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Abstract— Voiced/unvoiced classification is a task from the field of
acoustics to assess the vocal folds’ contribution to speech production
within a given piece of sound. However, it is a difficult task,
commonly approached through means of digital signal processing,
which usually delivers subpar results, especially in the transition
regions between the two classes. Artificial neural networks deliver
results of better quality while being able to be more efficient. This
paper provides best practices for the design and the implementation of
an artificial neural network approach which is able to achieve better
results for this particular problem . It outlines the steps to implement
a multi-layer perceptron trained with back-propagation using mini-
batch stochastic gradient descent. The implementation was done in
Octave/Matlab.
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I. INTRODUCTION

THE processing and analysis of speech in general and
specifically with voiced/unvoiced (V/UV) classification is

a difficult task due to the inherent complexity of speech and
the digital processing of it. However, with the current trends
in speech recognition through intelligent personal assistants,
it becomes more and more important to have good quality
systems to execute these tasks. As the term intelligent implies,
most of these systems work with neural networks with varying
degrees of complexity. The literature [1] has already shown an
artificial neural network system to perform voiced/unvoiced
classification of speech by utilizing coefficients obtained by
linear predictive coding (LPC). This paper is an extended ver-
sion and presents some insights from the development process
of the neural network system. It gives more insights into the
implementation of the designed system in Octave/Matlab, as
these are rarely to be found in any research paper.

The background of the given task is to find a suitable way
to do voiced/unvoiced classification in a pre-existing cochlear
implant system. To enhance speech recognition, an earlier
paper [2] proposed a pitch adaption method in order to set the
pitch of given input speech to a fixed value. The actual system
already exists and works with linear predictive coding to re-
synthesize the speech. However, only speech with an actual
pitch need changing. From this situation, this paper explains
the development process and the insights in detail.

The first step in developing any system is to take a look at
the reference system and its intended deployment-environment.
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Figure 1. Principle of the linear predictive coding based pitch modification
algorithm. This system serves as the environment and reference system for
the implementation of the artificial neural network.

For the given scenario, Section II presents the reference
system whose functioning principle is shown in Fig. 1. It
has already been implemented Octave/Matlab. The reference
system delivers the problem that has to be solved. This problem
is the lacking functionality in the form of voiced/unvoiced clas-
sification, which is examined in Section III-A. Subsequently,
information about a possible solution can be extracted from
the type of problem, which, in the case of this paper, leads
to the conclusion that a neural network suits the purpose just
right. Thus, Section III-B explains the basics of how artificial
neural networks work. Besides the function of neurons as an
opinion amplifier, the general network structure is explained.
This structure is then applied to the problem at hand, leading
to a number of inputs in the form of linear predictive coding
coefficients as explained in Section III-C and an output, which
determines the class as concluded from the problem statement.
After all preliminary considerations, the actual system’s design
and implementation is explained in Section IV. To train and
test the network, the implementation is based on Octave/Mat-
lab, witch serves as a prototype. However, this prototypical
implementation can easily be converted to a better performing
language if required.

II. REFERENCE SYSTEM

The application of the proposed V/UV classification is a
cochlear implant pitch modification system. Due to problems
with the electrode insertion in the inner ear, cochlear implant
patients might not be able to achieve acceptable speech recog-
nition scores due to a misrepresentation of (voice-) pitch. To
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Figure 2. The source-filter model: The airstream from the lungs may or
may not excite the vocal folds (larynx), which adds oscillations resulting in a
harmonic sound. Subsequently, through the vocal tract, the raw or oscillating
airstream is shaped by the filter, whose characteristics are formed by the shape
of the vocal tract - resulting in speech.

alleviate this problem, a system for pitch transposition to a
beneficial frequency region specific to the patient has been
introduced [2].

