
1

Automatic point-of-interest image cropping via
ensembled convolutionalization

Andrea Asperti and Pietro Battilana
University of Bologna

Department of informatics: Science and Engineering (DISI)

Abstract—Convolutionalization of discriminative neural networks,
introduced also for segmentation purposes, is a simple technique
allowing to generate heat-maps relative to the location of a given
object in a larger image. In this article, we apply this technique
to automatically crop images at their actual point of interest, fine
tuning them with the final aim to improve the quality of a dataset.
The use of an ensemble of fully convolutional nets sensibly reduce
the risk of overfitting, resulting in reasonably accurate croppings.
The methodology has been tested on a well known dataset, particu-
larly renowned for containing badly centered and noisy images: the
Food-101 dataset, composed of 101K images spread over 101 food
categories. The quality of croppings can be testified by a sensible
and uniform improvement (3− 5%) in the classification accuracy of
classifiers, even external to the ensemble.

Keywords—Convolutionalization, crop, ensemble, food, Food-101,
fully convolutional, heatmap, point-of-interest.

I. INTRODUCTION

As is it well known, there are two basic kinds of layers in
a feed-forward neural network: dense, fully connected (FC)
layers, following the structure of a traditional perceptron, and
convolutional (CONV) layers [3], [8].

The only difference between the two kind of layers regards
the connectivity of neurons, that in the case of convolutional
layers is restricted to a local region of the input, and spatially
replicated; the kernel of shared weights can then be regarded as
a filter in the signal processing sense, that is convolved over
the input. Apart from this distinction, the neurons in dense
or convolutional layers share the same functionalities: they
simply compute weighted sums of their inputs (dot products),
allowing a simple conversion between FC and CONV layers.
In particular, a FC layer with a two dimensional input of size
W × H (typically flattened) can be simply understood as a
convolutional layer with a large kernel of size W × H . If
the actual dimension of the input to this layer is W × H ,
the kernel will be applied a single time (in “valid” mode),
producing the same result as the original FC layer; however,
if the input dimension is larger, the kernel will be convolved
several times producing in output a heatmap of activations at
different locations (see Fig.1).

The technique of transforming discriminative nets into fully
convolutional ones (convolutionalization), was introduced for
the first time in [12], with application to image segmentation.
In this article, we explore instead its use for automatic crop-
ping of the image to the expected area of the interest (see
Figure 2).

The final aim is the improvement of image datasets with a
more accurate location of the object category. This operation is

Fig. 1. Picture borrowed from [12]: transforming fully connected layers into
convolution layers enables a classification net to output a heatmap

Fig. 2. Automatically computed crops relative to a given object category

usually expensive since it either requires human supervision, or
highly specialized software: hence, having a general purpose
and automatic technique is an important goal.

Let we also observe that we are not forgetting or negating
the relevance of noise for enhancing the robustness of neural
networks, but while it is extremely easy to augment data
with noise, the opposite operation, as any operation reducing
entropy, is difficult and expensive. For instance, as a related
example, we may recall the several works which have been
devoted to the correct alignment of faces for the LFW dataset
[7], based on funneling [5], deep funneling [6] or other
commercial software.

We tested our cropping methodology on the Food-101
dataset, a challenging data set of 101 food categories, with
101.000 images. This dataset was introduced in [1] where the
authors used Random Forests to mine Discriminant Compo-
nents (RFDC) of the food images. The images of Food-101
are taken in the wild because they were collected from the

INTERNATIONAL JOURNAL OF NEURAL NETWORKS and ADVANCED APPLICATIONS Volume 5, 2018 

ISSN: 2313-0563 17



social food guide foodspotting. To date, Food-101 remains the
largest food dataset available. The dataset is also well known
for containing noise (intense colors and some wrong labels)
and badly centered images (see Fig. 2 and 3). Due to this

Fig. 3. More examples of images not centered on the given food category:
in green the automatic crop

reasons, the Food-101 dataset is a challenging dataset for our
goal.

