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Abstract—Water main pipe breaks are an ongoing concern 

worldwide. Large-diameter steel water transmission mains (WTMs) 
transport a much larger volume of water and their failure leads to 
even greater damages than those seen in water networks with small 
diameter iron or PVC pipe lines. However, there is no predictive 
model for large-diameter steel WTMs, leaving retroactive 
maintenance as the sole means of prevention. The objective of this 
study was to predict the optimal replacement timing for large-
diameter steel WTMs based on physical and environmental factors, 
using Deep Learning algorithms. The model was developed in four 
steps: (1) determine major factors, (2) determine the best model by 
comparing performances of three neural networks (NNs) (a shallow 
artificial NN, multiple hidden layered NN, Stacked autoencoder NN), 
(3) classify the data into homogeneous groups by an ANN-based 
clustering technique, and (4) perform the developed model for each 
group. The multiple hidden layered NN was found to be the best deep 
neural NN in forecasting a replacement timing of aging WTMs. 
Additionally, it is recommended that such ANN-based clustering 
methods be used in predicting a more accurate replacement timing of 
water networks and making a quantitative decision on replacement.  
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I. INTRODUCTION 

A. Background 
WTMs are large-diameter pipes (more than 300 mm in 

diameter) that transport large volumes of water, including both 
raw water from natural water sources, as well as treated water 
to storage reservoirs or to smaller-diameter distribution 
networks connected to customers. As existing water networks 
get older, water main breaks become far more likely, resulting 
in water service interruption, large operational costs and 
considerable inconvenience to end users. It is reported that the 
infrastructure grade of the United States (U.S.) in the drinking 
water category is “D (Poor: At Risk)”, implicating that the 
infrastructure is approaching the end of its service life with a 
high risk of failure [1]. Similarly, the multi-regional WTMs 
(about 5,000 km and 50 water supply facilities) installed in the 
1960s in South Korea are experiencing increased water main 
breaks, as shown in Figure 1. If water main breaks could be 
accurately anticipated, water service outage, traffic congestion, 
operational costs and end user inconvenience could all be 
minimized. To this end, a reliable prediction model is needed 
in order to make the process of water main replacement as 
economical as possible.  

 

B. The Ideal Predictive Model for Water Main Breaks 
The ideal predictive model should address historical break 

data and other factors, both internal and external to the pipes 
themselves. Specifically, the factors affecting a service life of 
pipes can be categorized into three groups as follows:  

• Physical factors: Pipe material, thickness, age, diameter, 
length, type of joints, coating, and traffic load. 

• Environmental factors: Soil type, soil moisture, soil 
load, microbes, water quality (pH, residual chlorine, 
etc.). 

• Operational factors: Internal water pressure, flow 
velocity, and operational and maintenance practices. 

C. Shortcomings of Previous Predictive Models 

a)  Lack of Comprehensive Factor Analysis: Previous 
models have addressed physical factors such as pipe thickness 
and/or environmental factors such as soil characteristics. 
However, these studies did not address water quality factors 
leading internal corrosion as contributors to the failure of 
pipes. 

b) Limited to Small Diameter Iron and PVC Pipes: 
Furthermore, previous studies have been based on small 
diameter water distribution networks composed of iron or 
PVC pipelines. No studies have so far been conducted in 
developing a predictive model for steel WTMs. As WTMs 
transport a much larger volume of water and their failure leads 
to even greater damages than those seen in small diameter 
water main breaks, such studies are much needed. The need 

 
Figure 1.  South Korea’s multi-regional water main breaks over time (Source: 
K-water’s Operation and Management Service System) 
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for studies focused on steel water mains is further underscored 
by the fact that extrapolation of the results of previous studies 
focusing on iron pipes may not be valid. This is due to the fact 
that iron and steel pipes are different in their composition, 
properties, lining and welding systems, the chemical reactions 
associated with their corrosion, and their failure characteristics 
[2].  

