

Three Link Rigid Manipulator Control Using
Improved Neural Network Based PID Controller

Sherif G. Ahmad

Faculty of Engineering, Mansoura University, Egypt

Email:sanafer84@yahoo.com

Mohamed A.El-Gohary
Assistant Professor, Department of Mechanical Engineering, Faculty of Engineering, Alexandria University, Egypt

Email:melgohary@gmail.com

Mohamed S. Elksas
Assistant Professor Department of Computers & Systems Engineering, Mansoura University, Egypt

Email:msmksasy@gmail.com
Fayez G. Areed

Professor at Computers & Systems Engineering, Mansoura University, Egypt

Abstract—This paper presents an artificial neural network

based pid controller of a three link rigid manipulator. We
develop neural network control algorithms to solve the
nonlinear problems for compensating robot manipulator
control with uncertainties so that accurate position could
be achieved. The back propagation algorithm has been
used for training a two layered feedforward artificial
neural network. Our proposed controller is simply
combining the ANN with other conventional control
method and provide the network with more data about the
structure and the behavior of the system, the neural
network is trained with the data generated by pid
controller. The simulation result shows that the controller
works well and performs better than the conventional PID.
Keywords—Dynamic modelling, Three link rigid

manipulator, Lagrange-Euler, PID controller, ANNC

I. INTRODUCTION

Robot manipulators, referred to as robotic arms,

perform operations that require among others high
precision, high speed, continuous work,
manipulating heavy payloads or dealing with bio-
hazardous materials or working in hazardous
environments. Robotic arms have a wide
applicability, since they resemble human arms in
many functional aspects. They are vastly used in
industrial manufacturing, doing tasks like pick and
place, surface finishing, assembly operations,
drilling, palletizing or welding [1]. The physical
assembly is made of rigid links connected by mobile
joints. The type of joint used to connect links might
be: prismatic joint, revolute joint, cylindrical joint,
spherical joint [2]. With the knowledge of
kinematics and dynamics of a serial link

manipulator, we would like to servo the
manipulator’s joint actuators to achieve a desired
task by controlling the manipulator to move to a pre-
specified coordinates or to follow a desired path.
One of the important parts that defines the accuracy
and repeatability of a robot is the manipulator
controller. To design the controller, the parameters
of the systems is needed as well as solving complex
equations which demands time and engineering
knowledge. The neural approach was made up when
the conventional and ordinary ways to control
systems failed to tackle the problems such as vision,
speech and pattern because real world cannot be
represented in mathematical expressions. Artificial
neural networks (ANN), computational models of
the brain, are vastly utilized in engineering
applications because of their capability to assess the
relation between inputs and outputs from a learning
process. Motivated by the seminal paper [3]. There
exists a constantly raising interest in applying neural
networks (NN) to identification and control of
nonlinear systems. Most of these applications use
feedforward structures [4]. This is due to NN
universal function approximation property.

NNC can be classified as non-parametric
controllers in the sense that they are not
parameterized in terms of system parameters [5].

International Journal of Neural Networks and Advanced Applications Volume 6, 2019

ISSN: 2313-0563 60

Also it does not need persistence of excitation and
certainty of equivalence in case it is designed
correctly.

After introduction of ANN and its growing
applications in the control area, many articles were
published about the use of the ANN as the controller
of a robot. A controller with a very simple structure
was proposed in [6]; the whole controller was an ANN
and was getting feedback from joint angles of the
robot. the inverse dynamics of the robot was solved
with two ANN, and the structure of the controller was
just like the feedback linearization method in control
theory. the only difference was that the equations that
solve the robot inverse dynamics were substituted with
two ANNs [7]. An adaptive controller with an ANN is
introduced [8] which works in the Cartesian space. A
controller was proposed to compensate for the
structured and unstructured uncertainties in the robot
model with combining the computed torque method
and ANN [9]. An efficient method for the controlling
the robot is proposed and that is production of a new
path as a desired path [10]. The performance seems to
be better than what is mentioned in [7] and the
controller converges quite fast to the desired input.
Akio Ishiguro trained ANN such that the network
output compensates for the error between the real
system and the model. an efficient method for
controlling the manipulator is introduced and the ANN
is used to regenerate a desired path and feed this path
to a computed torque control system such that the
output of the system traces the desired input [11]. In
[12] mentioning the capability of using ANN as a
controller for robotic manipulators and compared the
ANN with adaptive control method. Despite both
adaptive and ANN controllers demonstrate good
performance, they proved that a NN with two linear
layer is equal to an adaptive controller, while by use of
a three-layer neural network with nonlinear function
for the second layer output and a linear function for the
third layer output the ANN shows better performance
in systems with high nonlinearities. Tetsoro showed
that the stability using the backpropagation (BP)
method depends on both the initial value of the weight
vector and the gain tuning parameters. That is, the
(BP) method cannot guarantee the stability by itself
and we have to find the quantitative stability condition
by trial. In that article there is a comparison between
the adaptive and ANN controllers. "An ANN with