According to our experiments, relying on a single fully
convolutive net (FCN) for cropping is easily prone to over-
fitting, and does not usually result in sensible improvements
in the classification accuracy of other networks. On the other
side, working with an ensemble of FCNs gives much more
reliable results, resulting in an accuracy improvement of
several percentage points even for classifiers not comprised
in the ensemble (see Section IV).

The neural networks we considered are VGG16, VGG19
[13], InceptionV3 [15], InceptionResNet [14], and Xception
[2], trained by transfer learning. We used VGG19 for testing,
and the others for the ensembled convolutionalization.

The code is available on github1. Information about crop-
pings and the weights of the trained networks can be retrieved
from the project homepage2.

The structure of the article is the following. In Section II
we describe the networks we used and the way they have been
trained; we also compare their classification accuracy with
different works in the literature, testifying that we reached
state-of-the-art results on the Food-101 dataset. Section III
is devoted to the transformation of the networks in fully
convolutional ones (FCNs): in particular we focus on the
relation between the dimension of the input image and the
dimension of the resulting heatmap, due to the need to com-
pare heatmaps generated from different nets. More information
on this argument is given in Appendix A. In Section IV, we

1https://github.com/pietrocarbo/ensembled convolutionalization
2http://www.cs.unibo.it/∼asperti/food101

present our methodology and discuss the results that have been
achieved. Conclusions are given in Section V.

II. NEURAL NETWORK AND THE FOOD-101 DATASET

We selected for our approach various deep CNN architec-
tures famous for their performances at the ILSVRC competi-
tion. The weights were initialized using the ImageNet weights
(transfer learning) and then every net was individually fine-
tuned on the Food-101 dataset.

A. VGG

This is the oldest architecture used, but it’s also the most
straight-forward to optimize. The final 1000-neurons fully
connected layer used to output the softmax classification for
the 1000 category of ImageNet was replaced with a 101-
neuron dense layer for the category of Food-101. Both the
variants VGG16 (16 layers net) and VGG19 (19-layer net)
were fine-tuned with a two-pass policy, that consists in just
training, at first, the new final dense layer for various epochs,
and then train all the layers of the net together.

B. Inception

It is a family of very deep and modular CNN that take the
name from the Inception block (see Fig 4). This block apply
several different-sized convolutional kernels and concatenate
the resulting feature maps. To reduce the overfitting risk of the
InceptionV3 model we replaced the final dense classification
layer with three dense layer of 1024, 512, 101 neurons inter-
leaved by dropout layers and batch-normalization layers. We
also used the InceptionResNetV2 model variant that required
a shorter training time thanks to the stability given by residual
connections.

Given the depth of these architecture, the fine-tuning was
carried out in steps. In order to clarify this process, let L be
the set of layers allowed to be trained at training step s. The
training step is declared over when the validation accuracy
shows no improvement after different epochs. L is initialized
at step s = 0 to include only the bottom dense layers; then,
at each successive step, it is extended of a number of layers
corresponding to the boundaries of the next Inception block
not already included in L.

C. Xception

This model shares the same overall architecture of Incep-
tionV3, improving on it. It takes advantage of new components
as residual connections, and makes an extensive use of depth
separable convolutions. In our experience, Xception seems to
have a more stable training process and to be less prone to get
stuck in local minima. Fine-tuning was carried out in steps as
explained for the Inception nets.

D. Classification results

For evaluating performances of the networks we used the
standard test set provided by the dataset Food-101, distinct
from the train set used for training. In Table I, we compare the

INTERNATIONAL JOURNAL OF NEURAL NETWORKS and ADVANCED APPLICATIONS Volume 5, 2018 

ISSN: 2313-0563 18

http://www.foodspotting.com
https://github.com/pietrocarbo/ensembled_convolutionalization
http://www.cs.unibo.it/~asperti/food101


GlobaPool
 (8x8)

Denseinception modulesconvolutions

Fig. 4. The architecture of InceptionV3

TABLE I
ACCURACY COMPARISON ON FOOD-101 DATASET.