Since a cochlear implant system has to have a low energy
consumption, the algorithms need to be as efficient as possible
while serving their purpose. Hence, an linear predictive coding
(LPC)-based analysis-synthesis system has been implemented
for the pitch modification, as these methods have been de-
termined to be less computationally demanding than other
approaches. The approach is to use an LPC analysis stage
to determine the coefficients representing vocal tract filter
characteristics. A desired synthesis pitch fc is then used to
create a synthetic glottal pulse signal. This signal is used
as a harmonic source signal, which is subsequently filtered
with the LPC coefficients. This process creates a segment of
pitched speech and realizes the source-filter model of speech
production (see, also, in section III-C).

Within this reference system the V/UV is one of the most
important parts, as it determines which frames need to be
modified and which can remain as they are. This is due to
the fact that pitch is only present for voiced parts of signal as
the vocal folds provide the signal with the harmonic content.

III. PRELIMINARY CONSIDERATIONS

A. Voiced Unvoiced Classification

For the detection of the voiced parts of speech one usually
speaks of voiced-unvoiced or voiced-unvoiced-silence classi-
fication systems. These systems estimate whether a signal
portion has periodic content or not. For speech, this means
a decision for whether the vocal folds or just the unhindered
airsteam from the lungs serve as the source of the sound. This
is also reflected in the so-called source-filter model of speech
production, which is illustrated in Fig. 2.

The classification difficulty lies in the determination of the
threshold between the available features. The thresholds will
most likely be different for the various features, some of which
are the zero crossing rate (rate of sign change in the waveform
representation of the signal), energy or autocorrelation coeffi-
cients [3]. It is well known that a low zero crossing rate means

that a frame is voiced with a high probability as well as the
same goes for a high signal energy. Even from looking at the
source signals’ spectra it is possible to classify the speech
frames. This fact is utilized later on with the linear predictive
coding coefficients. However, the exact threshold for when a
frame is voiced is hard to pinpoint, as it depends on the signal-
to-noise ratio and the actual recording environment as well.

Knowing this, it is not advised to implement yet another
bad functioning signal processing approach. Instead, using an
artificial neural network to determine the statistics behind the
inputs might be a much better idea, since this kind of binary
classification problem can be broken down to just a matter
of finding the right threshold. Neural networks are able to
learn the statistics behind a given input-output dataset and
are suitable to find a near-optimal threshold level for many
applications, i.e., being a universal approximator (especially
feedforward networks [4]). Furthermore, as the V/UV classi-
fication problem is binary, this also means that just a single
output is enough to decide for a particular class. This makes
the neural network easy to design and implement for this
application.

B. Artificial Neural Networks
Artificial neural networks (ANN) are the technological ab-

straction of natural neural networks. They model the ability to
represent and categorize multiple classes from a problem set
based on their inherent statistics. However, these statistics are
not obvious. So the actual strength of neural networks is to
determine them through learning and error correction.

An artificial neural network is a collection of so called
neurons that are interconnected with each other. The neurons
are organized in layers similar to Fig. 3. This particular kind
of neural network is commonly referred to as multilayer
perceptron [5], for which three types of neurons exist:

1) input - no incoming connections,
2) hidden - incoming and outgoing connections,
3) output - no outgoing connections.

Each connection between the neurons has a corresponding
weight to determine its influence on the input. Besides, each
neuron has an activation function S(x), which determines the
output (or activation) of the neuron depending on the weight
and the inputs of all its incoming connections. An example
activation function is the logistic function, which is illustrated
in Fig. 4 and is calculated according to the equation

S(x) =
1

1 + e−x
. (1)

The input neurons contain the features to classify and are
arguably no real neurons, since their activation functions have
no inputs and their outputs are defined by the feature set.
Subsequent hidden layers (more than one are possible) further
process the information for the final display at the output
neurons.

The execution of an ANN means the calculation of a forward
calculation. This calculation basically means the evaluation of
each activation function with its respective inputs and weights
and assigning the corresponding output values accordingly.
This is done for each layer. For further details, see, also [6].
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Figure 3. Common structure of a multilayer perceptron with the 3 layers
input, hidden and output.
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Figure 4. The sigmoidal activation function (also known as logistic function).

