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Abstract—Determining the accurate discharge coefficient is a 
crucial process in side weirs design. Because of the higher 
performance modified-shape side weirs are used extensively in 
practical situations. The discharge coefficients of modified-shape 
side weirs are complex because they are related to various 
geometric and hydraulic conditions, such as the weir’s height (w), 
included angle (θ), length (L), and the upstream Froude number 
(F1). In this study, Support Vector Regression (SVR) was used to 
predict the discharge coefficient of a modified-shape, labyrinth 
side weir. Polynomial and radial basis functions were investigated 
as kernel functions. Instead of minimizing the training error, the 
Polynomial SVR (Poly-SVR) and the Radial Basis Function SVR 
(RBF-SVR) minimize the generalization error in the training 
process. Investigation of the performance of the proposed method 
showed that both Poly-SVR and RBF-SVR provided accurate 
predictions, and the generalization-based SVR was used 
successfully in complex hydraulic prediction problems. 

Keywords—discharge coefficient, kernel function, modified-
shape labyrinth side weir, soft computing, support vector 
regression 

I. INTRODUCTION 
Side weirs have been used extensively in hydraulic and 

environmental engineering as a substantial part of 
controlling and dividing flow structures. The first 
mathematical study of side weirs was done by De Marchi 
[1]. The author assumed that the specific energy was 
constant upstream and downstream from the side weirs, and 
presented the following equation: 

 ( ) 512
3
2 wygCd

dx
dQ

−=−  (1) 

where Cd is the discharge coefficient, w weir height, y 
flow depth, and dQ/dx the variation of discharge with 
respect to the spatial coordinate.  
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The first side weirs that were investigated had a 
rectangular shape. Characteristics of rectangular side weirs, 
specially their discharge coefficients, have been studied 
extensively [2-7]. 

When the discharge of the diverted flow exceeds the 
capacity of the side weir, the most effective strategy is to  

increase the length of the side weir. The width of the 
branch channel is related to the length of the side weir, and 
increasing the length of the side weir results in an increase 
in the length of the branch channel. The modification of this 
structure is extremely costly, and when there is a limitation 
in width of the branch channel, it is impossible. To increase 
the capacity of the side weir, shape modification is another 
alternative. Numerous studies have indicated that modifying 
the shape of the side weir could increase its capacity and 
increase the discharge coefficient by a factor ranging from 
1.5 to 4.5 [8-13]. 

The discharge coefficients of modified-shape, labyrinth 
side weirs are related to various input parameters, and, 
hence, they have a complex nature. Therefore, soft-
computing methods have been used extensively to predict 
the discharge coefficients of side weirs [8, 14-16]. Support 
vector regression (SVR) is a powerful learning algorithm 
that is used extensively in various fields, including hydraulic 
and hydrology engineering [17-19]. 

The discharge coefficient of a modified, labyrinth side 
weir is affected by various geometric parameters, such as 
the weir’s height, length, and included angle, as well as 
hydraulic parameters, such as upstream Froude number and 
the depth of the flow. By using efficient parameters, ten 
non-dimensional input variables were performed and used in 
numerical models. The discharge coefficients were 
investigated and modeled with two high-performance 
predictive models, i.e., Poly-SVM and RBF-SVM, and the 
obtained results were compared. 

 

II. 
1BMATERIALS AND METHODS 

A. 4BExperimental dataset 
An experimental study conducted by Borghei and 

Parvaneh [20] was used to calibrate and verify the Poly-
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Fig. 1. Modified labyrinth side weir [20] 

TABLE I.  THE DIFFERENT GEOMETRIC AND HYDRAULIC PARAMETERS USED FOR THE MODIFIED LABYRINTH SIDE WEIR [20] 

Number 
of runs F1 Q1 (m3/s) w/Y1 w (mm) L (m) θ/2 (o) 

40 0.19-0.96 0.019-0.030 0.46-0.83 50,75,100,150 
50,75,100,150 

0.3 
0.4 30 

55 0.19-0.96 0.019-0.030 0.46-0.83 
50,75,100,150 
50,75,100,150 
50,100,150 

0.3 
0.4 
0.6 

45 

50 0.19-0.96 0.019-0.030 0.46-0.83 
50,75,100,150 
50, 100,150 
50, 100,150 

0.3 
0.4 
0.6 

60 

55 0.19-0.96 0.019-0.030 0.46-0.83 
50,75,100,150 
50,75,100,150 
50,100,150 

0.3 
0.4 
0.6 

70 

 

SVR and RBF-SVR models. Fig. 1 shows a schematic 
illustration of the experimental flume. The experiments were 
performed in a channel made of glass, and the length (L), 
height (h), and width (w) of the channel were 11, 0.66, and 
0.4 m, respectively.  
 

Various hydraulic and geometrical situations of the 
shape of the modified weir were examined by changing the 
geometric conditions of the weir, including the angle, θ; the 
weir’s length, L; and the weir’s height, w. Hydraulic 
conditions were also changed, including the upstream 
Froude number, F1, and the upstream flow depth, y1. Table I 
shows the various values of the variation of side weir’s 
parameters.  

