
Abstract: This study aims to introduce an attractive and 
convenient method of calculating the overall porosity of 
Hollow Fiber Membrane (HFM). Artificial Neural 
Network (ANN) was used to estimate the overall 
porosity of HFMs. Overall porosity is predicted as a 
function of effective surface porosity of fabricated HFMs 
which depends on polymer solution composition, dope 
extrusion flow rate and bore fluid flow rate. The artificial 
neural network (ANN) converted the qualitative 
information based on quantitative results from the outer 
surface analyzed through a Field Emission Scanning 
Electron Microscopy (FESEM) images. A neural 
network with one hidden layer with three neurons was 
created to map the relationship between input and output. 
An image processing computer program was developed 
to measure the HFM surface porosity using the FESEM 
images. Obtained data by image processing program was 
used as input data for designed ANN. The calculated 
overall porosity of the HFM was compared with the 
achieved value from the mathematical model. It was 
found that there was no significant difference between 
the results of both methods, thereby confirming the 
applicability of ANN for assessing the membrane 
porosity.This work presents a novel approach and 
provides a useful framework to evaluate the overall 
porosity of HFM considering different dope 
compositions and spinning conditions. 
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I. INTRODUCTION 
Nowadays, based on membrane configuration, HFMs 

are the most favored membrane geometry in its 
separation applications, such as spiral wound and 
tubular. HFMsfibers have much larger surface area per 
unit volume of the membrane modulein compared with 
flat sheet membranes, and higher productivity is the main 
key in HFM technology.  They are self-supporting 
mechanicallyand have good flexibility in operation.  
However, during membrane formation, the preparation 
of the hollow fibers often requires more controlling 
parameters than those of flat sheet membranes (i.e. 
structure and dimensions of the spinneret, viscosity and 
possibility of the spinning dope, nature of the internal 
and external coagulants, flow rate of the bore fluid, dope 
extrusion rate, air gap length, take-up speed, etc.). 

A porosity prediction of the porous HFMs seems 
crucial before applying the membranes in real 
application. It helps membranologists to detect an 
optimum solution composition and spinning condition 
based on the requirements of a specific membrane 
application in a minimum time.The prediction involves 

the examination of the surface and cross-section 
characteristics of the membranes. The overall porosity of 
the HFM can be obtained by several methods including 
molecular weight cut-off (MWCF) method [1], pressure 
of bubbles approach [2], mercury intrusion method [3], 
liquid–liquid or liquid-gas displacement approach 
[4].Control membrane structure (porosity and pore size) 
is one of the important goals in membrane technology 
and thus membrane performance [5]. According to [6], 
spinning process of a HFM with a specific performance 
is not an easy task and the effect on hollow fiber 
membrane morphology and permeation properties 
reported in the literature often provides conflicting 
observations  

Recently, digital image processing (DIP) as a strong 
tool was also applied to determine the porosity of the 
membrane. The method uses FESEM images to detect 
the surface pores and then predict the overall porosity of 
membrane. However, since the membrane surface pores 
are not exactly cylindrical and straight, the predicted 
porosity may not be accurate. Therefore, an approach is 
proposed by training artificial neural network (ANN) 
which is expected able to predict the overall porosity of 
the HFMs better without considering the shape of the 
pores. Recently ANNs implementations in digital image 
analyzing applications have increased rapidly.  In the 
reference [7] author reported that the designed and 
trained ANN is able to establish the non-linear 
relationship among the intensity of input images as well 
as their compression ratio for finding the optimized ratio.  

The ANN offers the advantage of being easy to use 
and reduces the computing time of the membrane 
process simulation [8]. In the ANNs error between 
observation data and estimated data is the most important 
issue for evaluation the designed and trained network [9]. 
Architecture of the ANN has been investigated by many 
researchers. Three ANN architecture including online, 
batch and resilient backpropagation algorithms were 
used to intrusion detection. They reported batch and 
online algorithms are more quick in compared with 
resilient however has best performance [10]. A type of 
ANN based on Radial Basis Function (RBF) was also 
employed for modeling the membrane process as 
described in [11]. However, the implementation of the 
ANN methods in this area of research is relatively in its 
infancy stage and still under development. Besides, the 
works did not consider aspects of determining the 
porosity of membrane which is regarded as a crucial 
factor to measure the mass transfer rate in porous 
membranes. Therefore, this work attempts to predict the 
membrane porosity using ANN and image processing 
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techniques. The RBF network with three layers (input, 
hidden and output) using Levenberg-Marquardt(LM) 
algorithm was used to predict the overall porosity of the 
fabricated HFMs. The model was trained by the obtained 
porosity of membranes differing in dope compositions 
and spinning conditions.  

