
 

 

 
Abstract— This study aims in tuning a PID controller of cement 

kiln precalciner between the feed rate of the primary fuel and the 
temperature at precalciner exit. A simplified dynamic modeling has 
been used, including perfect mixers connected in series. The 
optimum number of tanks and the dynamical parameters has been 
computed using industrial data. The PID gains are determined by 
loop shaping technique using the maximum sensitivity as robustness 
criterion. The uncertainty of their values is computed based on the 
uncertainty of the dynamic parameters. Due to simplicity of the 
model, the tuning results could be used at least as initial PID values 
in real process. 
 

Keywords — Cement, modeling, clinker, kiln, precalciner, 
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I. INTRODUCTION 
SAGE OF ALTERNATIVE FUELS is rapidly increasing 
in cement industry aiming to be more friendly to 

environment by replacing traditional solid fuels. Alternative 
fuels are fed mainly on kiln precalciner (PCK) and are 
characterized by high variance in calorific value. The stable 
operation of the precalciner has great importance in the 
process and quality. The operation control is mainly achieved 
by: (a) proportioning the fuels in main burner and precalciner 
burners, (b) regulating the precalciner primary fuel flow rate 
using quality or process variables. As quality parameters the 
hot meal calcination degree and clinker free lime are utilized. 
Suitable process parameters for the fuel feed rate setting are 
the temperature at the exit of precalciner or at the gas outlet of 
bottom cyclone. Smooth operation of PCK is one of the 
critical issues in a cement plant therefore the automatic 
operation is highly preferred. This is implemented by closing 
the loop between the primary fuel feeder and the chosen 
temperature, leading in a challenging problem of modeling and 
control. Due to the complexity of the processes involved, one 
can find a limited number of attempts in the literature in 
modeling and in utilization of the model in controller 
development. 

   1Koumboulis and Kouvakas [1]-[2] in two consecutive 
publications presented artificial neural network (ANN) 
models, purposing in controlling and improving clinker 
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calcination. ANNs applied for modeling the dynamics between 
temperature of the outlet gases from the precalciner – TG - and 
several variables and several variables, such as the mass flow 
of raw meal and solid fuels, the temperature and mass flow of 
the tertiary air, the temperature of the raw meal. Using digital 
implementation of the transfer function, they proceeded to the 
development of a PI controller to regulate the feed rate of solid 
fuel, using TG as process variable. Witsel et al. [3] developed 
a dynamic model for simulating the behavior of cement kiln 
and using the frequency approach, they designed a multi-loop 
control scheme, based on two PI controllers. Stadler et al. [4] 
applied model predictive control for the stabilization of a kiln 
precalciner of a cement plant. The results of this approach 
indicated a significantly improved performance and more 
beneficial operating points were obtained. Wang et al. [5] 
developed a first principles dynamic model of the pre-
calcining process. The model is based on the principle of mass 
and energy balances and consists of a set of ordinary 
differential equations. A stationary solution for the model was 
found and dynamic simulations of step changes in the input 
variables were also presented. Yang et al. [6] developed two 
kinds of ANN models; back propagation (BPNN) and Radial 
Basis Functions (RBFNN) neural networks which they applied 
in cement calcination process. RBFNN based model reached 
very high fitting results, but the BPNN based model had good 
generalization ability. Their conclusion is that BPNN based 
model could be used as simulation model of the calcination 
process for exploring new control algorithms. X. Lin et al. [7] 
used Adaptive Dynamic Programming (ADP) to implement a 
multi-parameter control of kiln precalciner. The results of their 
simulation show that, after the fluctuations in the early control 
period, the controlled parameters tend to be stabilized 
guaranteeing the quality of clinker calcination.  Yang et al. [8] 
developed a multi-variable optimal control of calcination 
process based on dual heuristic programming (DHP). Typical 
DHP structure consists of three modules: Critic Network, 
Action Network, and Model Network.  
    The objective of the current study is to parameterize a PID 
controller between the temperature in precalciner outlet and 
the feed rate of the primary fuel that is pet coke in the case 
examined.  The tuning is based on the results of a simplified 
dynamical model between the same parameters presented by 
Tsamatsoulis [9]. An efficient loop shaping technique 
developed by Astrom, Hagglund and Panagopoulos  [10] – 
[12] is implemented. The obtained sets of PID parameters 
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satisfying a robustness constraint along with the dynamic 
results and their uncertainty constitute the entries of extensive 
simulators to define the optimum area of PID coefficients as 
concerns performance. A similar approach has been presented 
by Tsamatsoulis [13] – [15] in optimizing PID of different 
processes: regulation of the cement raw meal quality modules 
[13]; cement mill operation [14]; kiln cooler operation [15]. 

.  