linear output function has identical structure of the
adaptive controller but a three layer ANN with
nonlinear output function could demonstrate better
performance in event of nonlinearities." He mentions
in his article. He suggests that an ANN controller
should be utilized if the nonlinearity of the system
can't be neglected.

The methods that are mentioned earlier have their
own pros and cons. Our proposed controller is simply
combining the ANN with other conventional control
method and provide the network with more data about
the structure and the behavior of the system. We
simply train the NN using the data generated from the
conventional controller (PID), selecting suitable
number of neurons in the hidden layer, we get better
response than that of the PID controller.

This paper is organized as follows: Section II

presents system model, conventional PID controller.
Section III introduces the neural network controller
design, simulation results and Section IIII illustrates
conclusion and future work.

II. System model and PID controller

We consider the three-link robotic manipulator.

The physical system is shown in fig. (1). The system
consists of three masses connected by weightless bars.
The bars have length d1, d2 & d3. Let ߠ ߠ ,1 ߠ & 2 3
denote the angles.

The dynamic equations are derived by the

Lagrangian Euler (L-E) formulation for a three–links
robot manipulator system with revolute joints. All the
rotation axes at the joints are along the z-axis
perpendicular to the plane of the paper. The mass of
the three links m1, m2 and m3 are represented by point
masses at the end of the links (weightless bars). The
load mass is represented by m3 and is supposed to be
at the end of the link 3.

By applying the Lagrange function to the robot arm
yields the necessary generalized torque ࣎i for joint i to
drive the i-th link of the manipulator [13], for i = 1, 2,
3 which gives:

߬1 = [(m1 + m2 + m3) d12 + (m2 + m3) d22 + m3 d32+
2 (m2 + m3) d1 d2 cos 2+2ߠ m3 d2 d3 cos 2 +3ߠ m3 d1 d2
cos (3ߠ + 2ߠ)]	Ӫ	1+[(m1+ m2) d22+ m3d32 + (m2+m3)
d1 d2 cos2 + 2ߠ m3 d2 d3 cos3ߠ + m3 d1 d2 cos(3ߠ+2ߠ)]

International Journal of Neural Networks and Advanced Applications Volume 6, 2019

ISSN: 2313-0563 61

Ӫ2 + [m3 d32+m3 d2 d3 cos3ߠ+m3 d1 d2 d3 cos (3ߠ+2ߠ)]
Ӫ3 - [(m2 + m3) d1 d2 sin 2ߠ+ m3 d1 d2 sin (3ߠ + 2ߠ)]

ሶߠ [(3ߠ + 2ߠ) m3 d1 d2 sin + 3ߠ m3 d2 d3 sin] - ሶ22ߠ 32 -[2

(m2 + m3) d1 d2 sin 2 + 2ߠ m3 d1 d2 sin (3ߠ + 2ߠ)] ߠሶ 1
ሶߠ [(3ߠ + 2ߠ) m3 d1 d2 sin 2 + 3ߠ 2 m3 d2 d3 sin] - ሶ2ߠ ሶ3ߠ 1
- [2 m3 d2 d3 sin 2 + 3ߠ m3 d1 d2 sin (3ߠ + 2ߠ)] ߠሶ ሶߠ 2 3 +
[(m1 + m2 + m3) d1 g sin 1ߠ+ (m2 + m3) d2 g sin (2ߠ +
 (1) (3ߠ + 2ߠ + 1ߠ) m3 d3 g sin +(1ߠ

