
Low-Power Stereo Vision Accelerator for
Automotive

Mihaela Maliţa
St. Anselm College, NH, USA

mmalita@anselm.edu

Octavian Nedescu
Assystem Romania

octavian.nedescu@gmail.com

Alexandru Negoiţǎ
Assystem Romania

alexandru.negoita@yahoo.com

Gheorghe M. Ştefan
Politehnica Univ. of Bucharest

gheorghe.stefan@upb.ro

Abstract—Various forms of Convolutional Neural Network
(CNN) architectures are used as Machine Learning (ML) tools
for learning the similarity measure on video patches in order to
run the stereo matching algorithm – the most computationally
intensive stage of the pipeline for the stereo vision function used
in designing an autonomous car. We propose a hybrid system
for real-time, low-power and high-temperature implementations
of the algorithm. The accelerator part of the system is a pro-
grammable many-core system with a Map-Reduce Architecture.
Our paper describes and evaluates the proposed accelerator for
running versions of the stereo matching algorithm.

I. INTRODUCTION

The new form in which the Artificial Intelligence (AI)
revives in the last few years is ML implemented with CNN
technology which includes three kinds of neural networks
(NN): fully connected layers of NN (FNN), convolution layers
(CL), recurrent NN (RNN). The CNN domain stresses the
computational resources of the current computers in two
stages: the training stage (the network weight matrix is es-
tablished) and the inference stage (the network works in a
real application). In the first stage we are challenged by the
training time, while in the second stage the main challenge is
the power consumption in real time applications (for example
automotive video processing or data center data mining, where
both energy and time are critical).

The computational resources involved in training or in-
ference are CPU (ex.: Intel’s i7), MIC (ex.: Intel’s Xeon
Phi), GPU (ex: Nvidia), FPGA or ASIC with domain-specific
architecture (ex.: Google’s TPU). Each of these solutions have
their good and bad aspects. Our proposal is a programmable
accelerator, with a Map-Reduce architecture, for a hybrid
system designed as an Accelerated Processing Unit (APU).

This paper describes an APU for the stereo matching
algorithm, able to provide the computational power for real
time automotive video processing, in the limits imposed by
the actual application for energy consumption. We consider
the algorithms for stereo matching developed by Žbontar and
LeCun [13] [14].

The second section refers to the state of art in implementing
real application with CNN. The third section emphasizes the
set of the main functions requested for running efficiently a
CNN. The organization and the architecture of our proposal
is described in the fourth section. In the fifth section the
implementation on our system of the CNN involved in stereo

matching is shown. The evaluation of speed and energy at high
temperature is done in the sixth section.

II. STATE OF THE ART

The easy solution for hybrid computation is to take from
the shelf many-core accelerators. Unfortunately, the available
many-core accelerators (ex.: Nvidia’s GPU or Intel’s Xeon
Phi) do not fit for a specific application such as CNN. Their
huge computational power is too much under used. While from
Intel’s i7 CPU, with 112 GFLOPs/sec, 32% is used for real
time object detection, with Titan X GPU, for 40-90 fps, are
used maximum 63 GFLOPs/sec from its peak performance
of 6 TFLOPs/sec [10], or with Xeon Phi accelerator with 57
cores, having peak performance at 2 TFLOPs/sec, only 0.48
GFLOPs/sec is used from each core that is able to provide
35.2 GFLOPs/sec [9]. It is hard to explain why from 32%
use of the peak performance for CPU we go to around to 1%
use for the many-core accelerators? We suppose it concerns
an architectural and organizational inadequacy.

The last, more efficient solution for a CNN implementa-
tion is the Google’s Tensor Processing Unit (TPU). While
GPU/CPU relative performance per Watt is only 2.9×,
TPU/CPU is 83× and TPU/GPU is 83× [2]. The explanation
for these very good improvements are:

• TPU is an ASIC with a domain-specific architecture; a
more appropriate name should be Tensor Execution Unit,
because it executes the stream of instructions provided
by the host processor through a PCIe interface, with no
loop-control back to the host

• the core of the chip is a systolic array [5] of 256×256
8-bit multipliers

• while for training the CNN floating-point arithmetic is
used, for inference the floating-point weights are very
frequently quantized to 8-bit signed integers

The peak performance for TPU is 92 TOPS/sec of 8-bit
operations. The chip has ≥ 662mm2 in 28nm and works at
700MHz with T DP = 75Watt.