However, the most important part of using an ANN is
the training procedure. One of the most successful training
approaches is the back-propagation algorithm. It is an efficient
error correcting algorithm devised in 1986 [7]. After a forward
calculation, the obtained results are compared to control-
results and the weights are corrected according to the slope
of the error function (backward-pass). The weight correction
works with some variant of gradient descent, which is able
to effectively minimize the difference between the calculated
network output and a desired control output by estimating the
degree to which a weight should be changed in any particular
direction in the error topology. For that to work best, it is
required to have many training examples to be able to calculate
an accurate error gradient later on. However, this minimization
can only be local and it is not possible to know whether the
algorithm found the optimum. The specifics of this training
approach are explained in great detail in [8].

C. Linear Predictive Coding

Knowing to use an ANN for the given problem, and also
already knowing what the output should look like, the next
step is to determine the input features. Fortunately, the linear
predictive coding (LPC) coefficients used in the reference
system suit this purpose just fine.

Linear predictive coding estimates the vocal characteristics
of a speaker based on a piece of sound [9]. It is widely used
for speech analysis and speech recognition systems, since it is
fairly easy to compute and delivers reliable results.

LPC is based on the source-filter model of speech produc-
tion. The principle of this model has been shown in Fig. 2. In
a more abstract way to describe speech production, the human
vocal tract is seen as a buzzer with an attached tube that has
specific filtering properties. The buzzer represents the vocal
folds and constitute the source. The tube is seen as having
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Figure 5. Example of a spectrum obtained through linear predictive coding.
The blue graph is the original spectrum, obtained with a size 1024 fast fourier
transform. The red graph has been obtained using the LPC-coefficients for
this frame.

different diameters at different points, thus amplifying and
attenuating certain frequencies as a filter.

From an implementation perspective, LPC tries to predict
a future sample x(j) of a signal portion x(j − i) by using
the last p samples with i := [1..p]. To achieve this goal, LPC
employs p coefficients. The number of coefficients p is called
the LPC order.

The prediction of the next sample x(j) using the coefficients
basically means solving the equation

x(j) =

p∑
i=1

aix(j − i) + e(j), (2)

where ai are the LPC-coefficients and x(j) is the sample to
predict. In other words, e(j) represents the source of the model
as residual which has to be minimized, and ai represents the
filter coefficients to tune. To obtain the coefficients for an
entire frame, a matrix of samples is created and solved for
the coefficients. This process results in the minimization of
the residual (that is, the sum of squared distances between
predicted and actual samples). For further details, the interested
reader is referred to the literature [10].

The coefficients can be used to perfectly recreate the source
frame again when using the residual as the source signal.
Other than that, it can also be used to create a synthetic
signal when a synthetic glottal pulse is used. This is possible,
because the LPC-coefficients constitute the parameters to a
FIR-filter (finite impulse response), which represents the vocal
tract characteristics.

From a signal processing viewpoint, these characteristics are
also the envelope of the signal spectrum (i.e., low-pass filtered
spectrum), as can be seen in Fig. 5. This means in return
that the filter characteristics also contain information about the
spectrum contour, which can be used as input for the neural
network.
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Figure 6. Plot of the LPC coefficients of an audio file. The audio contained
the vowels a,e,i,o,u. The plot shows an example of the variances between the
individual vowels and the ground noise.

Again, from the reference system, it is thus possible to infer
that the number of inputs should be equal to the order of the
LPC analysis.

IV. SYSTEM DESIGN AND IMPLEMENTATION

A. Structure

Since the reference system already uses LPC coefficients for
signal modification, these coefficients have been deemed suit-
able upon evaluation. Recorded coefficient plots have shown
the required distinct characteristics for the parts to differentiate.
An example plot is shown in Fig. 6

10 LPC coeffients are used as input to the neural network,
which are obtained by the order 10 LPC analysis used in the
reference system. They have been determined by first seg-
menting the entire signal into signal frames of 50 ms duration
with 10 ms hop length (i.e., 40 ms overlap). Subsequently, the
frames were pre-emphasized and windowed, and only then
the actual linear predictive analysis was performed. Usually
LPC analysis does not need overlapping frames, but further
processing requires a certain signal-frame length to not have
the calculation time increase too much.

