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Abstract – Here we study the properties of robustness of two-layer 
feedforward network that stores association between two sequences 
in the two layers. Our work shows that robustness comes from the 
overlapping feedforward projections from the first to the second 
layer in the network. Recurrent connections in the second layer 
further improve robustness, while noise is decreasing it. 
Incorporating biological aspects of neural network in more detail in 
network dynamic may improve neural networks in engineering 
applications. 
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I. INTRODUCTION 

Sequence association is of crucial importance for 
information processing and memory, if information is 
encoded in sequences. Many, if not most, cognitive processes, 
such as consolidation, for instance, required processing in 
multiple layers. Therefore, sequences have to propagate from 
one region to another. Since the brain is exposed to internal 
and surrounding noise, strong resistance to sequence 
distortions are required, as the information encoded in the 
sequences not to be lost in transmission. Our results show that 
robustness of sequence association is possible and therefore 
memory processing in multi-layer networks is possible in 
principle, which is required by any theory that represents 
episodic memories by sequences of neural activity rather than 
near instantaneous activity patterns. 

As mechanism for the consolidation of episodic memories 
in hippocampus, replay of sequential activity patterns was 
proposed [1]. It is thought that replay sequences originate in 
one area and trigger neuronal sequences downstream, e.g., in 
other area, like  neocortex [2]. The precise sequential ordering 
of neuronal sequences might be corrupted under physiological 
conditions as internal noise or external interference . It 
remains an open question how robustly the activation of a 
corrupted sequence in one brain area can induce the associated 
sequence in the second area. Here we study this question in a 
two-layer feedforward network that stores the association 
between two sequences in the two layers. First one sequence 
is stored in the input layer, afterwards the second sequence 
and the association between the two is stored in the second 
layer and interlayer weights. After the storage, whenever the 
first sequence is activated, the second is automatically 
activated also. 

II. MODEL 

We degrade the input sequence incrementally and observe 
the sequence induced in the output layer. We measure the 
similarity of sequences with the Spearman rank-order 
correlation. The correlation takes values from -1 to 1, when 
sequences are reversed and same respectively. Small 
correlation or around 0 value, means that the sequences are 
random permutations of each other. Surprisingly, we find that 
even when the input sequence is highly corrupted, the 
retrieved output sequence is similar to the associated 
sequence. This result is specific to the stored association and 
not found for random sequences. Our work shows that 
neuronal sequences in one area can robustly trigger sequences 
in a second area if the association between the sequences is 
stored in the network. Incorporating biological details of 
neural network improves robustness of association of neural 
network [3]. 

We use neural network model with two layers consisting of  
excitatory and inhibitory units [4]. These units represent 
populations of neurons and have heterogeneous parameters, 
unless otherwise stated in the Results.  To study the 
robustness systematically, we examined the relationship 
between the output correlation and the input correlation 
(Fig. 1). 

 

 
Fig.1 Graphical presentation for network robustness 
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By input and output correlation we mean the correlation 
between the test sequences and their respective reference 
sequences. If for large changes of input correlation we obtain 
low changes in the output correlation then the network is 
robust (black line), for the opposite case we get non-robust 
network (gray line). We therefore generated 650 input 
sequences with input correlations roughly uniformly 
distributed in [-1,1], applied them on the first layer and 
recorded the invoked sequence in the second layer. In most 
our simulations, we stored associations between a sequence in 
the first layer, say units 1 to 80 (Fig. 2a), and a sequence in 
the second layer, say units 1 to 20 (Fig.2b), in the connection 
weights of the network as described in [4]. We examined the 
robustness of sequence association by applying perturbed 
sequences in the first layer (input sequences) (Fig.2c) and 
observing the evoked sequences in the second layer (output 
sequences) (Fig.2,d).  