The good performance of TPU must be combined with
the flexibility of GPU or MIC solutions. Our proposal, the
Map-Reduce accelerator, provides performance in between the
current many-cores and the TPU ASIC solution.

INTERNATIONAL JOURNAL OF NEURAL NETWORKS and ADVANCED APPLICATIONS Volume 4, 2017

ISSN: 2313-0563 22

III. FUNCTIONAL REQUIREMENTS

All types of NN involved in ML applications – FNN, CL
and RNN – are based on the same computational pattern:
matrix-vector multiplication. The only difference between
them is the flow of data. For FNN the model of matrix-vector
multiplication is direct: the weight matrix is multiplied with
the input vector and provides a vector whose components are
submitted to the activation function. For RNN, only the loop
from output to the input of the FNN is added by concatenating
the input vector with (a part of) the output vector. For CL
computation, a little data moving work must be added. It
depends on the number of cells of the accelerator, the size of
the local memory in cells and the parameters of CL. Following
[3], we provide some useful details to be used in understanding
how our solution works.

In contrast to the standard neural layer, characterized by a
two-dimension weight matrix, a convolutional layer has a more
complex structure. The structure of a convolutional layer can
be summarized by the following parameters:

• the input of a convolutional layer accepts a “volume” of
size Vi =Wi ×Hi ×Di values

• the definition of the transformation produced by CL
requires four parameters:

– the number of filters K
– the spatial extent of the receptive field of volume,

Vr = F ×F ×Di, with F <<Wi and F << Hi, used
to explore the input volume

– the stride, S, with S ≤ F , used to explore the input
plane Wi ×Hi

– the amount of zero padding P, used to expand the
input volume

• the output “volume” of size Vo =Wo ×Ho ×Do, where:
– Wo = (Wi +2P−F)/S+1
– Ho = (Hi +2P−F)/S+1
– Do = K

• the same parameters shared over all the receptive fields,
introduces F ×F ×Di weights per filter; results the total
of (F ×F ×Di)×K weights and K biases.

An important characteristic of a convolutional layer is: the
number of parameters requested is small compared with the
input and output data, because

(F ×F ×Di)×K <<Wi ×Hi ×Di

The operation performed in a convolutional layer is applied
to each receptive field (see Figure 1a) from the input volume.
The receptive field is represented as a vector X of r = F ×
F ×Di elements. The inner product (IP) between the vector
of weights W of r components and X is submitted to the non-
linear activation function f . The function f and the vector W
is the same for all the receptive fields defined for the input of a
convolutional layer. Thus, for a computational pipe associated
to a CNN, the vector W loaded only once in the accelerator
and it is used many times, in contrast with the weight matrix
W which defines a fully connected NN layer, and which is

W1

H1

D1

W2

F H2

D2 = K

Input volume, Vi

Output volume, Vo
Receptive volume, Vr

=

b.

Hi ×Wi ×Di?

?

a.

Fully Connected Neural Network

K

Fig. 1. a. Convolutional layer. Each receptive field from the input layer
generates K elements of the output volume. b. Fully convolutional layer. For
F = Hi = Wi and P = 0 the convolutional layer becomes a fully connected
layer.

loaded and used only once. Each receptive field is used to
generate K elements in the output volume.

If K filters are applied, then a matrix of (F ×F ×Di)×K
weights are used to compute K elements in the output volume.
Then, the main operation is also the matrix-vector product, and
the FNN layer of K neurons can be seen as a particular case
of a receptive field with F = Di = Hi and P = 0 (see Figure
1b).

Let us conclude that the computation pattern in a DNN
is the matrix-vector multiplication applied in different ways
to arrange the data inside the accelerator. The different ways
to load data in the accelerator depend on the size of the
matrices involved and also on how many times a weight is used
once loaded in the accelerator. Because there are many data
configurations requested we need a very flexible mechanism
for loading and rearranging data inside the accelerator.

IV. MAP-REDUCE ACCELERATOR

The computation requested by CNN is dominated by the
inner product (IP), the elementary operation in matrix-vector
multiplication. The IP operation requests a two-level structure:
the map level of multiplication and the reduce level of sum-
mation. Our proposal is based on this observation and on a
previously implemented cellular engine [11] [7]. In [12] the
Map-Reduce approach is proved to be based on a mathematical
model of computation [4]. The cellular organization of the
proposed Map-Reduce Accelerator (MRA) and its instruction
set architecture (ISA) are described in the following.