The size of the hidden layer largely depends on the complex-
ity and ambiguousness of the input dataset. If the two classes
are very distinct individually, one or two hidden nodes might
suffice for a good (binary) classification result. If, however, the
two classes are very noisy and are inherently ambiguous as it
is the case for the given problem, many more neurons might be
required. This topic is covered in a mathematical way in [11],
where generic problem classes are considered. Nevertheless,
for the given problem, it is suitable to start off testing with
a small number of neurons (2-4) and gradually increase the
number if the training efforts are fruitless.

Consequently, through experimenting, the network structure
consists of a simple multilayer perceptron with 10 input
neurons, 10 neurons in the hidden layer and one output. Also,
the network utilizes the logistic activation function (sigmoid).
Initial testing has shown that two outputs are not necessary as
they behave strictly complementary after training.

L1 Input Layer 1 L2 Input

L2 Input Layer 2 Output

ω11ω12

ω21

ω1

ω2

i1

i2

o1 o2

i1 i2 o1

Figure 7. Implemented structure of the voiced/unvoiced classification network.

1 while(mse >= eps)
% fetch data samples

3 l1inp, ctr = get_minibatch(data_in, data_out, Nm)

5 % forward step
l2inp = 1./(1 + exp(-(l1inp * l1w)))

7 l2o = 1./(1 + exp(-(l2inp * l2w)))

9 % calculate deltas
l2d = (ctr - l2o).*(l2o.*(1 - l2o))

11 l1d = (l2d * l2w’) .* (l2inp .* (1 - l2inp))

13 % update weights
l2w += eta * l2inp’ * l2d

15 l1w += eta * l1inp’ * l1d

17 mse = mean((ctr-l2o)ˆ2)
end

Figure 8. Program code for the neural network training procedure. It uses
a back-propagation training approach with mini-batch gradient descent and a
learning rate modifier.

B. Implementation

The implementation follows the developed structure. The
basic principle of implementing an ANN in the form of a
multilayer perceptron is to implement the different layers in
the form of matrices. An implemented version of the network
is shown in Fig. 7 and is explained further as the section
advances. In addition, Fig. 8 shows the Octave/Matlab code
used to create and train the network.

This structure means for the input data implementation, that
10 neurons, and thus, a size 10 vector is used for the 10 LPC
coefficients. However, this is viable just for the actual forward
implementation when used in action. During the training of the
neural network, it is possible and required to use entire sets of
inputs to represent the variation of the input data and the actual
control results appropriately. At this point, the implementation
deviates from the structure (at least conceptually).

As the entire dataset takes a significant amount of calcula-
tion time to complete for an entire set (batch learning) and a
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function [outp] = nnfwd(l1inp, l1w, l2w)
2 l2inp = 1./(1 + exp(-(l1inp * l1w)));

outp = 1./(1 + exp(-(l2inp * l2w)));
4 end

Figure 9. The forward function of the neural network implemented in
Octave/Matlab.

single set for each iteration (online learning) does not account
for the variation of the data, so-called mini-batches are used
for learning and thus, training. Mini-batches are parts of the
complete dataset, and might be scrambled beforehand. This
kind of data selection ensures a more appropriate error gradient
calculation while having low computational costs. In the code,
line 3 invokes the creation of the mini-batches out of the input
and output datasets. The size of the mini-batch is indicated
through the Nm argument. It is important to note that it is
required to have input as well as output data acquired from an
evaluated source to be able to actually train the network.

The actual work the network performs is done in lines 6
and 7. This is the forward step, which also incorporates the
layer matrices l1w and l2w. Basically, these are the core of
the neural network - they are modified during training and
determine the actual outputs. Each of those two lines execute
all neurons for the particular layer by feeding the result of
the multiplication of the weights and the inputs into their
activation function. Also, the output of the first layer is used
as the input of the second. If more layers are used, this scheme
is continued. This is how the hierarchical structure of the
networks is realized programmatically.