߬2 = [(m1 + m2) d22 + m3 d32 + (m2 + m3) d1 d2 cos
 +Ӫ1 [(3ߠ + 1ߠ) m3 d1 d2 cos + 3ߠ m3 d2 d3 cos 2 +2ߠ
[(m2 + m3) d22 + m3 d32 + 2 m3 d1 d2 cos 3ߠ] Ӫ2 + [m3
d32 + m3 d2 d3 cos 3ߠ] Ӫ3+ [(m2 + m3) d1 d2 sin 2ߠ +

m3 d1 d2 sin (3ߠ + 2ߠ)] ߠሶ12 - [m2 d2 d3 sin 3ߠ] ߠሶ32 - [2

m3 d2 d3 sin ߠ [3ߠሶ ሶߠ 1 3 - [2 m3 d1 d2 sin 3ߠ] ߠሶ2 ߠሶ 3+ [(m2
+ m3) d1 g sin (2ߠ + 1ߠ) + m3 d3 g sin (3ߠ+ 2ߠ + 1ߠ)]

 (2)

߬3 = [m3 + d32 + m3 d2 d3 cos 3ߠ + m3 d1 d2 cos ሺ2ߠ
 Ӫ2+ m3 d32 [3ߠ m3 d32 + m3 d2 d3 cos] + Ӫ1 [(3ߠ +

Ӫ3+ [m3 d2 d3 sin 3ߠ + m3 d1 d2 sin (3ߠ + 2ߠ)] ߠሶ 12 +

[m3 d1 d2 sin 3ߠ] ߠሶ22 - [2 m3 d2 d3 sin 3ߠ] ߠሶ ሶ2 + m3 d3ߠ 1
g sin (3ߠ +2ߠ+ߠ) (3)

Fig. 1. Three links manipulator

The general form of equations of motion can be
written as

Table 1. System description

Description Notation

Length of link 1 d1

Length of link 2 d2

Length of link 3 d3

Mass of d1 m1

Mass of d2 m2

Mass of d3 m3

Gravitational acceleration g

Angle of d1 1ߠ

Angle of d2 2ߠ

Angle of d3 3ߠ

࣎ = M (ݍ)ݍሷ + V (ݍ,ݍሶ) + G (ݍ) (4)

Where, q is the generalized joint coordinates

 M (ݍ) is the mass matrix (inertia matrix)

 V (ݍ,ݍሶ) is the centrifugal & Coriolis forces

 G (ݍ) is the gravity forces

 ߬ is the generalized forces. (torques applied to the
robot)

And ݍ ൌ ൥
ଵߠ	
ଶߠ	
ଷߠ	
൩ (5)

ሻݍሺ	ܯ 				ൌ 	 ൥
ଵଵܦ 0 0
0 ଶଶܦ 0
0 0 ଷଷܦ

൩ (6)

ܸ	ሺݍ	ݍሶ ሻ 	ൌ

	቎
െܦଵଶଶ	ߠሶଶ

ଶെܦଵଷଷ	ߠሶଷ
ଶെܦଵଶଶ	ߠሶଵߠሶଶെܦଵଷଷ	ߠሶଵߠሶଷെܦଵଶଷ	ߠሶଶߠሶଷ

ሶଵଶߠ	ଶଵଵܦሶଷ൅ߠሶଶߠ	ଶଶଷܦሶଷെߠሶଵߠ	ଶଵଷܦሶଷെߠ	ଶଷଷܦ

ሶଶଶߠ	ଷଶଶܦሶଵଶ൅ߠ	ଷଵଵܦ ൅ ሶଶߠሶଵߠ	ଷଵଶܦ

቏

 (7)

G (ݍ) = [D311 (θሶ 1)2 + D322 (θሶ 2)2 + D312 θሶ 1	θሶ 2] (8)

By solving the function ݍሷ , we get

ሷݍ ൌ ሶݍ	ݍሻିଵሾെܸሺݍሺ	ܯ	 ሻ 	െ ሻሿݍሺ	ܩ	 	൅ ܨ	
(9)

Where, ܯ = ܨ	ሺݍሻିଵ ࣎ (10)

The physical torque inputs to the system are

x

y

d1

d2

x1 x2

y1

y2 m2 d3

θ1

θ2

g

x3

θ3y3

m1

m3

International Journal of Neural Networks and Advanced Applications Volume 6, 2019

ISSN: 2313-0563 62

 ൥
ଵߠ	࣎
ଶߠ	࣎
ଷߠ	࣎

൩ ൌ ܯ	ሺݍሻ	൥
࣎ଵ
࣎ଶ
࣎ଷ
൩ (11)

The controller for any joint would be

i = ݇௣௜ ݁ (t) + ݇௩௜ ሶ݁ + ݇୧୧ܨ ׬	 ݁ dt , i = 1, 2, 3 (12)

The error (݁) signals general form is

 ௜ , (13)ߠ	 – ௜௙ߠ	 = (௜ߠ) ݁

Where 	ߠ௜௙ is the target position.