II. EXPERIMENTAL 
Since the HFM fabrication and characterization are 

difficult and time consuming and also many interrelating 
key factors have effect on structure and performance of 
HFM [12]. Only 56 samples were used for training and 
experimentation. 

a. Membrane preparation 
Commercial Polysulfone (PSf) polymer pellets (1700) 

were purchased from Arkema Inc., PA, USA. 1-Methyl-
2pyrrolidone (NMP) and Polyvinylpyrrolidone K90 
(PVP) were used as solvent and non-solvent additives in 
the polymer solution, respectively. The materials were 
dried in a vacuum oven for 48hours at 60±2 oĊ to 
remove the moisture content. PVP with content of 2.5 
wt% of polymer was added in the solvent (NMP) for 1 
hour under vigorous stirring. PSf polymer indifferent 
concentration (12%- 22%) was then gradually added to 
the mixture in order to produce five different bathes of 
dope formulations then mixed thoroughly under a 
constant mechanical stirring at 58 oĊ. To form a 
homogenous solution, at least 28 h was needed. Finally, 
the formulated dope solutions were degassed before 
spinning to remove whole micro-bubbles that might 
exist. The prepared solutions were loaded into storage 
tank and pressured nitrogen of 1 bar forced the polymer 
solution to flow into the spinneret plant.  

Water was utilized as the bore fluid liquid and loaded 
into the spinneret via the syringe pump. The HFMs were 
fabricated at ambient temperature of about 22-25 oĊ. 
Polymer concentration, dope extrusion and bore fluid 
flow rates were assumed as variables in our analysis. 
Water was used as the external coagulant bath and the 
temperature was kept constant during spinning.  

Table 1 summarizes the spinning conditions for HFM 
fabrication. Dope extrusion flow rate, bore fluid flow 
rate and composition of solution were assumed as 
variables during the spinning process, other spinning 
parameters were kept constant. The nascent fibers were 
not drawn (no extension) as the take-up velocity of the 
hollow fiber was nearly the same as the falling velocity 
in the coagulation bath. A detailed description for hollow 
fiber spinning was given elsewhere [13], [14]. The as-
spun membranes were stored in water bath at room 
temperature for at least 72 h to remove the residual 
solvent and then stored in a 10 wt% Ethanol solution for 
at least 20 min. The membranes were then dried 
naturally in air at ambient condition before used for 
making test module. 
 
 
 
 

 
Table 1 HFM spinning conditions 

Parameter Value 

 Dope extrusion rate (mL/min) 2-4.7 

 Bore flow rate (mL/min) 0.7-1.6 

 Bore composition (wt%) Distilled 
water 

External coagulant Tap water 

 Air gap distance (cm) 0 

Collection drum speed (m/min) 2.8 

 Spinneret OD/ID (mm) 1.1/0.55 

 Spinning dope temperature (◦C) 25 

 External coagulant temperature (◦C) 25 

 Bore fluid temperature(◦C) 25 
 

The detailed HFM fabrication via wet spinning method 
is described elsewhere [15]. The fabricated HFMs were 
immersed in water for 72 hours to remove the rest of 
NMP and PVP inside the spun HFMs. Table 2 lists 
specific detailed of the spinning procedure. 
 

Table 2 HFM composition and spinning 
conditions 

Composition Parameter 

PSf 
(gr) 

PVP 
(gr) 

NMP 
(gr) 

DER 
(cm3/
min) 

BFR 
(cm3/
min) 

Ds 
(rp
m) 

12.00 1.67 86.33 2.00 0.66 0.7 
12.00 1.67 86.33 2.50 0.83 0.9 
12.00 1.67 86.33 3.00 1 1.1 
12.00 1.67 86.33 3.50 1.16 1.3 
12.00 1.67 86.33 4.00 1.33 1.5 
12.00 1.67 86.33 4.50 1.5 1.7 
12.00 1.67 86.33 5.00 1.66 1.9 
12.00 1.67 86.33 5.50 1.83 2.1 
12.00 1.67 86.33 6.00 2 2.3 
DER: Dope extrusion rate; BFR: Bore fluid flow rate; 

DS: speed of collecting drum 
 

The composition of polymer was varied according to 
14, 16, 18, 20 and 22 wt% with the same values for other 
variables in the next experiments. 

b. Overall porosity 
The porosity of the membrane has been defined as the 

ratio of the pores volume to the total volume of the 
membrane [16, 17]. The basic porosity equation of the 
HFM can be calculated using the following expression. 