Model Top-1 Accuracy Top-5 Accuracy
RFDC [1] 50.76% NA
AlexNet [1] 56.40% NA
DCNN [16] 68.44% NA%
FOOD-DCNN [16] 70.41% NA%
FRSDA [9] 77.00% 94.00%
DeepFood [10] 77.40% 93.70%
VGG16 [our] 77.8% 94,0%
VGG19 [our] 78.3% 94.%
InceptionResNetV2 [our] 78.8% 94.3%
InceptionV3 [our] 79.1% 93.6%
Xception [our] 80.7% 95.3%
WISeR [11] 90.27% 98.71%

classification accuracy of the networks of Section II (suitably
trained) with related works in the literature.

DCNN [16] stands for Deep Convolutional Neural Network:
it is a modification of the AlexNet were the features extracted
at the seventh convolutional layer were flattened into a one-
dimensional array and then L2 normalized. The variant FOOD-
DCNN was pretrained on a total of 2000 image categories,
adding to the 1000 ILSVRC categories the most common 1000
food categories taken from the ImageNet database.

DeepFood [10] uses GoogLeNet as a starting point and
slightly modifies the architecture of the Inception module. The
adjustments consist in the additions of 1 × 1 convolutional
layers that reduce the dimensionality of the input allowing to
exploit deeper networks.

The model called “FRSDA” [9], which stands for “‘Food
Recognition System for Dietary Assessment”, also uses an im-
plementation of the GoogLeNet CNN with 22 layers modified
using different kernel sizes and stride dimension.

The model presented by Martinel et al. [11] currently
represents the state-of-the-art for the classification task on
Food-101. The architecture is composed of two branches: the
wide residual branch [17] encodes generic visual features
of the food images while the slice branch, implemented by
image-wide convolutional kernels, learn the vertical traits of
particular food dishes. The output of the two branches gets
fused via concatenation and then fed into two dense layers
that emit the food classification.

The results in Table I prove that, apart for the highly
specialized architecture of WISEeR, training was successful,

allowing to attain state-of-the-art classification accuracies.

III. FULLY CONVOLUTIVE NETWORKS

We shall explain the transformation of a discriminative
network into a fully convolutive one discussing the case of
InceptionV3 [15], one the neural networks we used for our
experiments.

The structure of the net is described in Fig. 4. Similarly
to most networks conceived for image recognition, the net-
work is composed by a first convolutional part, aimed to
extract significant deep features from the image, followed
by a sequence of dense layers, exploiting the features to
synthesize the result (e.g an object category). In the case of
InceptionV3, the convolutional part is composed by a few
initial traditional convolutions followed by a long sequence
of inception modules. Between the convolutional and the fully
connected part, it has become traditional to insert an average
global pooling layer. The advantage of having a global layer,
is that the dimension of the output (that must have a fixed
dimension, being fed as input to dense layers) only depends
on the depth of channels, and is thus independent from the
size of the input. In other words, you may pass as input
to InceptionV3 (similarly to all networks of Section II) an
arbitrarily large image: the global average layer will average
each feature on a suitably sized area, spanning the whole input.

The ratio between the input dimension W and the dimension
D of the average pooling essentially depends on the number of
convolutions with non-unitarian strides between them. For all
the networks in Section II we have 5 convolutions with stride
2, responsible for a total spatial reduction by a factor 25 = 32.
However, the precise relation is a bit more complex, due to the
possible presence or absence of padding (see Appendix V). In
particular, for each D there is an interval [W,W+31] of input
dimensions compatible with it (see Table II).

TABLE II
INPUT DIMENSION W W.R.T THE DIMENSION D OF THE GLOBAL AVERAGE

LAYER; ALL DIMENSIONS IN THE INTERVAL [W,W + 31] ARE
COMPATIBLE WITH D.

class. VGG16 VGG19 InceptionV3 ResNet Xception
W/D 32D 32D 32D+43 32D+43 32D - 25

When we convolutionalize the network, we must fix the
dimension D of the averaging area a priori: in a sense, that

INTERNATIONAL JOURNAL OF NEURAL NETWORKS and ADVANCED APPLICATIONS Volume 5, 2018 

ISSN: 2313-0563 19



will be the scale at which we are are looking for our object.
The dimension could be arbitrary (even a single point), but if
we trained the networks to recognize an object by averaging
features on a given area, it looks natural to use the same area
in the fully convolutional network (things would be different
for segmentation purposes).