D. Artificial Intelligence-Based Predictive Models 
Traditional studies have used statistical models that utilize 

historical break data to predict patterns. Shamir & Howard 
(1979) were the first to develop a regression model in which a 
pipe breakage is exponentially associated with its age. A 
comprehensive review of research conducted using the 
traditional statistical models can be found elsewhere [4].  

The complex, multifactorial nature of WTM breaks 
requires a highly-sophisticated system in order to develop a 
reliable predictive model. Artificial NNs are an attractive 
modality for this purpose due to their impressive capacity to 
solve complex, real world problems. Jafar et al. (2010) 
employed ANNs to predict the number of failures of water 
networks (composed of asbestos cement, PE and iron)  and 
others have used ANNs to predict failures of aging pipe lines 
(iron or PVC) [6][7][8].  However, studies using deep neural 
networks (DNNs) have not so far been used to predict WTM 
breaks.  

A DNN is an artificial neural network (ANN) with multiple 
hidden layers of units between the input and output layers. 
Similar to ANNs with one hidden layer (Shallow ANNs), 
DNNs can model complex non-linear relationships. Additional 
layers allow DNNs to learn high-level features in data by using 
structures composed of multiple non-linear transformations [9]. 
DNNs include multiple hidden layered NNs (MLNNs), stacked 
auto-encoders NNs (ANNs), deep belief networks (DBNs) and 
convolutional NNs (CNNs), among others. 

DNNs are thought to be an ideal modality for predicting 
large-diameter steel WTM breaks. DNNs have already been 
used successfully to solve numerous complex tasks, such as 
character recognition and stock market predictions. Their 
previous success has led to the recognition of DNNs as 
powerful tools that can be used to accurately predict outcomes 
in complex systems involving multiple parameters.     

E. Study Objective 
 In summary, the objective of the study is to develop a 
predictive model for large diameter steel WTM breaks, which 
includes both physical factors as well as water quality factors, 
with the aid of DNNs.  

II. METHODOLOGY 
Figure 2 describes the methodology of model development 
including data pretreatment, determination of major factors 
affecting breaks of WTMs, comparison of DNNs, and potential 
improvements when employing a clustering method using a 
NN. 

A. Data Collection 

Data were obtained from the database of Korea Water 
Resources Corporation (K-water), which maintains 32 drinking 
water treatment plants and supply facilities (50% of South 
Korea’s drinking water) as a government-owned public utility. 

Figure 2.  Methodology of model development 

Data consisted of 855 historical breaks of steel WTMs over 
the observation period (1969 – 2015) with a total length of 
2,783 km. The collected data include pipe diameter, thickness, 
age, coating, service type, length of segments, surface area, 
depth of cover, traffic loading, water quality (pH, alkalinity, 
dissolved oxygen, residual chorine, temperature, electoral 
conductivity) for inputs, and time to first break for target as 
shown in Table I. It is assumed that the water quality data 
measured at the monitoring stations in the DWTPs reflects the 
water quality throughout the WTMs. The break time of WTMs 
refers to the time to the first break of WTMs and start 
considering the replacement based on cost-benefit analysis 
before serious water service disruption occurs. 

TABLE I.    DESCRIPTIONS OF DATA ON WATER TRANSMISSION MAINS 

Type Factors Descriptions 

Inputs 
(15) 

Pipe diameter Internal diameter of pipes 

Pipe thickness Pipe manufacturing specifications 

Pipe age Age of laid pipe 

Pipe Coating No coating, Either internal or external 
coatings, Both coatings 

Service type Raw, Settled, Purified water 
Pipe length Length of a segment of laid pipe 

Pipe surface area Area adjacent to environment (internal 
water quality and external soil) 

Depth of cover Earth load pressure 

Traffic loading Traffic road, Non traffic road 
Six water quality 
parameters 

pH, Alkalinity, DO, Residual chlorine, 
Temperature, Conductivity  

Outputs 
(1) Time to first break Pipe failure leading to water leakage 
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B. Data Pretreatment and Statistical Analysis 
The historical break data (116 incidents) not caused by 

deterioration, such as breaks resulted from poor installation, 
faulty materials, were excluded amongst 855 break incidents.  