To quantify the differences between two sequences, we 
calculated the Spearman rank order correlation ρ between the 
activation times of the units in the two sequences. Since the 
units' activities are continuous variables, we had to define 
when the units are considered to have become active. Here we 
used the time of the first local maximum in a unit's activity. 
We then fit a sigmoid function to the relationship between 
output and input correlations  

 

                           (1) 

and quantified the robustness by the parameter c. The closer 
the curve is to the maximal robustness, i.e., a sign function, 
the larger the robustness parameter c.  Equation (1) is 
convenient for fitting the data for robust sequence association, 
but is not appropriate for non-robust relationships. In these 
cases, we  use another fitting function instead 

                            (2) 

We performed model selection based on the Akaike 
Information Criterion (AIC) to decide in each case whether 
(1), (2), or a combination of both  

 
                    (3) 

best accounted for the input-output relationship. The noise is 
given by 

                                   (4) 

 
Fig. 2. Examples of input and output sequences.  a) Input sequence applied repetitively to the first layer, and b) output sequence in the 

second layer that was associated with that input sequence. c) Distorted test input sequence, and d) retrieved output sequence. 
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where ξj is white noise process with zero mean and unit 
standard deviation (std) [4]. The parameter τη  allow us to 
adjust the noise level. We were increasing the std of the noise 
to observe its influence on robustness. 

III. RESULTS 

Having found that sequence association is robust, we 
further examined the origin of this robustness. The matrix of 
learned connections indicates that only few first layer units 
send projections to the second layer, and those that do have 
systematically overlapping projections (Fig. 3a). For instance, 
if the first unit in the input sequence projects to units 1-4 in 
the output sequence, unit 2 in the input projects to units 2-5 in 
the output. To test whether this connectivity pattern was 
responsible for robustness, we studied robustness in networks 
where we constructed a connection matrix with overlapping 
connectivity pattern (Fig. 3b), instead of learning the sequence 
association. Indeed, sequence association in the constructed 
network showed robustness  (Fig. 3c, red points), close to the 
network with learned connections (Fig. 3c, black points).  As 
a control, we performed the same analysis with a network, in 
which each unit in the first layer projects randomly to the 
same number (4) of units in the second layer (Fig. 3d). This 
control network exhibited a non-robust input-output 
relationship (Fig. 3c, blue points). So, the conclusion is that 
the overlap of connections preserves the correct sequence at 
the output.  

To examine the influence of the number of connections, 
we repeated the above simulations for different number of 
outgoing connections from the input units (Fig. 3e). In every 
case, the model selection indicated that one of the simpler 
models, i.e., Eq. (1) or (2) was sufficient to fit the data. 
Equation (1) was the most appropriate model to describe the 
data for the robust cases, i.e., connections with overlap, and 
(2) best fit the data in the nonrobust cases, i.e., random 
connections. Based on the results of the model selection, 
either parameter c or c' are reported in Fig. 3e. Networks with 
overlapping connections have robust sequence association for 
a range of connection numbers, but a clear peak in robust is 
reached for small numbers of connections. Networks with 
random connections do not show robustness. We therefore 
conclude that overlapping connectivity is crucial for the 
robustness of sequence association. 

Next, we studied how the robustness is affected by the 
noise in the network dynamics and the heterogeneity in the 
dynamics parameters. When we increased the standard 
deviation of the noise process , we saw a lower robustness in 
the sequence association as evidenced by a shallower slope in 
the input-output relationship as compared to (Fig.4a,b). Larger 
standard deviations in the noise process consistently led to 
lower robustness in the sequence association. This 
relationship was captured by the robustness parameter c  
(Fig. 4c). In these analyses, the parameters were averaged 
across 60 repetitions of sequence storage and subsequent 
analysis of the input-output relationship. Repetition was 

 
 

Fig. 3: Overlapping feedforward projections largely account for robustness of sequence association. a) The connection strengths matrix after 
learning sequence association shows overlapping projection pattern. b) Constructed connection strengths with overlapping projection pattern. 

c) Constructed connection strengths with same number of projections as in a), but random, non-overlaping projections. d) Input-output 
relationship of three networks with different connectivities: learned connections weights (black), four connections per unit with overlap of 

three (red), and four random connections per unit (blue). Shown for each network are points representing input and output sequence pairs and 
lines representing the best-fit sigmoid function. e) Robustness parameter c for connections with overlap, and parameter c' for random 

distribution of connections. 
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required to sample across different realization of the noise 
process and, in the heterogeneous case, of the parameters in 
the units' dynamics (solid line). As expected, the other 
parameter b in the curve fitting did not depend on the noise 
process (Fig. 4d). These results show that, first, the robustness 
decreases with increased noise; and second, heterogeneity in 
the dynamics parameters within the tested range does not 
significantly affect robustness. 