A. Organization

The hybrid computing system we propose for efficient CNN
training and inference has the following subsystems:

• HOST: a general purpose CPU for the complex part of
the code and for accessing the set of functions accelerated
by the associated co-machine

INTERNATIONAL JOURNAL OF NEURAL NETWORKS and ADVANCED APPLICATIONS Volume 4, 2017

ISSN: 2313-0563 23

• MEMORY: the system memory for programs and data
• Interconnection Fabric: a data transfer unit able to transfer

scalar or vectors of various size representing the programs
executed by the co-machine and the data exchanged with
MEMORY

• Map-Reduce Accelerator: the co-machine to run the
intense part of the code.

??instruction, scalar

Linear

MapReduce Accelerator

instruction,
scalar, address

vector

ARRAY

6 6
of cells

Controller

6

Interconnection Fabric

HOST

6?-�
External Memory

6?

scalar
flag

MapReduceArray

?

?

Trans

�-�-

�-

-�-�

-�

?? ?

?? ?

Broadcast

Reduction

�Scan

Fig. 2. The hybrid computing system.

The MRA has two sections:
• the scalar section: Controller – a processing element

with the associated data memory and program memory
(in each location stores a pair of instructions, one for
Controller and another for ARRAY)

• the vector section: Map-Reduce Array – the core of the
accelerator performing predicated vector operations.

The cellular system Map-Reduce Array consists of:
• the linear ARRAY of p cells,

CELL0, CELL1, . . . , CELLp−1, each containing:
– MEM: the local data memory of m scalars
– ENG: a scalar execution unit of n bits which exe-

cutes, if the cell is active, the instruction broadcasted
in each clock cycle by Controller

• the Trans unit: transfers vectors, of w scalars, between
the ARRAY and MEMORY

• the Broadcast unit: a log-depth pipelined distribution
network used to send in each clock cycle, from Control to
ARRAY, the current instruction accompanied, if needed,
by an address and a scalar

• the Reduce unit: a log-depth pipelined reduction network
with arithmetic and logic operations (add, max, or, ...)

• the Scan unit: closes a global loop over the cells of AR-
RAY in order to provide in each cell global information.

In each clock cycle, in ARRAY can be executed p opera-
tions, in Reduce p−1 operations and in Control one operation,
thus the peak performance of the MRA unit is 2pOPS/cycle.
There are few types of parallelism in MRA:

• inside of ARRAY
• inside of Reduce
• between ARRAY and Reduce
• between the control process in Control and the computa-

tion in ARRAY & Reduce

These multiple forms of parallelism allow the accelerator to
provide sometimes super-linear accelerations.

B. Architecture

The Map-Reduce architecture of our accelerator is due to
the ARRAY, able to execute operations mapped along its cells,
and to the Reduce network able to reduce a vector to a scalar
sent to the Control unit.

The accelerator operates on two data structures: scalars,
stored in Controller’s scalar memory, and vectors, stored in the
vector memory distributed along the ARRAY’s cells. Because
the execution units in Control and in each cell are accumulator
based the registers of the accelerator are:

• in Control: pc, acc, cr, addr used to address the local
data memory

• in ARRAY:
– B = ⟨b0,b1, . . . ,bp−1⟩ : a Boolean vector, used to

activate the cells of the MAP array (the cell i is active
only if bi = 1, else cell i ignores the instruction issued
in the current cycle by Control)

– IX = ⟨0,1, . . . , p− 1⟩ : the constant vector index,
used to identify each cell

– ACC = ⟨acc0,acc1, . . . ,accp−1⟩ : accumulator vector,
used as operand and as destination for the result

– CR = ⟨cr0,cr1, . . . ,crp−1⟩ : carry vector
– ADDR = ⟨addr0,addr1, . . . ,addrp−1⟩ : address vec-

tor, used to address in the local memories mem.
The local memory distributed along the cells is represented as
a (p×m)-component matrix M. Each line of M is a horizontal
vector:

Vi = ⟨s0i,s1i, . . . ,s(p−1)i⟩

for i = 0,1, . . . ,m−1, while each column is a vertical vector:

Wj = ⟨s j0,s j1, . . . ,s j(m−1)⟩

for i = 0,1, . . . , p,−1.
The ISA of MRA is the Cartesian product of two ISAs:

ISAMRA = cISA×aISA

where cISA is executed by Control, while aISA is executed in
ARRAY.