 
Figure 3. Data transformation for pipe length by Box-Cox Transformation   

Real data are not at normal distribution while many 
statistical analyses including NNs assume normality. However, 
Box-Cox Power transformation can improve normality [10]. 
Achim et al. (2007) applied Box-Cox Power transformation to 
improve NN model’s representation of the collected data when 
forecasting water pipe asset life [11]. Thus, Box-Cox Power 
Transformations were applied to the input factors to improve 
normality using MINITAB 2017. The sample of Box-Cox 
transformation applied to the input variable (Pipe length) is 
shown in Figure 3. And, influencing factors affecting a break 
time of steel WTMs were identified through the Pearson’s 
correlation analysis using SPSS 18 (A statistical software).  

C. Construction of DNN Models 
Two DNN methods (MLNNs and stacked ANNs) were 

used and compared with Shallow ANN to determine the 
optimal model. The NN Toolbox of MATLAB (Mathworks 
2016) was used in all programing. Input data were randomly 
divided into three data sets: training (70%), validation (15%), 
and test data set (15%) to build and test the model.   

1) Shallow ANN and MLNN 
A typical MLNN is shown in Figure 4. Mathematically, a 

MLNN with p, S1, S2, and S3 as the number of input, 1st hidden, 
2nd hidden, and output nodes, respectively, is based on the 
following equation: 

 (1) 

where  is the output values;  is the input values; , 
, and  are the weights of connections of the input 

layer and the 1st hidden layer, of the 1st hidden layer and the 2nd 
hidden layer, and of the 2nd hidden layer and output layer, 
respectively; , , and  are the biases at the 1st hidden 
layer, the 2nd hidden layer, and output layer, respectively;  is 
a sigmoid activation function; and  and  are the linear 
activation functions [5]. The used sigmoid activation function 
is as follows: 

 (2) 

The learning process of MLNN is based on a series of 
connection weight adjustments to minimize errors between the 
predicted and target values. Inputs are first propagated forward 
through each layer of the network. The process of training a 
NN involves tuning the values of the weights and biases of the 

network to minimize mean square error between the predicted 
values (ai) and the target values (ti). It is defined as follows: 

 
(3) 

 

 
Figure 4. Typical multi-hidden layered NN (SOURCE from [12]) 

A first-order iterative optimization algorithm aimed at 
finding a minimum in the error surface was used to perform 
gradient-descents in weights and biases. This process was 
iterated for each epoch until convergence within a given 
tolerance [13]. The calculation procedures of Shallow ANN are 
the same as MLNN except for the number of hidden layers.  

2) Stacked Autoencoder Neural Network (Stacked ANN) 
Stacked ANN uses an unsupervised learning method for 

pretraining to help initializing network with good parameters. 
An autoencoder is pretrained to reconstruct the input as its 
output. After the pretraining, stacked ANN can run 
backpropagation on the entire network to finetune weights for 
the supervised task [14]. Because this backpropagation starts 
with good weights, its credit assignment is better and the 
learned model is likely to be better if backpropagation is run 
initially as shown in Figure 5 [15]. The following calculation 
method and procedures after the pretraining are identical to 
MLNN.   

3) Overfitting Avoidance 
DNNs with multiple hidden layers are powerful tools to 

learn complicated relationships between inputs and outputs. 
However, overfitting can be detrimental to such networks [16]. 
Cross-validation technique, namely early stopping, known as 
empirically better approach, was used to improve 
generalization of DNNs and avoid overfitting [15]. The error 
on the validation set is monitored during the training process. 
However, when the error on the validation set begins to rise, 
indicating they are overfitting as shown in Figure 6, the 
network returns the weights and biases, resulting in the least 
validation-set error [12]. 