Then the complete system equations would be [13]

቎
ሷଵߠ
ሷଶߠ
ሷଷߠ

቏ = ܯ	ሺݍሻିଵ ∗ ሾെܸ	ሺݍሶ ሻ	ݍ	 	െ + ሿ	ሻݍሺ	ܩ	

൦

݇௣ଵ	൫ߠଵ௙ െ ଵ൯ߠ െ ݇ௗଵ	ߠଵሶ ൅ ݇௜ଵ	ݔଵ
݇௣ଶ	൫ߠଶ௙ െ ଶ൯ߠ െ ݇ௗଶ	ߠଶሶ ൅ ݇௜ଶ	ݔଶ
݇௣ଷ	൫ߠଷ௙ െ ଷ൯ߠ െ ݇ௗଷ	ߠଷሶ ൅ ݇௜ଷ	ݔଷ

൪

(14)

 ൥
ଵߠ߬
ଶߠ߬
ଷߠ߬

൩ ൌ ሻݍሺ	ܯ ൦

݇௣ଵ	൫ߠଵ௙ െ ଵ൯ߠ െ ݇ௗଵ	ߠଵሶ ൅ ݇௜ଵ	ݔଵ
݇௣ଶ	൫ߠଶ௙ െ ଶ൯ߠ െ ݇ௗଶ	ߠଶሶ ൅ ݇௜ଶ	ݔଶ
݇௣ଷ	൫ߠଷ௙ െ ଷ൯ߠ െ ݇ௗଷ	ߠଷሶ ൅ ݇௜ଷ	ݔଷ

൪

(15)

This is a second order non-linear system; we have to
convert it to a first order system by using state space.
By choosing a proper set of state variables, complex
systems may be brought to a more convenient form
(state-space form), which only requires solving first
order ODE’s in matrix form [14].

III. Neural Network Controller Design

A. Limitations of PID

Although a PID controller provides an optimum
solution to various processes, it is not an antidote to
every control problem which could be encountered.
This is specifically valid for processes with ramp-style
changes in set-point values or slow disturbances [15].

So, PID controller is easy to implement but its
performance is not optimized because the robot arm is
not a linear system & considering all the torques that
are produced by dynamics of the system such as noise

will result in shaky performance of the system &
sometimes even instability. The problem for the ANN
is to solve the system's inverse dynamics. For training
the ANN to learn this function it is possible to train it
with random data or use the controller to provide good
examples for training the ANN.

B. Controller Structure (ANN)

In other words, the ANN can work alone as the
controller or it could get used in parallel with other
controllers. The idea is to construct a controller with
the simplest structure and observe the performance of
the system. If the results are not good, we can increase
the intricacy of the controller and simplify the problem
to be solved by the ANN.

The problem being that the research space for finding
the proper weights for the neurons is too wide and the
ANN inputs make a very wide domination. To narrow
this search space, we used the previous shown
controller (pid) to trace the desired path to act as a
supervisor for the ANN, as shown in fig. (2).

Fig. 2. Training of NNC

The PID controller accepts the angle and angular

velocities of joints and generates the required torque
for the motors to move the joints. Although this
controller does not perform very well, the data which
is collected from it are very good samples for training
the ANN. After training ANN with samples from PID
controller, the ANN takes over PID controller giving
magnificent results. The sampled data from the PID
controller are used to train the ANN as shown in fig
(3).

With this configuration the ANN tries to solve

inverse dynamics of the system within a close range to
the desired path and generates the required torques to
be applied to move the motors for the manipulator
follows the desired path. Mostly the manipulator is
having a repetitive job and the path that the joints are

Reference
I/P

Integrator

Three link
Manipulator

To
Workspace

International Journal of Neural Networks and Advanced Applications Volume 6, 2019

ISSN: 2313-0563 63

moving is periodic. If we define one period of the
manipulator path as one cycle the ANN is trained in
every cycle and the network identifies the manipulator
behavior in more detail. This means that the
manipulator's performance is improved and the error
between the manipulator trajectory and the desired
path limits to zero. Simulation results shows that the
error converges to zero and it can be reduced to
arbitrary value with enough no. of trainings.