For instance, in the case of InceptionV3, an input of
dimension W = 299 corresponds to an averaging area of
dimension D = 8 (299 = 32 ∗ 8 + 43). This means that
the resulting FCN will behave as a convolution with kernel
dimension 299 and stride 32.

In order to transform the net into a fully convolutional
one, it is enough to transform the average max pooling into
a usual, convolutive average pooling with kernel 8 × 8 (and
stride 1), and similarly change all successive dense layers to
convolutions with a kernel of dimension equal to their inputs
(now appearing in channel position, so if channels are in third
position, the kernels will typically have dimensions 1x1xd for
a suitable d).

It is important to observe that the resulting net has exactly
the same parameters of the original one. So, we may import the
weights of the original discriminative net (suitably reshaped);
moreover, if we apply the fully convolutional network (FCN)
to an input of the same size expected from the original net
we shall get exactly the same output (with two additional
dimensions, since it is now an element of a 3-dimensional
array). The nice property, however, is that we can now apply
the FCN to an arbitrarily larger image, obtaining in output
a heatmap for each category, warmer at the locations where
matching is higher.

A. Overlapping heatmaps

In order to work with an ensemble of FCNs, we need to
compare their generated heatmaps, that should hence have the
same dimension, and correspond to a same sampling of the
input space. The simplest solution is to work with FCNs with
a same “kernel” dimension, say 299. Working with kernels
with different dimensions would not only require resizing the
image to the expected size for each different FCN, but (since
the stride is the same) would also result in convolving the
kernel at slightly different locations on the input image, as
described in Figure 5.

According to the formula in Table II, we obtain the area
dimensions summarized in Table III.

TABLE III
DIMENSION D OF THE AVERAGE FILTER COMPATIBLE WITH A FIXED

KERNEL DIMENSION OF W = 299

classifier VGG16 VGG19 IncetpionV3 ResNet Xception
D 9 9 8 8 10

A marginal problem of this approach is that the VGG16 and
VGG19 classifiers, that had been trained on their traditional
dimension of 224, should be retrained on input images of
dimension 299. The original weights still makes sense (the
only difference is a slightly larger averaging area), so we

Stride Kernel

Image

Image

Stride Kernel

Heatmap output

Fig. 5. The crops overlapping problem

obtain very good accuracy results in a few epochs of fine
tuning.

IV. METHODOLOGY AND RESULTS

Our goal is to detect where the point-of-interest of the
image, in our case the food object, is located. The way to
do this is by sliding the convolutional filter, represented by
the whole trained CNN, across different areas of the image.
Moreover, since we are interested to find objects at different
dimensions, we rescale the input image by a fixed upsampling
factor (we choosed 1.2, that is a traditional scale factor for
object detection) up to a given maximum scale (3 : 1 in our
implementation).

A. Crop selection

At each scale s, each FCN c generates a heatmap Hs
c where

each cell is the output of the convolution on a given region
of the input image, corresponding to the probabilities that the
region contains the different object categories.

Since the heatmaps for the different FCNs have the same
dimension (at a given scale s), we can just project on the
inteded category `, sum them together and take the cell with
the highest value. The best crop 〈x, y〉s at scale s for the
category ` is thus

〈x, y〉s = argmax
i,j

∑
c∈FCNs

Hs
c [i, j, `] (1)

In this way we obtain a single “best” crop at each scale s;
next, we need to compare crops at different scales to select
one among them. We do this according to two citeria:

1) we start comparing the number of classifiers for which
Hs

c [i, j, `] is maximum among all categories (that is, the
number of classifier that would correctly recognize the
category ` if fed with the corresponding crop);

2) as secondary criterium, we use the sum of the confidence
of each FCNs, that is

∑
c∈FCNs H

s
c [x, y, `]

INTERNATIONAL JOURNAL OF NEURAL NETWORKS and ADVANCED APPLICATIONS Volume 5, 2018 

ISSN: 2313-0563 20



B. Coordinate translation

Once selected the most promising heatmap element, we
need to map its coordinates back into the input image space.
Referring to 5 we are casting the heatmap output into the
original image by following the blue dashed lines.