D. DNNs with Clustering Analysis 
A better prediction was achieved by clustering water main 

data into homogenous groups [17]. The Self-Organizing Map 
(SOM) is a clustering tool. Data can be automatically 
organized into a meaningful two-dimensional order in which 
similar models are closer to each other in the grid than the 
more dissimilar ones [18]. For clustering analysis, the Neural 
Network Toolbox of MATLAB (Mathworks 2016) was used, 
which is based on Kohonen learning algorithm [12].  
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Figure 5. Typical Stacked ANN (Source from [15])  

 
  Figure 6. Examplary application of Cross-validation technique 

 
The SOM is trained iteratively. For each input (X), the 

Euclidean distance between input and all the synaptic weights 
is calculated as follows [19]:  

 
(4) 

where X is input vectors with units(xi); wji is the synaptic 
weights between input units i and the neurons j in the output 
layer; and dj(X) is the squared Euclidean distance between X 
and wi for each neuron j. 

The neuron closest to X is declared the best matching 
neuron I(X). After I(X) is recognized, the weights of I(X) as 
well as its topological neighbors are updated so that they are 
moved closer to the input vector in the input space. The vectors 
are updated following the Kohonen learning rule as follows 
[18]: 

 (5) 

 (6) 
 

where Tj, I(X) denotes the neighborhood function that decays 
with distance Sj, I(X) between the I(X) and the neurons j in the 
output layer; t is a time (epoch); σ denotes the size of the 
topological neighborhood; α is the learning rate (0 < a < 1). 
This learning process continues until the two-dimensional 
output map stops changing. Eventually, the inputs are grouped 
into clusters [20]. 

III. RESULTS 

A. Main Factors Affecting a Service Life of Steel WTMs 
Ten factors (pipe age, length, water temperature, electoral 

conductivity, surface area, service type, residual chlorine, pH, 
coating, DO) had P-values less than 0.05. 

 

Figure 7. Correlation coef. of factors affecting a break time of steel WTMs 

TABLE II.  SCENARIOS FOR DNN MODELS 

Category Factors 

Scenario 1 
Age, Length, Temp., Conductivity, Surface area, Service 
type, Chlorine, pH, Coating, DO, Alkalinity, Burial depth, 
Diameter, Thickness, Traffic load 

Scenario 2 Age, Length, Temp., Conductivity, Surface area, Service 
type, Residual chlorine, pH, Coating, DO 

Scenario 3 Age, Length, Temp., Conductivity, Surface area, Service 
type, Residual chlorine, pH, Coating 

Scenario 4 Age, Length, Temp., Conductivity, Surface area, Service 
type, Residual  chlorine, pH 

Scenario 5 Age, Length, Temp., Conductivity, Surface area, Service 
type, Residual  chlorine 

Scenario 6 Age, Length, Temp., Conductivity, Surface area, Service 
type 

Scenario 7 Age, Length, Temp., Conductivity, Surface area 

 

Their correlations with a break time of steel WTMs were 
significant at the 0.05 level, while other factors (burial depth, 
diameter, thickness, traffic load) appeared to contribute 
relatively little to steel WTM deterioration, unlikely considered 
important for predicting break of iron or plastic pipe in water 
distribution networks in existing researches.  

Figure 7 shows that pipe age has the highest correlation 
with WTMs deterioration and water quality parameters such as 
temperature, residual chlorine, conductivity significantly affect 
WTP failure. Iron corrosion is controlled by water quality 
factors that may exert their influence during the time when the 
metal corrodes [21]. This indicates that water quality factors 
can be a good indicator for the prediction of steel WTMs 
break. 

