed RCVNN weights. 

The input plant signals used for system identification and 
generalization are chosen as a sum of sine functions with 
different frequency and amplitude. The input signal of 
RCVNN model and the output signal of the plant are 
discretized in other to perform the complex LM algorithm of 
learning and the RCVNN model generalization (see Fig.5). 

 

 
 

Fig. 5 Block-diagram of RCVNN plant identification scheme 
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B. Direct Feedforward Adaptive Neural Control with State 
Feedback 
For the first adaptive neural controller, we use the control 
scheme represented in the diagram shown in Fig.6 [17]. 

 
Fig.6 Block-diagram of the feedforward adaptive neural control 
with state feedback 

In this control scheme we use three different CVRNN, 
each performing a specific task: 

 
• CVRNN-1: Is used as a plant model identifier. It has the 

control signal U that is fed to the plant as its input and 
produces an identification output NY , which is 
compared to the plant output PY  to produce the 
identification error signal used for the training of its 
own weight parameters. The identification error, given 
by the equation (3), is specified as follows. 

 ( ) ( ) ( )i P NE k Y k Y k= −  (31) 

• CVRNN-2: This neural network is fed by the internal state 
vector iX  of the identification network CVRNN-1 to 
produce a state feedback control signal fbU . This 
network is trained with the control error signal CE , 
which is obtained comparing the reference signal 
R with the output of the plant. The control error is 
given by the following equation: 

 ( ) ( ) ( )C PE k R k Y k= −  (32) 

• CVRNN-3: This neural network is trained with the control 
error signal (32) so it converges to the inverse model of 
the plant. The network is fed by the reference signal R  
to produce a feedforward control signal ffU . 

Except for the dimensions of each of the CVRNN, the 
three RNNs used the same topology and learning. The control 
signal is the sum of the feedforward and state feedback control 
signals, and is described by the following equation:  

 
 

1( ) ( ) ( )ff fbU k U k U k= +  (33) 

C. Direct Feedforward Adaptive Neural Control with 
Integral Term and State Feedback 

 
This control scheme is described by the block-diagram shown 
in Fig.7 [17]. We used three CVRNN for this control scheme: 
one as a plant model identifier, one as a state feedback 
controller, and one as a direct feedforward controller. 
 

 
Fig.7 Block-diagram of the feedforward adaptive neural 
controller with integral term and state feedback 

 
We add an integral term V  to the control signal to 

eliminate the steady-state error presented in the plant output. 
This integral term is given by the following equation: 

 
( 1) ( ) ( )i CV k V k K E kτ+ = + ⋅ ⋅  (34) 

Where: iK  is the gain of the integral-action and τ  is the 
sampling time. The control signal for this scheme is the sum of 
three terms and is described by the following equation: 

 

2 ( ) ( ) ( ) V(k)ff fbU k U k U k= + +  (35) 

This control scheme forces the plant to follow the reference 
signal with zero steady-state error. The stability of the whole 
system, for both control schemes, is assured by the restriction 
in the weight parameters of the state matrix   of the CVRNN 
and the boundedness of its activation functions. 

 

IV. SIMULATION AND RESULTS 
 

A. Plant Description 
The plant subject to system identification in this work is an 
idealized nonlinear plant model of a flexible-joint robot arm, 
illustrated in Fig.8. The flexibility of the joint is caused by a 
harmonic drive, which is a type of gear mechanism with high 
torque transmission, low backlash and compact size. 

The robot joint model consists of an actuator connected to 
a load through a torsional spring, which represents the joint 
flexibility. We consider the motor torque and the angular 
position of the link as the input signal ( )u t  and the output 
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signal ( )y t  respectively, making this a SISO system. The 
equations that describe the motion of the flexible joint are as:  

 
 sin ( ) 0l l l l l l mJ B Mgl kθ θ θ θ θ+ + + − =   (36) 

 ( ) um m m m l mJ B kθ θ θ θ+ − − =   (37) 

Where: ,l mJ J  are the link and motor inertial coefficients, 
,l mB B  are the link and motor damping coefficients, k  is the 

torsion stiffness coefficient of the harmonic drive gear, M  is 
the mass of the link, L  is the length between the shaft and the 
center of mass of the link,  ,l mθ θ  are the angular positions of 
the link and the rotor of the motor respectively. 