Fig. 3. training window of neurons

C. ANN STRUCTURE

For constructing the ANNC for the manipulator with
3 DOF we used simple yet powerful structure. We used
one ANN for every joint of the manipulator, that is for
simplifying the inverse dynamic problem. In other
words, every ANN outputs one torque for only one joint
motor and for n DOF manipulator the ANNC consists
of n separate networks. The i/p for every network is
angular velocity joint angle and integration of the angle
error. Another candidate for the structure of the
manipulator is only having one i/p per joint which
could be the joint angle and construct the network as a
dynamic network with delays in the first layer in order
to reconstruct the angular velocity and acceleration of
every joint. The drawback of such construction is that
the sample time of the controller loop must be fixed and
if the controller frequency is changed we would have to
retrain the network from the beginning.

Also we did not use neural networks with recursive

layers because for training such networks there is still
no sufficient way and it may take longer times to be
trained however these networks when they are trained
they gives better results also they are more powerful in
solving differential equations with nonlinearity.

The two-layer standard feedforward neural
network (FFNN) is shown in fig (4) is being used as
the controller. It has been composed of an input buffer,
non-linear hidden layer and a linear output. So, every
ANN consists of one hidden layer which is the first

layer output function is the sigmoid function and the
second layer output function is a linear function. It has
been proven that a network with such structure and
enough amounts of neurons in its hidden layer can
produce any function with limited no. of discontinuity.

D. Training method

The problem that the network must solve the
inverse dynamics of the system which could be
presented as a simple function, Y = F(x). For training
the network we must provide the ANN with a pair of
[X Y].

As mentioned earlier the ANN is trained with the data
which is generated by PID controller such that when
the PID generated the Torque [Ti] this Torque is
applied to the manipulator with the joint angles of
vector [Ji] and angular velocities of [Wi] and then the
error integration as [Ai], Y = [Ti]. In other words, we
get the data from the forward dynamics of the system
which is solved by the simulator or the real
manipulator and use this data to solve the inverse
dynamics of the system.

Fig. 4. Structure of ANN

E. Learning Function

The inputs X = [ݍௗ	qሶ ௗ ׬ ݁]T are multiplied by
weights (߱ଵ

௜௝) and summed at each hidden node, then
the nodes are activated through a nonlinear function,
F(.), called sigmoid function which is bounded
between 0 and 1:

 F(.) =
૚

ሾ૚ାܘܠ܍	ሺି࢚ࢋ࢔ሻሿ
 (16)

Where net is the weighted sum of the products, that is;
net = x1	߱1 + x2	߱2 + x3	߱3 + …… + xm	߱m
The activated signals are weighted (߱ଶ

௝௞) and summed
at each output node. Thus, the output at a linear output
node ∅௡ can be calculated from inputs as follows:

∑] =࢔∅ ࣓૛
࢐࢑

ࢎ࢔
࢐ୀ૚ (

૚

૚ାܘܠ܍	ሺି∑ ૚࢐࢈࢐ା࢏૚࣓࢏࢞
࢏࢔
స૚࢏ ሻሻ

ሻ] + ܾଶ௄(17)

International Journal of Neural Networks and Advanced Applications Volume 6, 2019

ISSN: 2313-0563 64

Where;
 no. of I/Ps ..…… ࢏࢔
 no. of O/Ps .…… ࢎ࢔
 ith I/P of vector X .…..…... ࢏࢞
࣓૚

 first layer weight between ith i/p and jth hidden…࢐࢏
layer
࣓૛

࢐࢑ .2nd weight layer between jth hidden and kth o/p
layer
 biased weight for jth hidden layer .………… ૚࢐࢈
 biased weight for kth output layer ………… ૛࢑࢈

The back-propagation algorithm uses supervised
learning, and the goal is to reduce the error. The
training begins with random weights, until we adjust
them to get minimum error. As shown in fig. (5).

Fig. 5. Flow chart of the error back-propagation
algorithm

The ANN o/p serves as the i/p to the closed loop
manipulator system as shown in figure (6). The
training function is the "trainlm" function from Matlab
toolbox. Trainlm is a network training function that
updates weight and bias values according to
Levenberg Marquardt optimization [16].