B. Application of DNNs 

a) Setting-up Seven Scenarios for Models: The scenarios 
established by the factors obtained through the correlation 
analysis are presented in Table II. It consists of seven 
scenarios. Scenario 1 includes all 15 factors. Scenario 2 
includes pipe age, length, water temperature, electoral 
conductivity, surface area, service type, residual chlorine, pH, 
coating. The input data was sequentially excluded one by one 
in descending order of its relativity for determining the input 
data for other following five scenarios.  

b) Performance Comparison of Models by Scenarios: 
Shallow ANN, MLNN, and Stacked Autoencoder NN were 
performed for each scenario. Table III shows the 
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performances of the models by scenarios including 
correlations (R) and rooted mean squared errors (RMSE). 

 
Figure 8. Performance comparison of models by scenarios 

TABLE III.  PERFORMANCES OF MODELS BY SCENARIOS 

Table Head Shallow 
ANN 

Deep NN 

MLNN Stacked 
Autoencoder NN 

Scenario 1 
R value 0.74 0.83 0.85 
RMSE 5.24 3.80 3.77 

Scenario 2 
R value 0.78 0.86 0.82 
RMSE 4.49 3.42 4.33 

Scenario 3 
R value 0.79 0.84 0.82 
RMSE 4.70 3.62 4.65 

Scenario 4 
R value 0.80 0.83 0.79 
RMSE 4.89 3.8 5.03 

Scenario 5 
R value 0.82 0.84 0.81 
RMSE 4.74 3.69 4.84 

Scenario 6 
R value 0.79 0.84 0.80 
RMSE 5.19 3.82 5.06 

Scenario 7 
R value 0.76 0.78 0.76 
RMSE 5.41 4.21 5.40 

Overall 
R value 0.78 0.83 0.81 
RMSE 4.95 3.76 4.73 

  
Figure 8 shows that MLNN has better accuracy than any 

other two algorithms (Shallow ANN and Stacked Autoencoder 
NN) across the scenarios.  MLNN in Scenario 2 showed the 
highest forecasting performance in a break time of steel WTMs 
with the values of R and RMSE as 0.86 and 3.42 years, 
respectively, amongst the seven scenarios. The Stacked 
Autoencoder NN has the best performance in Scenario 1 and 
appears to be the better predictive model with many input 
variables. In contrast, for other scenarios (2 – 7), the Stacked 
Autoencoder NN appears to have similar performances to the 
shallow NN, unlikely that DNNs are better performances than 
shallow NNs, as well as implicating that it is very important to 
determine an optimal condition for each DNN because 
prediction performances of DNNs may vary based upon both 
modeling conditions such as number of input variables and 
applicable fields such as regression or  image recognition. 
DNNs such as Stacked Autoencoder NN appear to have a 
better performance in many input factors than Shallow ANNs, 
whereas Stacked Autoencoder NN and shallow ANN have 
similar performances as input variables decrease.    

C. Clustering WTM data by ANN 
Dataset was partitioned by similarity using the SOM 

algorithm. 

 
Figure 9. Clustering data into similar groups by ANN  

 
Figure 10.  Representative scatter plots and R values of the predicted and 
the observed values for Shallow ANN, Stacked Autoencoder NN, MLNN 
before clustering, and MLNN after clustering in Scenario 2 in forecasting a 
replacement timing for multi-regional steel WTMs 

Figure 9 shows that dataset was classified with 2D 
topology with 81 neurons, the red lines indicate the distances 
between neurons, and the darker colors represent larger 
distances on the SOM Neighbor Weight Distance map. The 
figures in the hexagonal neuron represents the number of 
homogeneous data on the Hits map of Figure 9. The SOM map 
shows data are clustered into three homogeneous groups.  