 

Vx
m

m ∆
∆

=
ρ

ε  (1) 

 
Hence, the overall porosity of a membrane can be 

obtained as follows: 
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Where, w1 and w2 are the weights of the wet and the 

dry membrane, respectively while ρw and ρp are density 
of the water and polymer solution, respectively. Based 
on the mentioned equation, the porosity εm can be 
described as a non-dimensional parameter and in most 
literature, it is written as a percentage concentrate (%). 

c. Field emission scanning electron microscopy 
(FESEM) 

The membranes were put on holders and coated by 
sputtering platinum. A Zeiss Supra 35VP FESEM, from 
Carl Zeiss, Inc., (MN, USA) was used to observe the 
outer surface of the fabricated membranes. The FESEM 
images were used as the feed of the ANN to get an 
accurate overall porosity.  

d. Image processing 
Generally, the grey images from the outer surface of a 

porous membrane obtained from FESEM are between 
zero and 255 pixels in which, the pixels with low and 
high luminance were assumed as pore areas and 
background, respectively.  

In the first step, the FESEM images were resized into 
1000×1000 square pixels in order for them to be 
transferred to the computer for analysis. For filtration, 
specific function was used to eliminate the noises from 
the colour images. Then, an algorithm was used to 
increase the intensity of the images and edges. Before 
classification, the images were adjusted as red, green and 
blue (RGB) images to detect of the pore boundaries 
clearly. The surface porosity of the fabricated 
membranes was calculated using the following equation: 
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(3) 

 
Where At is the total area of image, Ap is the area 

porosity at distance z and h is the height of image. 

e. Application of neural network 
The objective of a neural network is to compute the 

porosity values by some internal calculations on FESEM 
images of membranes in different dope composition, 
DER and BFR rates. Neurons (or cells) are processing 
elements that carry out simple computations from a 
vector of composition, DER and BFR rates. A neuron 
performs a non-linear transformation of the weighted 
sum of the incoming neuron inputs to produce the output 
of the neuron. Poggio and Girosi [18] in similar with the 
results of Antsaklis [19] revealed that the RBF network 
amongst all the feed-forward networks has the highest 

ability to predict the approximation properties of the 
membranes. In this work, the RBF network was used to 
predict the porosity of the membranes using image 
processing. The model was trained, taking into account 
the obtained porosity of membranes differing in dope 
compositions and spinning conditions. For the data 
composition, 70% is assumed as the training data, 15% 
as testing data and the rest is assumed as validation data. 
The essential building block of neural network applied in 
this study is shown in Fig. 1. 

 

 
(a) 

 
(b) 

Fig. 1 (a) Schematic view of the function fitting neural 
network (b) Neural network with one hidden layer with 
G and W are the functions in hidden layer and weights, 

respectively 
 

III. RESULTS AND DISCUSSION 
The results obtained from the study are presented, 

analyzed and discussed in the following sections. 

A.  FESEM and image analyses (pre-processing) 
Figure 1 shows FESEM surface micrographs of 

fabricated membranes in different compositions and 
spinning conditions. As can be seen, the membranes of 
lower polymer concentration possess larger surface pore 
size and higher porosity as depicted in Figure 2 (f) 
compared to that of higher concentration as shown in 
Figure 2 (a).
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Fig. 2. FESEM image of the outer surface of the PSF HFMs: (a) HFM: PSf22 wt%; (b) HFM: 
PSf20wt%; (c) HFM: PSf18 wt%; (d) HFM: PSf16 wt%; (e) HFM: PSf14 wt%; (f) HFM: PSf 12wt% 

 
The FESEM images that qualitatively give the porosity 

of the membrane surface were adjusted to achieve the 
best threshold incorporating the triangle algorithm. For 

detecting the objectives (pores), FESEM images were 
converted to binary images and also triangle algorithm 
was utilized to extract the final real pores from Figures 1 

(a) (b) 

(c) (d) 

(e) (f) 
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(a) and (b). (some pores were assumed as ‘failed’ pores 
and hence were conveniently eliminated for the 
analysis). An example of the real extracted pores by 
surface image analysis from FESEM images is shown in 
Figure 3. 

 

 
Fig. 3. Real pore extracted by data analyzing result 

 
The overall porosity of the membrane has been defined 

as the ratio of the pores volume to the total volume of the 
membrane which the obtained results are assumed as 
experimental data. Table 3 summarizes the obtained 
overall porosity from equation 2 for some samples. 