The arithmetic and logic operations are the same in the two
subsets. In cISA the operations are defined on scalars, while

INTERNATIONAL JOURNAL OF NEURAL NETWORKS and ADVANCED APPLICATIONS Volume 4, 2017

ISSN: 2313-0563 24

in aISA are executed on vectors. The instructions are of the
form:

acc <= acc OP operand

in CONTROL, and

acci <= bi ? acci OP operandi : acci

where OP represents an arithmetic or logic operation and
operand and operandi are selected in seven modes. Let us
exemplify them for the ADD operation in any execution unit
in ARRAY’s cells or in Control:

VADD(val) : acc <= acc + val
ADD(val) : acc <= acc + mem[val]
RADD(val) : acc <= acc + mem[val + addr]
RIADD(val): acc <= acc + mem[val + addr]

addr <= value + addr
CADD : acc <= acc + coOp
CAADD : acc <= acc + mem[coOp]
CRADD : acc <= acc + mem[coOp + addr]

where: val is the immediate value, and coOp (co-operand)
is acc for the cells from AARRAY, while for Control are the
outputs of the reduction network Reduce selected by val:

• redSum = ∑p−1
0 acci ×bi for val = 0

• redMax = MAX p−1
0 acci ×bi for val = 1

• redBool = ∑p−1
0 bi for val = 3

The main differences between the two subsets are related to
the control instructions. The control instructions for Control
are the standard conditioned or unconditioned jumps and
branches. In ARRAY, aISA provides a spatial control using
predicated operations. It is based on operations applied on the
Boolean vector B. The main spatial control operations are:

• activate : bi <= 1, for i = 0,1, . . . , p−1
• where (cond) : bi <= (bi & condi) ? 1 : 0
• endwhere : restore B to the previous value

/∗∗
I n d e x v e c t o r i s m u l t i p l i e d w i t h t h e sum o f i t s odd
components .
Number o f c e l l s : 512
∗∗ /

cNOP ; ACTIVATE ; / / a c t i v a t e a l l c e l l s
cNOP ; IXLOAD ; / / acc<=1; acc [i] <= i
cNOP ; VAND(3) ; / / acc [i]<=acc [i] & 0 . . . 1 1
cNOP ; VSUB (2) ; / / acc [i]<=acc [i] − 2
cVLOAD (8) ; WHEREZERO; / / acc<=8; where i =2(mod3)

LB (1) cBRNZDEC (1) ; NOP; / / wai t−l oop f o r l a t e n c y
cNOP ; ENDWHERE; / / r e a c t i v a t e a l l c e l l s
cCLOAD (0) ; IXLOD ; / / acc<=redAdd ; acc [i]<= i
cNOP ; CMULT; / / acc [i]<=acc [i] ∗ acc

Fig. 3. Example of code executed by MRA. The left column contains
instructions, prefixed with c, for CONTROL, while the right column contains
instructions for the MAP array.

Let us take an example (see Figure 3) of a simple code
which multiplies the index vector IX with the sum of its
2(mod3) components The line labeled with 1 is the wait-loop
for the latency introduced by the log-depth Reduction section.
We consider p = 512, then between the cycle when the odd
accumulators of ARRAY are selected and the cycle when the

reduction sum is loaded in Control’s accumulator we allow a
latency of 9 cycles.

The execution time, for p = 512, of the program just
exemplified is: T (p)= 7+ log2 p= 16. In this number of cycles
are executed 512 VANDs, 512 VSUBs, 511 ADDs, and 512
MULTs, i.e., more than 256 arithmetic and logic operations
per cycle.

C. Physical Design

The physical implementation is evaluated for p = 2048,
m = 4096, n = 32 in standard cell 28nm technology. For
fclock = 1GHz the resulting area is 92mm × 92mm and the
power consumption is plotted in Figure 4.

Fig. 4. Power consumption evaluated for out MRA.

The power consumption scales good enough with p. There-
fore, at 100o C we can select an implementation for our
accelerator with p = 512 working at < 5Watt.

V. ALGORITHM IMPLEMENTATION

The implementation of the stereo match algorithm, pub-
lished in [13] [14] and based on [6], has two versions: the
accurate one and the fast one. Both versions process the pair of
stereo frames taking the image in patches of 9×9 gray pixels.
The patches are taken with a stride of 1 on both directions.
Therefore, each frames of 1240×376 pixels, considered in the
experiments of the authors, is divided in 1232×368 patches.
Each pair of patches, one from left frame and another from
the right frame, are processed by a CNN. The fast version
of the algorithm contains only convolutional layers, while the
accurate one is dominated by FNN.