D. Performance comparison before and after clustering 
 The MLNN in Scenario 2 was performed for each of two 

groups because the third group should be discarded due to its 
small number of data. Table IV shows the performance 
improvements before and after clustering by ANNs. The 
performance for each group after partitioning into 
homogeneous group was improved by 4.4% and 4.9% in R 
values and by 42.4% and 58.8% in RMSE, respectively. Figure 
10 illustrates the representative scatter plots and R values of the 
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predicted and the observed values for shallow ANN, Stacked 
Autoencoder NN, MLNN before clustering, and MLNN after 
clustering in Scenario 2 in forecasting a replacement timing for 
multi-regional steel WTMs in South Korea. When all data 
points in a scatter plot lie exactly along a straight dotted line, 
the R value becomes 1. In the figure, the data lie more closely 
to the straight dotted line with higher R values from shallow 
ANN, to Stacked Autoencoder NN, to MLNN before 
clustering, and to MLNN after clustering.  

E. Usefulness of the Developed MLNN Model 
From the results in Table III, Table IV and Figure 10, it can 

be concluded that the developed model was both reliable and 
robust in predicting the first break time for aging large-
diameter steel WTMs. It is thought that this model can be 
supplemented to the "Man Entry and Visual Inspection" 
methodology currently in use.  Specifically, if water supply 
engineers enter data (age, length, temp., conductivity, surface 
area, service type, residual chlorine, pH, coating, DO) for each 
segment of the operating WTMs, they can estimate when each 
of WTMs would experience their first break. Additionally, the 
predictive model may be used to create better operating 
conditions to extend the break time of WTMs by adjusting 
factors (e.g., residual chlorine) that affect WTMs deterioration.   

IV. CONCLUSIONS AND RECOMMENDATIONS 
The Shallow ANN and DNNs (MLNN and Stacked 

Autoencoder NN) were performed with the various physical 
and water quality data collected during 1969–2015 and used to 
forecast a replacement timing of large-diameter steel WTMs 
using statistical methods and clustering technique, as compared 
with each NNs. The following conclusions can be drawn: 

• Significant factors affecting steel WTM deterioration in 
the study area were determined by a statistical method: 
pipe age, length, water temp., conductivity, surface area, 
service type, residual chlorine, pH, coating, and DO. 
Thus, it is suggested that these data be monitored and 
collected to improve the accuracy of forecasting 
replacement timing of WTMs.  

• It is elicited that MLNN is the best Deep Neural NN for 
large diameter steel WTMs, while the Stacked 
Autoencoder NN fitted predictive models with many 
input variables. MLNN had the better accuracy than the 
Stacked Autoencoder NN in a regression field like 
forecasting a first break time of aging WTMs, although 
the Stacked autoencoder NN has been known as one of 
the efficient Deep Learning algorithms in the areas of 
mainly classification and image processing.  

• The optimal prediction model was established to 
estimate a replacement timing for large-diameter steel 
WTMs on the basis of historical water main break 
records and available physical and environmental data, 
using DNNs. The model was developed in four steps: 
(1) determine major factors and set up scenarios for 
models, (2) determine the best scenario and DNN by 
comparing performances, (3) classify data into similar 

groups by ANN-based clustering technique, and (4) 
perform the developed model for each group.  

• The SOM clustering method using ANN was first 
applied to WTM management area. The method 
improved prediction accuracy significantly. It is thought 
to be a good tool for clustering data. Also, such ANN-
based clustering method is recommended to be used in 
predicting a replacement timing of water networks.  

TABLE IV. PERFORMANCE COMPARISON BEFORE AND AFTER CLUSTERING 

Groups 
MLNN for Scenario 2 

Improvements 
Before clustering After Clustering 

Group 1 

R value: 0.861 
RMSE: 3.421 

R value: 0.899 
RMSE: 1.97 

4.4%  
42.4%  

Group 2 R value: 0.903 
RMSE: 1.41 

4.9%  
58.8%  

The DNN-based predictive model proposed in this study is 
robust and can be used to reliably predict the first break time 
for aging large-diameter steel WTMs, reducing the amount of 
time and money spent on the direct inspection of existing 
WTMs and preventing unwanted water service interruption, 
operational costs and end user inconvenience resulting from 
WTM breaks. This model is expected to benefit both drinking 
water consumers and water supply engineers and consultants.     
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