As already explained, we know that the heatmap elements
correspond to squared surfaces in the input image. Given the
most promising heatmap element we derive its squared surface
in the input image by calculating the position of a vertex and
the edge length.

This mapping depends on the scale factor by which the
input image was rescaled before it was fed to the FCN. In
particular, the edge length is calculated as:

train size

scale factor
(2)

where train size is the dimension of the images used to train
the net. The position of the vertex also depends on the stride
of the net (32 for all our nets) and it is calculated as:

32× hcoord

scale factor
(3)

where hcoord it is heatmap cell index. This formula is ap-
plied for both the heatmap cell indexes to obtain the (x, y)
coordinates in the input image.

C. Results

Some examples of the resulting croppings are given in
Fig. 6; more examples are reported in Appendix B.

Fig. 6. Examples of automatic crops

Assessing the quality of croppings is not obvious, since we
do not have at our disposal a ground truth locating the object in
the image. To validate our approach in a quantitative way we
used the trained CNNs as standalone classifiers on the original
test set and on the cropped version.

TABLE IV
TOP-1 ACCURACY COMPARISON ON THE ORIGINAL AND ON THE cropped

TEST SET.

Model Original Cropped
VGG16 77.8% 83.13%
VGG19 78.3% 81.20%
InceptionResNetV2 78.8% 85.23%
InceptionV3 79.1% 84.91%
Xception 80.7% 86.59%

The automatic cropping yields a remarkable accuracy boosts
on all the models: this means that the ensemble is effectively
removing noise from the images. The accuracy improvement
is particularly significant in the case of VGG19, since this
classifier was not comprised in the ensemble used to compute
crops.

D. Identification of poor or missclassified samples

It is also possible to use our technique to find missclassified
samples in the dataset. If, after convolving at several different
scales, no classifier was able to find the food it is extremely
likely that the sample had a wrong label. Some example are
given in Figure 7. We identified several dozens of samples

Fig. 7. Examples of missclassifications

with clearly wrong labels (relative to food we have confidence
with), but many more looks questionable. We are preparing a
black list that we shall publish on the web.

INTERNATIONAL JOURNAL OF NEURAL NETWORKS and ADVANCED APPLICATIONS Volume 5, 2018 

ISSN: 2313-0563 21



E. Problems

Although the crop computed by the application is almost
always semantically meaningful, in the sense that correctly
focus on a portion of the image pertaining to the given food,
it does not always correspond to a neat or precise identification
of the object’s contours. The main problem is that, instead of
focusing on the food as a whole, the crop may easily refer
to some detail of the object (a color, a texture, a shape), of
particular interest for its discrimination with respect to other
categories, as exemplified in Figure 8. This is particularly

Fig. 8. Focusing on details

evident when the “dish” is composed by a collection of
different foods, like a cheese plate, or when it may be covered
with very different kind of toppings, like a yogurt, a cake, or
a quesadilla (see Figure 9). The problem is due to the fact

Fig. 9. Problems with composite food and toppings

that, as it is well know, CNNs “recognize” an object as a sum
of small details, but have problems to understand their global,
holistic structure (see e.g. [4]).

V. CONCLUSIONS

In this article we showed how an ensemble of fully con-
volutional networks can be profitably used to crop an image
to a given area of interest. The relevance of the technique
is that it is fully automated and quite general: starting from
a multi-category classification task, it can be applied to fo-
cus on a specific object-category in a large image. As for
image cropping, it has many different applications, from the
improvement of the underlying dataset, to an intelligent form
of data-augmentation for training purposes.

According to our experiments, the parallel use of many
FCNs is crucial to avoid overfitting the dataset on a given
classifier; this is especially important for the Food-101 dataset,
due to the moderate accuracy of the convolutional networks.

As explained in Section IV-E, many problems still remain to
be solved, starting from an exceeding focus on object details,
finding way to boost a more holistic view of the given object.