II. PROCESS MODEL AND PID CONTROLLER DESIGN 

A. Transfer Function and Autoregressive Model 
The simplified model is composed by a series of equal well 

stirred tanks and is analytically described in [15]. The 
governing equations are briefly repeated. For a number of 
tanks equal to N0 the transfer function Gp is given in Laplace 
form by (1). The time constant of each tank is T0 (min) and the 
gain is kv.  The input x and output y are percentages of the 
maximum range and given by (2)-(3). These variables are the 
control and process variables. 
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Where T (°C) is the temperature in precalciner outlet, TMax is 

the maximum T and y0 (%) is the steady state precalciner 
output. Respectively Q (t/h) is the fuel feed rate, QMax the 
maximum Q and x0 (%) is the steady state of fuel input, 
deriving an output y0. The set of the model parameters consists 
of the number of tanks N0, the gain kv, the time constant T0, the 
flow rate x0 and temperature y0 corresponding to the steady 
state, under the specified operating conditions, such as: (a) the 
flow rate, temperature and chemical composition of the raw 
meal entering precalciner; (b) the flow rate and calorific value 
of the alternative fuels; (c) the gas flow and temperature of 
tertiary air. The short and long term variance of these 
conditions generates the parameters uncertainty. In the current 
state of modeling, these disturbances have not been modeled. 
This is a further challenging issue for improving the reliability 
of the model.  The parameters are estimated using the 
convolution theorem between the input signal x and the 
process variable y, expressed by (4). 
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Where g(t) is the impulse system response. Exclusively 

operating data are used by sampling with appropriate software. 
The sampling period is 1 min. By using a non-linear regression 
technique, the optimum dynamic parameters are computed by 
minimizing the residual error provided by (5):  
 

( )∑
=

−

−
=

N

I

calc
res kN

IyIy
s

1 0

2
exp2 )()(

             (5) 

 
Where sres represents the residual error, ycalc is calculated from 
the model and yexp is the actual one according to (2). The 
number of experimental points is N and k0 is the number of the 
independent model parameters. At time I the error between 
ycalc and yexp, Err(I),  is given by (6). This error accumulates 
load disturbances and signal noise and it is modeled with the 
autoregressive equation (7). 
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Where A0, A1, A2 are the coefficients of the autoregressive 
model. To investigate whether this model’s error is adequate, 
its regression coefficient is checked and its standard error 
compared with the residual error of the dynamic model. 
    To identify the model parameters, software was developed 
to load and to process industrial data of kiln operation, 
extracted from the Devnya Cement plant database. The total 
period of data used was 20 continuous days, a period adequate 
to estimate and assess the process dynamics. Then the software 
checks for pet coke feeder stoppages and finds continuous 
operating data sets of 120 minutes duration. Afterwards the 
software determines the optimum dynamic parameters for each 
data set and the corresponding regression coefficient, R. A 
minimum coefficient, RMin=0.7, is selected and the software 
creates the cumulative distribution of samples as function of R, 
C(z; R<R0), where z є [0, 1] and  0 < R0 ≤ 1. The number of 
consecutive tanks N0 is an independent parameter and its 
optimal value is the one presenting the lowest fraction of 
samples with R<RMin, computed from the cumulative 
distribution C(z; R<R0).  
 

Table I. Dynamical Parameters 
N0 Aver. kv Median kv Std. Dev. kv  %CV kv 
5 0.214 0.210 0.049 22.9 
6 0.203 0.197 0.045 22.2 

N0 Aver. T0 Median T0 Std. Dev. T0  %CV T0 
5 2.2 2.1 0.6 26.2 
6 1.9 1.7 0.4 24.8 

N0 A1 A2 Aver. sErr of C(z;R≥RMin) sErr/sRes 
5 1.54 -0.62 0.057 0.212 
6 1.54 -0.62 0.057 0.212 

 
    The computation provide optimal N0 = 5 or 6. The average 
and median values of gain and time constant as well as 
standard deviations and coefficients of variation are depicted 
in Table I for the optimal number of tanks. The coefficients of 
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autoregressive equations are also presented in the same table 
for N0 = 5,6. 

B. Controller Design 
The loop shaping design approach is to maximize integral 

gain subject to a constraint on the maximum sensitivity defined 
by (8). For the specific feedback control loop, formula (9) 
relates the sensitivity with the controller and process transfer 
functions, Gc and Gp respectively: 
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 The controller transfer function Gc is provided by (10). The 

variables kp, ki, kd constitute the proportional, integral and 
differential gains of the controller correspondingly. The error e 
between set point ysp and process value y is provided by (11). 
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 The algorithm to calculate the PID gains as function of Ms 

is described analytically in [12] and applied successfully in 
[13]-[15]. 

III. PID TUNING AND PARAMETERS UNCERTAINTY 
For Ms belonging to the interval [1.3, 2.5] and with a 

stepwise increase of 0.1, the triples (kp, ki kd) are computed 
using the median dynamic parameters shown in Table I, for 
N0=5 and 6. In this way, for each pair (Ms, kd), a set of PID 
parameters is determined. The proportional and integral gains 
as function of Ms and kd are depicted in Fig.1 for N0=5. The 
corresponding functions for N0=6 are demonstrated in Fig. 2. 
The general trend is as follows: An increase of kd causes an 
increase of ki and kp; increasing Ms, both kp and ki are 
increasing. The comparison of Figs 1 and 2 shows that for 
higher number of perfect mixers N0, both kp and ki are lower 
for the same Ms and kd.  