The input and output signals are discretized with a 
sampling period ( )τ in order to use a discrete neural network 
approach for its identification. This is an oscillatory system, 
described by two nonlinear second order differential equations. 

 

 
Fig.8 Flexible-joint robotic arm 

 

B. Plant Identification 
We test the CVLM learning algorithm applied to a 

CVRNN with the second activation function, for nonlinear 
oscillatory plant identification with a simulation using 
MATLAB. The simulation has two stages: in the learning 
stage, weights are adjusted until convergence to a steady value 
and the CVRNN output matches the output of the plant; in the 
generalization stage, we fix the weight parameters and apply a 
different input for the plant and the CVRNN, to validate its 
learning by comparing both outputs. Next, we make a 
comparison between the CVBP and the CVLM learning 
algorithms. 

As a comparison measure, we use the total MSE for 
learning and generalization stages. This section describes the 
simulation settings used and the results obtained. The input 
signals used on the learning stage ( )Lu t  and generalization 
stage ( )Gu t  are given by: 

 ( ) ( )1 1
10 25( ) sin 0.5sinLu t t t= +  (38) 

 ( ) ( ) ( )1 1
10 200.5sin 0.8sinGu t t t= +  

(39) 

For the CVRNN we used dimensions 1,1,3 === Lmn , 
with initial conditions of the internal states vector 

[ ]TX 000)0( = , random initial conditions for each 
weight parameter in the interval ]5.0,5.0[− ; simulation time of 

500T s=  and sampling time 01.0=τ . For the CVBP 

algorithm we used the parameters: 05.0=η  and 005.0=α . 
For the CVLM algorithm we used the parameters: 

0.9775α = , 41 10ρ −= × , 
6(0) 1 10JP = × , 

4(0) 1 10BP = ×  
and 

5(0) 1 10CP = × . For both cases, the second activation 
function is used. 

For the CVBP algorithm, Fig.9, a) shows the plant and the 
neural network outputs, and b) the total MSE for the learning 
stage. Fig.10 a), b) shows the same signals for the 
generalization stage. 

For the CVLM algorithm, Fig.11, a) shows the plant and 
the neural network outputs, and b) the total MSE for the 
learning stage. Fig.12, a), b) shows the same signals for the 
generalization stage. 

For both algorithms, we observe a fast convergence of the 
neural network output to the plant output, while the MSE 
shows a decreasing behavior, for the learning stage. For the 
generalization stage, we observe a good performance of the 
output of the network and the MSE in general. 

Table I shows the final MSE of the simulations for the 
CVBP and CVLM learning algorithms, for both learning and 
generalization stages. 

 

Table I. Final MSE of both learning algorithms for the learning 
and generalization stages  

 CVBP CVLM 
Learning 46.11 10−×  40.18 10−×  

Generalization 425.44 10−×  420.84 10−×  

We observed from the total MSE for both stages that the 
CVLM learning algorithm has a better performance compared 
to the CVBP learning algorithm. 

We also observe that the CVLM learning algorithm tends 
to be more sensible to the initial conditions of its weight 
parameters. Nevertheless, this sensibility doesn’t affect the 
performance and convergence of the learning stage for the 
CVRNN. 

 

C. Plant Adaptive Neural Control Simulation and Results 
We tested the CVLM learning algorithm applied to both 
adaptive neural control schemes proposed in [17] for a 
nonlinear, oscillatory mechanical plant using MATLAB. 