We also plan to integrate WISEeR [11] in our ensemble
(provided we get hold of the networks weights), or to ex-
periment with a similar architecture, in order to improve its
classification accuracy.

APPENDIX A: KERNELS AND STRIDES

In this appendix, we investigate the relation between the
input dimension of a typical CNN and the output of convolu-
tions, up to the traditional average-pooling layer (excluded).
As explained in Section III, this is essential to understand the
kernel dimension and the stride of the resulting FCN.

We shall do the computation in the case of InceptionV3, but
the reasoning is similar for other nets. We recall the structure
of the net in Fig. 10.

The starting point of our analysis is the formula relating
input size W , kernel size K, padding P , stride S and output
dimension D for a given convolution:

W −K + P

S
+ 1 = D (4)

We shall apply it backward, reconstructing W from D, that
gives us:

W = (D − 1) ∗ S − P +K (5)

In the case of InceptionV3, P is always zero (convolutions
work with mode=valid), so we may forget it.

For instance, suppose to start with the avg-pooling layer
with dimension D = 8 (we consider only one of the two
dimensions). Going backward into the net, we discover that
the first layer changing the size is a maxpooling layer with
kernel K = 3 and stride S = 2, so the input dimension is
W = (8− 1) ∗ 2 + 3 = 17 (that is consistent with Fig. 4).

Most Inception modules do not change the size, up to
another maxpooling layer with kernel K = 3 and stride S = 2,
giving us the new input dimension W = (17−1)∗2+3 = 35.

The initial convolutions are as follows (Keras code):

x = conv2d_bn(img_input, 32, 3, 3,
strides=(2,2), padding=’valid’)

x = conv2d_bn(x, 32, 3, 3, padding=’valid’)
x = conv2d_bn(x, 64, 3, 3)
x = MaxPooling2D((3, 3), strides=(2, 2))(x)

x = conv2d_bn(x, 80, 1, 1, padding=’valid’)
x = conv2d_bn(x, 192, 3, 3, padding=’valid’)
x = MaxPooling2D((3, 3), strides=(2, 2))(x)

Using our usual formula, we then obtain the following se-
quence of dimensions (still going backwards):

(35− 1) ∗ 2 + 3 = 71
(71− 1) ∗ 1 + 3 = 73
(73− 1) ∗ 2 + 3 = 147
(147− 1) ∗ 1 + 3 = 149
(149− 1) ∗ 2 + 3 = 299

(6)

Correctly, 299 is the expected input dimension for Incep-
tionV3. Summing up, the formula relating the input dimension
W to the output dimension D of the convolutive part is, for
InceptionV3,

W = ((((D−1)∗2+2)∗2+2)∗2+4)∗2+4)∗2+3 = 32D+43
(7)

INTERNATIONAL JOURNAL OF NEURAL NETWORKS and ADVANCED APPLICATIONS Volume 5, 2018 

ISSN: 2313-0563 22

https://github.com/keras-team/keras/blob/master/keras/applications/inception_v3.py


GlobaPool
 (8x8)

Denseinception modulesconvolutions

Fig. 10. The architecture of InceptionV3

299 is just the “optimal” dimension, in the sense that it is the
input dimension that would require minimal padding; however
any dimension between 299 and 299+31 = 330 would produce
an output compatible with a final pooling layer of dimension
8x8.

Repeating the same computation for the other architectures,
we easily obtain the results in Table II, namely

class. VGG16 VGG19 InceptionV3 ResNet Xception
W/D 32D 32D 32D+43 32D+43 32D - 25

For each D, all input sizes in the interval [W,W + 31]
are compatible with it. Most of the networks work with
convolutions with no padding (the so called valid mode), hence
the “intended” input size (the one neglecting no part of the
image) is the minimal one in the previous interval. Xception
is a relevant exception, since its convolutions work in “same”
modality. Hence, the best input size for a given D should
be the maximal one, namely 32D + 6 (the one requiring no
padding). This seems to suggest that Xception should better
work with input images of size 32 ∗ 10 + 6 = 326 (or 294, if
you want to work with smaller images) instead of 299, as it is
usually done. Questioned about this point, F.Choillet told us
that the size of 299 was mainly choosed in view of constraints
about the GPU’s memory of the machines used to train the net.