 
Table 3. Obtained overall porosity of hollow fiber 

membranes from mathematical equation 

PSf(gr) Wet 
Weight 

Dry 
Weight 

Deference 
Weight Porosity 

12.00 0.358 0.0746 0.2834 0.806589 
12.00 0.4566 0.1018 0.3548 0.792789 
12.00 0.4832 0.1074 0.3758 0.793438 
12.00 0.49 0.1114 0.3786 0.78862 
12.00 0.5806 0.1335 0.4471 0.786164 
12.00 0.6066 0.1416 0.465 0.782842 
12.00 0.6179 0.1432 0.4747 0.784438 
12.00 0.5624 0.135 0.4274 0.776558 
12.00 0.6467 0.1517 0.495 0.781756 
14.00 0.4365 0.1038 0.3327 0.778691 
14.00 0.4526 0.1072 0.3454 0.779591 
14.00 0.4997 0.1257 0.374 0.765601 
14.00 0.5263 0.135 0.3913 0.760874 
14.00 0.5123 0.1353 0.377 0.753623 
14.00 0.5513 0.1475 0.4038 0.750329 
14.00 0.5616 0.1502 0.4114 0.750424 
14.00 0.6162 0.1621 0.4541 0.754615 
14.00 0.6985 0.1891 0.5094 0.747294 

 
As it can be seen, the overall porosity of HFMs is 

increased with decreasing the polymer composition and 
also is reduced with increasing the dope extrusion flow 
rate.  

B.  Neural network  
The surface porosity of the HFMs was obtained by an 

image processing package (IPP). Afterward, the obtained 

data were used as the input layer data in the designed 
ANN configuration. Since the HFM fabrication and 
characterization are typically difficult and time 
consuming, only 57 samples were used for designing the 
ANN. Determining the number of hidden layers, number 
of neurons in the hidden layer, type of transfer function, 
type of network function, and type of training algorithms 
are legitimate questions with no precise answers because 
they are case sensitive. Therefore, we need to study 
every one of them for building the optimal neural 
network model for our problem. 

In general, fewer numbers of neurons with less hidden 
layers is better to reduce the effect of memorization. 
Determining the optimal number of neurons in the 
hidden layer requires trial and error technique. 
Determining the type of transfer function is similar to 
determining the number of neurons in the sense that it 
requires trial and error analysis. Similarly, the optimal 
type of network function is newff since it has high 
correlation coefficient values and lower error values. 
Using the same technique of trial and error, the optimal 
type of training algorithm is Levenberg-Marquardt since 
it has high correlation coefficient values and lower error 
values. Figure 4 shows the obtained results from the 
designed ANN with RBF scheme. 

 

 
Fig. 4. Results obtained from training, testing and 

validation of designed neural network 
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(a) 

 
(b) 

Fig. 5. Best performances for the RBF network for  
(a) predicted overall porosity from surface porosity (R 

= 0.984), (b) histogram with fitting line (Mean = 
0.048 and root mean square error = 2.73) 

 
Figure 5 illustrates the best performances of trained 

network. The corresponding generalization performance 
of the network shows some small but unrealistic 
oscillations as can be seen in Figure5 (a). These 
fluctuations are due to the noise content of the training 
data which can be alleviated if the learning algorithm is 
equipped with some proper noise filtering facility. Based 
on Figure 5(b), the mean value is near zero and the root 
mean square error (RMSE) merit function is a small 
value. The results suggest that in order to achieve a 
higher computational speed, a neural network simulator 
can be used to replace the earlier models in the process 
of calculating the membrane porosity. The experimental 
data and the results of the trained neural network for the 
overall porosity are shown in Figure 6. 

 
Fig. 6. Porosity prediction of HFM based on the 

experimental results and the data from trained ANN 
 

As can be seen in Figure 5, the output from ANN is in 
good agreement with the experimental counterpart, 
thereby implying that it is capable to predict the overall 
porosity of HFMs effectively. 

IV. CONCLUSION 
An image processing package was developed to measure 
the membrane surface porosity supplying the FESEM 
images as the input feed with the PSf HFMs were spun in 
various dope compositions and spinning conditions. 
ANN method was utilized and were applied to predict 
the membrane overall porosity. The results obtained by 
trained neural network were compared with those 
acquired through the mathematical model (weight 
equation). The results were in good agreement and hence 
confirming the applicability of the approach for 
computing the overall porosity of HFM. 
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