We return to the network with learned sequence 
associations to study the effect of network properties that we 
excluded in the first analysis above, namely ongoing plasticity 
between layers during testing and E2-E2 connections. We 
found robustness in a test case with, even when both plasticity 
and recurrent connections are enabled (Fig. 5a). As above, 
robustness was observed only for the stored sequence, not 
when tested with random reference sequences (Fig. 5b). To 
facilitate a direct comparison of the networks with different 
features, we plotted the robustness as a function of the noise 
standard deviation for six different network types (Fig. 5c). 
Including E2-E2 connections yielded higher robustness than 
the purely feedforward network (Fig. 5c, green lines). 
However, adding ongoing plasticity on top of E2-E2 
connections did not further increase robustness (Fig. 5c, blue 
lines). We did not observe systematic differences between 

networks with homogeneous and those with heterogeneous 
parameters (Fig. 5c, dashed and solid lines, respectively). That 
recurrent E2-E2 connections increase robustness of sequence 
association makes intuitive sense since the recurrent 
connections store the output sequence in addition to the 
feedforward E1-E2 connections. It is not immediately obvious 
why ongoing plasticity has little effect on robustness. 

We therefore directly studied the plasticity that occurred in 
the network. We computed the average absolute change in E1-
E2 connection strength during both learning and testing 
phases (Fig. 5d). The connections show large changes early 
during training, which then asymptotes at a low level. During 
testing only small changes are seen, which are probably due to 
random fluctuations in unit activity resulting in random pre-
post pairings. This result indicates that during the testing 
phase (Fig.5d), the neural activity does not drive large 
changes in connection strengths probably because there are no 
consistent pairings of pre- and postsynaptic activity that 
deviate from the stored activity pattern. As a consequence, 
ongoing plasticity does not improve robustness, nor does 
plasticity harm robustness, which is somewhat surprising 
since testing was done using corrupted input sequences. 

 
 

 
Fig. 4: The impact of the noise process on the robustness of sequence association.  a,b) These two examples show that more 
noise in the network leads to less robust sequence association, as evident in the steeper slope of the input-output relationship 
for (a) as compared to (b) and in the robustness parameter, vs. std, c)  The robustness parameter c declines as a function of 

the standard deviation of the noise process for homogeneous (dashed line) and heterogeneous (solid line) network 
parameters. d) The fit parameter b is not related to the robustness of sequence association. 
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IV. CONCLUSION 

We found that a purely feedforward network associates the 
input and output sequences robustly. There are, however, open 
questions and limitations to our study. When looking at all 
possible permutation of a reference sequence with many 
elements, the number of sequences with a correlation around 
zero is much larger than the number of correlations close to 1 
or -1. Future work will be need to investigate the influence of 
the statistics of the input sequences on the robustness. 

The potential influence of the procedure for assigning a 
unique time of activation to each unit's activity. here we used 
the first local maximum of the activation. Other potential 
measures could have been used, such as the first time of 
crossing a certain threshold, the median time of the activity 
distribution, or the time of the absolute maximum. Since there 
is no universally agreed upon measure for rate-based units, it 
is speculative at this point. This ambiguity could be resolved 
by using spiking neuron models, where the sharp spikes allow 
a clear definition of times of activity. 

 

 

 

In our study we used only one fixed set of network 
parameters network, including a relatively modest network 
size, since the network dynamics and analyses require 
extensive numerical calculations. Future work is needed to 
study robustness of sequence association for different network 
parameters, especially different network sizes and different 
level of inhibition. 
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Fig. 5: Sequence association in network with recurrent E2-E2 connections and ongoing plasticity. a) Example for robust sequence 
association, . b) Robustness is observed only for the stored sequences, or similar ones. c) Robustness vs. standard deviation of noise 

process for six different cases. The three colors represent different combinations of the two network features: recurrent E2-E2 
connections and ongoing plasticity  as indicated in inset; the line type indicates homogeneous (dashed line) or heterogeneous 
(solid line) network parameters. The red lines represent the same data as in Fig. 4c and are replotted for easier comparison. d,e) 

Average absolute change in connection strengths during the learning (d) and the testing (e) phase. 
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