APPENDIX B: MORE EXAMPLES OF CROPPINGS

Many more examples available at http://www.cs.unibo.it/
∼asperti/food101

REFERENCES

[1] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 –
mining discriminative components with random forests. In European
Conference on Computer Vision, 2014.

[2] François Chollet. Xception: Deep learning with depthwise separable
convolutions. CoRR, abs/1610.02357, 2016.

[3] Kunihiko Fukushima. Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in
position. Biological Cybernetics, 36(4):193–202, Apr 1980.

INTERNATIONAL JOURNAL OF NEURAL NETWORKS and ADVANCED APPLICATIONS Volume 5, 2018 

ISSN: 2313-0563 23

http://www.cs.unibo.it/~asperti/food101
http://www.cs.unibo.it/~asperti/food101


[4] I. Goodfellow. Generative adversarial networks (gans). In Thirtieth
Annual Conference on Neural Information Processing Systems (NIPS
2016), Barcelona, Spain, December 5-10 2016. Tutorial, 2016.

[5] Gary B. Huang, Vidit Jain, and Erik Learned-Miller. Unsupervised joint
alignment of complex images. In ICCV, 2007.

[6] Gary B. Huang, Marwan Mattar, Honglak Lee, and Erik Learned-Miller.
Learning to align from scratch. In NIPS, 2012.

[7] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller.
Labeled faces in the wild: A database for studying face recognition
in unconstrained environments. Technical Report 07-49, University of
Massachusetts, Amherst, October 2007.

[8] Yann Lecun and Yoshua Bengio. Convolutional networks for images,
speech, and time-series. MIT Press, 1995.

[9] C. Liu, Y. Cao, Y. Luo, G. Chen, V. Vokkarane, Y. Ma, S. Chen,
and P. Hou. A new deep learning-based food recognition system for
dietary assessment on an edge computing service infrastructure. IEEE
Transactions on Services Computing, PP(99):1–1, To appear 2017.

[10] Chang Liu, Yu Cao, Yan Luo, Guanling Chen, Vinod Vokkarane, and
Yunsheng Ma. Deepfood: Deep learning-based food image recognition
for computer-aided dietary assessment. In Inclusive Smart Cities and
Digital Health - 14th International Conference on Smart Homes and
Health Telematics, ICOST 2016, Wuhan, China, May 25-27, 2016.
Proceedings, volume 9677 of Lecture Notes in Computer Science, pages
37–48. Springer, 2016.

[11] Niki Martinel, Gian Luca Foresti, and Christian Micheloni. Wide-slice
residual networks for food recognition. CoRR, abs/1612.06543, 2016.

[12] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach.
Intell., 39(4):640–651, 2017.

[13] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.

[14] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-
v4, inception-resnet and the impact of residual connections on learning.
CoRR, abs/1602.07261, 2016.

[15] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,
and Zbigniew Wojna. Rethinking the inception architecture for computer
vision. CoRR, abs/1512.00567, 2015.

[16] Keiji Yanai and Yoshiyuki Kawano. Food image recognition using deep
convolutional network with pre-training and fine-tuning. In 2015 IEEE
International Conference on Multimedia & Expo Workshops, ICME
Workshops 2015, Turin, Italy, June 29 - July 3, 2015, pages 1–6. IEEE
Computer Society, 2015.

[17] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks.
CoRR, abs/1605.07146, 2016.

INTERNATIONAL JOURNAL OF NEURAL NETWORKS and ADVANCED APPLICATIONS Volume 5, 2018 

ISSN: 2313-0563 24


	Introduction
	Neural Network and the Food-101 dataset
	VGG
	Inception
	Xception
	Classification results

	Fully Convolutive Networks
	Overlapping heatmaps

	Methodology and results
	Crop selection
	Coordinate translation
	Results
	Identification of poor or missclassified samples
	Problems

	CONCLUSIONS
	References