A. Main operations

We describe in this subsection two main operations per-
formed in MRA; one helps in loading data in the vector mem-
ory, while the other performs matrix-vector multiplication.

INTERNATIONAL JOURNAL OF NEURAL NETWORKS and ADVANCED APPLICATIONS Volume 4, 2017

ISSN: 2313-0563 25

1) Matrix transpose: is applied on N full horizontal vectors,
Vi,Vi+1, . . . ,Vi+N , organized in ⌊p/N⌋ N×N matrices. The first
matrix is loaded starting from CELL f , with f < N, i.e., the
element e11 of the first matrix is si f . Let us call si f the starting
point of the transpose operation TN(i f) which transpose ⌊p/N⌋
matrices stored in N vectors starting with the vector Vi in
CELL f . The execution time for this operation is:

ttranspose(N) = N2 +29N −7

which translates in

(N2 +29N −7)/(N2 ×⌊p/N⌋) cycles/element

For our 9× 9 matrices and an ARRAY of p = 1024 cells,
results, compared to a mono-core execution, an acceleration
of 189.

2) Matrix-vector multiplication: of a N ×M matrix with
a M-component vector consists in three main operations per-
formed in parallel in our MRA on distinct hardware resources:

• control, performed by the CONTROL unit
• multiplication, performed in the ARRAY section
• addition, performed in the REDUCE section

The main problem solved for optimizing the algorithm was to
avoid the effect of the latency, of O(log p), introduced by the
REDUCE section. An additional p-stage of n-bit shift register,
shiftReg[[0:(1<<x)-1]][n-1:0], introduced in the
organization of ARRAY, allows to insert back in ARRAY
the output of REDUCE avoiding an explicit load in the
CONTROL’s accumulator. Thus, instead of providing each
component of the resulting vector with a latency in O(log p),
only the result vector is provided with a O(log p) latency in
shiftReg.

The program in assembly language is listed in Figure 5,
where the instruction IP(255); is special as it is executed
in both, CONTROL section and ARRAY section, does the
following:
acc[i] <= acc[i];
redReg[i] <= b[i] ? acc[i] x mem[val + addr[i]] : 0;
addr[i] <= addr[i] + val;
shiftReg[i] <= (i=0) ? redSum : shiftReg[i-1];

where, redReg[i] stores the input in the REDUCE
section from each cell of the ARRAY. The instruction
cBRNZDEC(‘L) introduces a delay according to p.

The execution time for matrix-vector multiplication is

T (N) = N +2+ log2 p ∈ O(N)

for N ≤ p and M ≤ m.
Compared with a mono-core engine the acceleration is

supra-linear, because besides the parallelism offered by the
many-cell structure of ARRAY, we benefit by the parallelism
in REDUCE and by the control running on Controller.

The use of this function is considered for the case when the
matrices defining an FNN are very big. Then the supra-linear
acceleration will allow high accelerations of the application.

B. Loading Data in Accelerator
The size of the convolutional or fully connected layers used

in both, accurate and fast versions of the algorithm allow us

/∗∗
FUNCTION NAME: Matr ix−v e c t o r m u l t i p l i c a t i o n
The f u n c t i o n m u l t i p l i e s a NxM m a t r i x w i t h a v e c t o r
I n i t i a l :
addr [i] = M+1 : M i s a d d r e s s o f t h e l a s t ma t r i x ’ s l i n e
acc [i] = V[i] : t h e v e c t o r

F i n a l : acc [i] = r e s u l t
∗∗ /
/ / Parame te r s :

‘ d e f i n e N 13 / / m a t r i x edge s i z e
‘ d e f i n e S (x−1) / / l a t e n c y s i z e because p = 2ˆ x

/ / L a b e l s :
‘ d e f i n e M 1 / / main loop l a b e l
‘ d e f i n e L 2 / / l a t e n c y loop l a b e l

cVLOAD(‘N) ; NOP; / / acc <= N;
LB(‘M) ; cBRNZDEC(‘M) ; IP (2 5 5) ; / / l oop c o n t r o l ; IP

cVLOAD(‘S) ; NOP; / / i n i t l a t e n c y loop
LB(‘L) ; cBRNZDEC(‘L) ; NOP; / / l a t e n c y loop

cNOP ; SRLOAD; / / r e s u l t i n acc [i]

Fig. 5. Code for matrix-vector multiplication. For big N the program is
executed in ∼ 2N cycles.

to use our MRA in a pure SIMD mode if data is appropriately
distributed in cells. If each patch can be loaded and processed
in one cell, then the degree of parallelism achieved in running
CNN on MRA becomes very high.