The reference signal used for both simulations is given by 
the following equation: 
 
 ( ) ( )1 1

25 15( ) 0.5sin 0.3sinR t t t= +  (40) 

For both control schemes, the CVRNN-1,3 have dimensions 
1,3 1,3 1,33, 1, 1n m L= = = , while the CVRNN-2 has dimensions 
2 2 23, 3, 1n m L= = = with initial conditions of the internal 

states vector [ ]TX 000)0( = , random initial conditions 
for each weight parameter in the interval ]5.0,5.0[− ; 
simulation time of 500T s=  and sampling time 01.0=τ . 
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Fig.9 CVBP learning stage, a) Plant output and NN output 
signals, b) total MSE 

 

 
Fig.10 CVBP generalization stage, b) Plant output and NN 
output signal, b) total MSE 

 

 
Fig.11 CVLM learning stage, a) Plant output and NN output 
signals, b) total MSE 

 

 
Fig.12 CVLM generalization stage, (b) Plant output and NN 
output signal, (b) total MSE 
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For the CVBP algorithm we used the parameters: 
05.0=η  and 005.0=α . For the CVLM algorithm we used 

the parameters: 
2(0) (0) (0) 1 10J B CP P P= = = × , 0.98α = , 

and 41 10ρ −= × . For both cases, the second activation 
function is used. For the control scheme with integral term, an 
integral gain of 0.05iK = is used. 

For the CVBP algorithm, Fig.13, a) shows the plant output 
and reference signal, and b) the instantaneous MSE for the 
first control scheme. Fig.14 a), b) shows the same signals for 
the second control scheme with integral term. 

For the CVLM algorithm, Fig.15, a) shows the plant 
output and reference signal, and b) the instantaneous MSE for 
the first control scheme. Fig.16 a), b) shows the same signals 
for the second control scheme with integral term. 

From these figures we observe that, in general, both control 
schemes have good quality in driving the mechanical plant to 
the reference signal, while the control scheme with the integral 
term shows a better performance than the other. Furthermore, 
we observe that the second control scheme has a much better 
performance than the first one; this can be observed from the 
value of the final MSE for both control schemes. 

Table II shows the final MSE of the simulations for the 
CVBP and CVLM learning algorithms, for both adaptive 
neural control schemes. 

 

Table II. Final MSE of both learning algorithms and both control 
schemes 

 CVBP CVLM 
1st Scheme 481.10 10−×  461.90 10−×  
2nd Scheme 41.19 10−×  40.91 10−×  

We observed from the total MSE for both schemes that the 
CVLM learning algorithm has a better performance compared 
to the CVBP learning algorithm. 

We also observe that adding the integral term of the error 
changes drastically the performance of the adaptive controller, 
eliminating any tracking error. 
 

V. CONCLUSIONS  
 
In this work we used an array of Complex-Valued Recurrent 
Neural Networks to construct a control scheme applied to a 
nonlinear, oscillatory mechanical plant. These neural networks 
were trained using a complex-valued version of the Recursive 
Levenberg-Marquardt algorithm, where the local gradient 
terms were easily obtained from an adjoint topology, instead 
of using an algebraic approach. The neural network used for 
plant identification worked with great performance, which 
gave us the possibility of using its internal states to produce a 
state feedback control signal. In general, the control schemes 
present an acceptable performance, and were improved by 
introducing an integral term of the error. The comparative 
simulation results confirm the good quality of the LM neural 
identification and control scheme. 
 

 

 
Fig.13 CVBP applied to the first control scheme, a) Plant output 
and reference signals, b) total MSE 

 

 
Fig.14 CVBP applied to the second control scheme, a) Plant 
output and reference signals, b) total MSE 
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Fig.15 CVLM applied to the first control scheme, a) Plant output 
and reference signals, b) total MSE 

 

 
Fig.16 CVLM applied to the second control scheme, a) Plant 
output and reference signals, b) total MSE 
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