To investigate deeper the function between kp, ki and N0, 
proportional and integral gain are plotted as function of (Ms, 
N0) for Ms є [1.3, 2.5] and N0 є [3, 7] independently if N0 
provides optimal dynamic parameters. The results are 
demonstrated in Fig. 3 from where it is concluded clearly that 
increasing N0 causes a drop to kp and ki. Therefore for given kp 
and ki values there are functions f1, f2 so that f1(Ms, N0)=kp and 
f2(Ms, N0)=ki. However because the slopes of these functions 
are different as shown in Fig. 3, from different pairs (Ms, N0) 
different kp and ki are obtained and each (kp, ki kd) is unique.  
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Fig. 1 kp and ki as function of Ms, kd for N0=5. 
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Fig. 2 kp and ki as function of Ms, kd for N0=6. 
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Fig. 3 kp and ki as function of Ms, N0 for kd =1. 
 

For the given control system the open loop transfer function 
Gol is defined by the product Gc · Gp. The variable 1/Ms can be 
interpreted as the shortest distance between Gol Nyquist curve 
and the critical point (-1,0) as shown in the Figure 4.  

 

 
Fig. 4 Open loop transfer function and system properties. 

 
In the same figure additional properties, characterizing the 

system stability, are depicted also: 
- gain margin, gm, the reverse of the distance of the point Gol 
curve cuts the real axis from the (0, 0) point. 
- phase margin, φm, the angle created, between the point Gol 

cuts a circle with centre the centre of the two axes and of 
radius1and the real axis 
- gain crossover frequency, ωgc, the frequency corresponding 
to the Gol point, deriving the phase margin 
- sensitivity crossover frequency, ωsc, the frequency 
corresponding to the Gol point having a distance equal to 1 
from the point (-1, 0) 
- maximum sensitivity crossover frequency, ωmc, the frequency 
corresponding to the Gol point where this curve is tangent to a 
circle with centre (-1, 0) and radius 1/Ms. As Ms is increasing, 
gain margin and phase margin are decreasing and the 
controller becomes less robust.  
   The Nyquist plots of Gol for N0=5, Ms=2, kd=0, 2, 4 are 
shown in Fig. 5. From this Figure the application of the 
selected loop shaping technique becomes clearer. 
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Fig. 5 Nyquist plot of Gol for N0=5, Ms=2, kd=0, 2, 4  . 
 
    The dynamic parameters’ uncertainty expressed by the 
respective variance in Table I has a noticeable effect on the 
open loop features. For Ms=2 and kd=1 the open loop 
properties are computed for each data set and the cumulative 
distributions are created. Such distributions for gain margin, 
phase margin and maximum sensitivity, are shown in Fig. 6. 
From the Figure of maximum sensitivity it is observed that, 
although the median value is 2, a large dispersion exists 
influencing the regulation in the actual process. The same 
happens for gain and phase margins. One can select a robust 
Ms between 1.5 and 2 and then for a predefined gain margin to 
compute kd. Then from Ms and kd the other two PID gains are 
obtained. This design method has very good probability of 
success but it is not enough. The high uncertainty of the 
dynamic parameters could decrease the controller robustness. 
The big advantage of the design under consideration is that it 
is based on actual process data, thus the uncertainties are 
sufficiently known.  
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 Fig. 6 Cumulative distributions of Ms, gm, φm 

   
    A simulator taking into account these uncertainties is able to 
determine the optimum region of the PID gains, which provide 
the minimum variance of the process variable. 

IV. CONCLUSIONS 
The stable operation of kiln precalciner is one of the critical 

issues in a cement plant and the automatic operation is highly 
preferred.  Due to the complexity of the processes involved, an 
analytical modeling is extremely difficult as well as to utilize 

such model for control purposes. In this study a simplified 
dynamic model between the temperature in precalciner outlet 
and feed rate of the primary fuel is presented using a series of 
equal connected tanks. The model with the optimum number 
of tanks providing the minimal residual errors is used to tune a 
PID controller between process and control variables. The 
uncertainty of the dynamic parameters is provided as well. The 
M - Constrained Integral Gain Optimization loop shaping 
technique has been applied based on the robustness constraint 
of maximum sensitivity, Ms.  In this way, families of PID gains 
are calculated using Ms as design parameter. In parallel, 
several loop properties, like gain margin, phase margin, 
crossover frequencies, have been computed. The uncertainty of 
their values is computed based on the uncertainty of the 
dynamic parameters.  Due to its simplicity, the tuning results 
could be used at least as initial PID values in real process A 
more precise parameterization needs a more detailed and 
accurate modeling. 
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