In this subsection we show how the patches from the two
frames with stride 1 on both dimensions can be loaded as pairs
of vertical vectors in the vector memory of our MRA.

The loading process has two phases: the frame is loaded as it
is in the vector memory (each line as a horizontal vector), and
then the F ×F patches of pixels are transformed in (F ×F)-
component vertical vectors. Each patch is indexed by the pair
of indexes of its first pixel (on the first line and the first column
of the patch): Pi j.

The first phase is a simple data transfer from External
Memory where the two frames are stored linearly, lines after
lines or column after columns. Results a W ×H matrix stored
in H horizontal vectors:
V1 = ⟨s11,s21, . . . ,sW1⟩
V2 = ⟨s12,s22, . . . ,sW2⟩
. . .
VH = ⟨s1W ,s2W , . . . ,sWH⟩

For the second phase, because we consider S = 1 and P= 0,
there are a number of (W −F + 1)× (H −F + 1) patches to
be converted in vertical vectors.

In order to cover vertically the patches of the two frames, the
following sequence of sequences of the transpose operations
must be applied ⌊H/F⌋:

TN((i+1)1),TN((i+2)1), . . . ,TN((i+F)1)

for i= 0,F,2F, . . . ,(⌊H/F⌋−1) For i= 1 the operation restore
the patches from one frame
P11,P12, . . . ,P1F
P(F+1)1,P(F+1)2, . . . ,P(F+1)F
P(2F+1)1,P(2F+1)2, . . . ,P(2F+1)F
. . .
as vertical vectors in

INTERNATIONAL JOURNAL OF NEURAL NETWORKS and ADVANCED APPLICATIONS Volume 4, 2017

ISSN: 2313-0563 26

CELL0,CELL1, . . . ,CELLF−1
CELLF ,CELLF+1, . . . ,CELL2F−1
CELL2F ,CELL2F+1, . . . ,CELL3F−1
. . .
and so on for the next values of i.

In order to cover horizontally the patches of the two frames,
the vertical cover, defined by

TN((i+1) j),TN((i+2) j), . . . ,TN((i+F) j)

must be repeated F times, as follows for J = 1,2, . . . ,F −1.

C. Computation

After each application of the transpositions

TN((i+1) j),TN((i+2) j), . . . ,TN((i+F) j)

for each frame, resulting two 81-component vertical vectors
in each cell, the content of the vector memory of ARRAY is
prepared for the CNN computation in a pure SIMD mode.

D. Accurate Architecture

Following the system proposed by Žbontar and LeCun, we
evaluated the accurate architecture for the stereo matching
cost. The CNN considered by the authors has one convolu-
tional layer followed by 7 FNN layers (see Figure 2 in [13]).

The load of pixels and the rearrangement, using the trans-
pose operation, takes around 400 cycles for a pair of patches,
while the associated computation is 1.6 GOPs. The 600,000
weights used to define all the 8 layers of the CNN can be
used in parallel for all ⌊p/F⌋×F pairs of patches involved
simultaneously in the computation. Thus, for this application
of the CNN configuration we obtain a computational process
which is not I/O bounded.

For all 1232×368 pairs of patches running an application
which requests 10 frames/sec processing, the total amount
of computation is 7.25GOPs/sec. Therefore, the MRA sys-
tem described in Subsection IV C is able to perform this
computation in less than 11 sec with an actual performance
of 0.33 from the peak performance of a circuit powered
with ∼ 12Watt. In [13] are reported 100 sec for experiments
running on Nvidia GeForce GTX Titan GPU.

E. Fast Architecture

Following the suggestion of J. Žbontar and Y. LeCun from
(see Figure 2 in [14]) we evaluated the computation of a CNN
with 4 convolutional layers ended with the computation of
the cosine similarity between the resulting two 64-component
vectors. The computation starts from the same two frames
and the same number of 1232 × 368 pairs of patches. The
convolutional layers are, by turn, defined by 7× 7× 10, 5×
5×16, 3×3×32, and 1×1×64 weights. Results 10 GOPs per
pairs of frames. For 10 pairs of frames per second a reasonable
100 GOPs/sec computational power is requested.