The actual modification and the training of the neural
network happens in the lines 10 to 15. These lines implement
the following formula:

ωn+1 = ωn − η

(
∂E

∂ωn

)
(3)

which constitutes the gradient descent with a learning rate η
to adjust the weight of the gradient, i.e., to which amount of
the error gradient the weight is changed. It becomes obvious
that to obtain the gradients for the errors one has to calculate
the derivative the activation function. Now it comes in handy
to have chosen the activation to be the logistic function, as its
derivative can be easily determined to be

d

dx
S(x) = S(x)(1− S(x)). (4)

This means, it is possible to input the calculated values directly
to calculate the error gradient. Back-propagation itself then
works exactly like in the forward calculation through feeding
the delta values back into the lower layer. Subsequently, the
weights are being adjusted accordingly.

After training, just the layer matrices l1w and l2w are
required to classify any suitable input into the learned cate-
gories. This allows for a drastically reduced neural network
calculation, which is just a forward calculation at this point,
which is shown exemplarily in Fig. 9.

C. Hyper-parameters and data shape

The range and shape of the in- and output data as well
as the selection of the hyper-parameters is very important. A
significant amount of research has gone into the shape and
range of the input values. Usually neural networks make use
of floating point numbers, which inherently allows for a wide
range of values. However, the normalization of input data plays
a major role in how well a neural network is trainable and thus,
how much time it takes for it to converge. Sola and Sevilla
[12] concluded that in any case the order of magnitude of
the different input values should match. In the given network
design, the inputs have been treated even further to the degree
that they fit into the range from −1.0 to 1.0. This allows the
weights of the network to have values that are comparable for
later analysis if desired.

The output parameters range from 0.0 to 1.0, with 1.0 resem-
bling the voiced class. This is a fairly straightforward design
decision, coherent with the model of a binary classification
system.

The hyper parameter selection is basically an educated guess
based on the pertinent literature. Whether learning rates are
used or omitted [13] or efficient mini-batches can be used for
even faster calculations [14]; There is no definitive solution to
the ideal values to be selected.

D. Training

The training itself was performed with back-propagation
using mini-batch gradient descent with a batch size of 20.
The training set consisted of 2.300 frames recorded from
two speakers (1 male, 1 female) recorded with a sampling
rate of 8.000 Hz. Subsequently, the LPC-coefficients were
calculated according to the outlined method and scaled to lie
within the interval of [−1, 1]. The control output values were
hand-annotated using spectrograms for reference. To cover a
variety of possible coefficient constellations, the training audio
consisted of a set of phonemes instead of full sentences.

The network was fitted to an overall mean square error
EMSE < 0.01 and with an initial learning rate of η = 0.05. It
was very prone to overfitting, which could easily be seen when
training with a lower mean square error (e.g., EMSE < 0.001).
Fitting to a lower error lead to the evaluation error rates
drastically increasing.

The classification error after training was about 3.17 % using
all 2.300 frames.

V. CONCLUDING REMARKS

This paper described a practical method for designing and
implementing a neural network for the purpose of voiced/un-
voiced classification. Although the stated methods can be used
as a practical guide, it is always required to adjust the given
tools to the problem, not the other way around. The resulting
trained neural network is usable in the same problem domain
(V/UV classification), but also in different systems, given the
input data is equivalent.

Although not all means of optimization for neural networks
have been introduced and applied, this paper provides a useful
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Figure 10. This figure shows the result plots for part of the training dataset. a)
displays the 10 LPC coefficients per frame over all available training frames.
b) shows the unsmoothed output of the neural network. c) shows the decision
based on the output for a threshold of 0.25, smoothed with a size 5 median
filter. d) shows the control data for the training set.

implementation guide. The usage of bias neurons has been
tested but has not yielded a significant improvement against
the presented method. There are always a plethora of ways
to approach a problem and here just one of them has been
explained.
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