B. 5BSupport vector regression 
Support Vector Regression (SVR) is a subset of neural 

network methods, and it provides better predictions than 
other neural network methods [21-24]. Unlike the other 
machine-learning methods that use local training error in the 
training process, SVR conducts the training by minimizing 
the generalization error of the upper band [25]. Detailed 
descriptions of the SVR method are given in Rajasekaran, et 
al. [26] and Yang, et al. [27]. 

In the SVR procedure, a non-linear mapping is done, so 
that the input parameters (x), are mapped into a multi-
dimensional future space. The multi-dimensionality of the 
future space leads to extreme increases in the computational 
cost and time. The computations can be done by a simple, 
linear function, but, for complex problems, such as 
predicting the discharge coefficient, a more hypothetical 

space is required. A schematic kernel function is shown as 
follows, such that for all x, z∈X.  

 )().(),( zxzxK φφ=   (2) 

To construct a learning machine, different kernels can be 

used to map the input variables into different types of non-
linear decision surfaces. Two common types of learning 
machines are the Polynomial Function (PF) and the Radial 
Basis Function (RBF), which are defined as follows: 

 [ ]d
ii xxxxK 1)(),( +×=   (3) 

 [ ]2exp),( ii xxxxK −−= γ   (4) 

where d represents the polynomial’s dimensions, and γ is 
the RBF constant. To determine the discharge coefficient of 
a modified-shape, labyrinth side weir, two types of SVMs 
(SVM-Poly and SVM-RBF) were investigated and 
examined. The performance of each standard SVM model 
was related directly to the optimum selection of the SVM’s 
parameters. For SVR-RBF, the SVM’s parameters are C, γ, 
and ε, and for SVR-Poly, the SVM’s parameters are C, d, 
and ε. These parameters are not known at the beginning of 
the modelling; they must be determined in the model 
calibration process. 

 

III. 2BRESULTS 
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TABLE II.  STATISTICAL ERRORS BETWEEN SVR AND SVR-FF IN THE TRAINING AND TEST DATASETS 

Model 

Training process Testing process SVR parameters 

RMSE MAE %δ RMSE MAE %δ C ε d (Poly) 
γ (RBF) 

Poly-SVR 0.037 0.027 4.250 0.056 0.045 6.289 100 0.001 1 

RBF-SVR 0.026 0.013 2.118 0.081 0.066 9.078 100 0.001 0.01 

 

 

Fig. 2. Scatter plot of Poly-SVR and RBF-SVR methods in the training and test datasets 

The SVR method was used in this study to develop a 
high-performance model for predicting the discharge 
coefficient of a modified-shape, labyrinth side weir. The 
non-dimensional input variables of the models were w/b, 
y1/b, L/b, w/y1, w/L, y1/L, sin(θ/2), F1, F1/sin(θ/2) and 
w×sin(θ/2)/y1, and the output variable was Cd. Polynomial 
and RBF were used as kernel functions for predicting the 
discharge coefficient. The SVR’s performance depended 
directly on the selection of the optimum parameters for the 
model. Each of the Poly-SVR and RBF-SVR models must 
have three parameters specified, i.e., C, ε, and d for the 
polynomial kernel SVR and C, ε, and γ for the RBF kernel 
SVR. For this problem, the default value of ε = 0.001 
seemed to be appropriate. To determine the optimum values 
of C, d and γ, several trial and error calculations were 
conducted with different combinations of C and d for Poly-

SVR and different combinations of C and γ for RBF-SVR 
[28]. The optimal values of the parameters of Poly-SVR and 
RBF-SVR and performance of each model the in training 
and testing process are provided in Table II, which shows 
that the Poly-SVR model had a small Root Mean Square 
Error (RMSE) of 0.037 in training and 0.056 in the testing 
procedure. However, RBF-SVR had very small RMSE 
values of 0.026 in training and 0.081 in the testing 
procedure. Because of the proximity of the results of the 
Poly-SVR in test and train procedures, this model was more 
trustable than RBF-SVR model. Despite the higher 
performance of the RBF-SVR in the training procedure, it is 
preferred to use a model that has about the same 
performance for the training and test samples. Fig. 2 shows 
scatter plots of the Poly-SVR and RBF-SVR models. The 
figure shows that the Poly-SVR model does not trapped in 
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the over- and under-estimation, i.e., the linear trend line 
equation of y = C1x + C2 has a C1 value close to 1 and a C2 
value close to 0. So, the trend line of the Poly-SVR model 
almost fit the 45o ideal fit line. However, even though the 
RBF-SVR model almost fit linear trend line to the ideal fit 
line in the training samples, it did not perform very well 
near the ideal line in the test samples, with a C1 value and a 
C2 value of 0.697 and 0.241, respectively. 

IV. CONCLUSIONS 
Polynomial and Radial Basis Function Support Vector 

Regression methods were used to model the discharge 
coefficient of a modified-shape side weir. The discharge 
coefficient of the side weir depended on w, L, θ, y1, b and 
F1. By using these parameters, ten different, non-
dimensional input parameters were performed and two 
models, i.e., Poly-SVR and RBF-SVR, were used to predict 
the discharge coefficient. The results showed that the Poly-
SVR model had high and reasonable accuracy, and, because 
of the close correlation between the results of the training 
and test performance, it can be used with confidence in 
practical situations.  
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