VI. EVALUATION

Based on the evaluation made for the physical design and on
the simulation in Vivado environment we are able to conclude

about our proposal. Let us consider that a real application for
stereo vision, using the fast architecture, requests a computa-
tional power higher than 100 GOPs/sec, let say 300 GOPs/sec.
With an actual performance of 0.3 from the peak performance,
a version of 1024-cell of our MRA, before described, will
solve the problem working at around 6 Watt.

VII. CONCLUSION

The accurate architecture is, for the time being, far from the
performance achieved by low power market product. But the
fast architecture, implemented using our MRA, qualifies for
mass production and for high temperature environment (such
as the interior of a car in the middle of a desert).

Compared with Google’s TPU, a custom ASIC that nor-
mally beats, for a specific application, a general purpose
processing unit, our MRA, a general purpose programmable
accelerator, performs good enough, in the same range.
GOPs/sec/mm2 is 140 for TPU and 92 for MRU, while
GOPs/sec/Watt is 1230 for TPU and 670 for MRU. Even if
the numbers are a little smaller, the advantage of programma-
bility and universality can not be neglected.

REFERENCES

[1] D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhu-
ber, “Flexible, high performance convolutional neural networks for image
classification” in Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence, pp. 1237–1242, 2011.

[2] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, et
al., “In-Datacenter Performance Analysis of a Tensor Processing
UnitT M”, To appear at the 44th International Symposium on Computer
Architecture (ISCA), Toronto, Canada, June 26, 2017. [Online]. Available:
https://drive.google.com/file/d/0Bx4hafXDDq2EMzRNcy1vSUxtcEk/view

[3] A. Karpathy, “Cs231n: Convolutional neural networks for visual recog-
nition”. [Online]. Available: http://cs231n.github.io/

[4] S. Kleene, “General recursive functions of natural numbers”, iin Mathe-
matische Annalen, vol. 112, no. 1, pp. 727-742, 1936.

[5] H. T. Kung, “Why Systolic Architecture”, in Computer, 1982, pp 37-46.
[6] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-Based Learni-

ing Applied to Document Recognition”, in Proc. of the IEEE, Nov. 1998,
pp. 1-46.

[7] M. Maliţa, G. M. Ştefan, and D. Thiébaut, “Not multi-, but many-core:
Designing integral parallel architectures for embedded computations” in
ACM SIGARCH Computer Architecture News, 35(5):32–38, Dec. 2007.

[8] K. Ovtcharov, O. Ruwase, J. Kim, J. Fowers, K. Strauss and E. Chung,
“Accelerating Deep Convolutional Neural Networks Using Specialized
Hardware”, Microsoft Research, February 23, 2015.

[9] G. Raina, “Deep Convolutional Netvork evaluation on the Xeon Phi:
Where Subword Parallelism meets Many-Core”. Eindhoven University
of Technology, 2016. [Online]. Available: http://repository.tue.nl/844256

[10] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection”, in Cornell Univ. Library, 2016.

[11] G. M. Ştefan, A. Sheel, B. Mı̂ţu, T. Thomson, and D. Tomescu, “The
CA1024: A Fully Programmable System-On-Chip for Cost-Effective
HDTV Media Processing” in Stanford University: Hot Chips: A Sym-
posium on High Performance Chips, August 2006. [Online]. Available:
https://youtu.be/HMLT4EpKBAw at 35:00.

[12] G. M. Ştefan and M. Maliţa, “Can one-chip parallel computing be liber-
ated from ad hoc solutions? a computation model based approach and its
implementation” in 18th Inter. Conf. on Ciruits, Systems, Communications
and Computers, Santorini, Greece, pages 582–597, July 2015.

[13] J. Žbontar and Y. LeCun, “Computing the stereo matching cost with a
convolutional neural network”, in Cornell University Library, 2015.

[14] J. Žbontar and Y. LeCun, “Stereo Matching by Training a Convolutional
Neural Network to Compare Image Patches”, in Journal of Machine
Learning Research, 17 (2016) pp. 1-32.

INTERNATIONAL JOURNAL OF NEURAL NETWORKS and ADVANCED APPLICATIONS Volume 4, 2017

ISSN: 2313-0563 27