This algorithm typically requires more memory but
less time. Training automatically stops when
generalization stops improving.

Fig. 6. Multilayered feedforward neural network structure

We started training the ANN starting with random
number of neurons in the hidden layer (three neurons) seeing
the results (Performance, Error Histogram and
Regression), increasing number of neurons the results
get better, as shown in table (2), till we have the best
Performance, Error Histogram and Regression at 27
neurons in the hidden layer, as shown in figures (7-9).
Simulating NN or deploying with Simulink coder
tools, generating a Simulink diagram.

Table 2. Performance of NN

NO. OF

NEURONS

MSE

ALL REGRESSION

3 1141 0.69

10 54 0.81

27 2*10-3 0.93

: Buffer : Linear Fn : Sigmond Fn : Bias

Integration of
error1

Integration of
error2

Integration of
error3

International Journal of Neural Networks and Advanced Applications Volume 6, 2019

ISSN: 2313-0563 65

Fig. 7. validation performance

Fig. 8. Error histogram

Fig. (9) Over all error

F. Simulation Results

The simulation is done in Matlab and Matlab
toolbox Peter I. Cork [17]. The simulations were
performed depending on the dynamic model
previously derived. As we have said the ANN was
designed with three layers (including the input layer),
three nodes for the input layer, twenty-seven nodes for
the hidden layer, and one node for the output layer.

 The first input signal used is generated using square

generator block in Matlab library sources. Figs. (10 a,
b and c) show system response to the input signal of
the three joints. Fig. (11 a, b and c) gives the response
for another form of input signal. The blue line
indicates the desired path and the red line indicates the
tracking control result which is not easy to be seen
since it is almost completely covered by the blue one.

(a)

(b)

(c)

Fig. 10. Simulation results for (a)	ߠଵ, (b) ߠଶ and (c) ߠଷ

International Journal of Neural Networks and Advanced Applications Volume 6, 2019

ISSN: 2313-0563 66

(a)

(b)

(c)

Fig. 11. (a, b, c) Simulation results of the three joints for sinusoidal

input

As we can see from the above figures different
signal forms have been used as input (reference) signal
to stand on the efficiency and robustness of the
controller. The rise time for θ1, θ2 and θ3
approximately equals (0.8, 0.9 and 0.7) seconds
respectively with very small overshoots and with
almost no steady state error. The transient response of
our controller is more convenient than that of the
conventional PID controller. The system has a rapid
and efficient response to different input signals with
very small overshoot and approximately no error.
Also, the controller has a good performance in
disturbance rejection as shown in figure (12)

Fig. 12. Disturbance rejection response

As it is obvious in the system the network solves
the inverse dynamics of the system very fast and a
significant result is observed. The no. of neurons in the

network may affect the performance of the system and
as the no. of neurons increases the error of the system
decreases, however the network needs more time to be
trained. One idea to be applied is that at the first cycles
of training we could construct the network with a few
no. of neurons and as the training continues new
networks with much neurons would be substituted
with previous networks to accomplish best
performance for the system.

IIII. Conclusion and Future work

In this thesis paper the mathematical model of a
three link rigid manipulator is presented. This
mathematical model is multi-input multi-output
MIMO, coupled, and nonlinear equations. An efficient
method for control of the manipulator is introduced.
The ANN is used to identify both the dynamics and the
kinematics of a manipulator. Although during training
of the NN the MSE at first is large, however, after
changing number of neurons in the hidden layer MSE
converges to zero. The controller design is
independent from parameters of the system and
controller learns the system parameters during its
operation. At the end the controller performance is
tested by the simulation using MATLAB &
SIMULINK.

The topic of the thesis is related to other fields in
robotics and there are lots of jobs that can be done in
future. One good idea is to use Dynamic networks with
concurrent layers and dynamic structures instead of a
feed forwarded network because a network with this
structure can solve more complex systems and the
controller may show better performance in practice.
The other good idea is to somehow increase the
robustness of controller by changing the structure of
the network such that the ANN controller receives
feedback from the manipulator as a separate input. It
is also possible to feed time to the network and analyze
the performance of the controller to time varying
systems.

The other task that can increase the performance of the
robot is to use a real-time operation system to control
the robot or implement the ANN on an FPGA board
for online processing. At last since the network can
learn the structure of the manipulator using this
controller on a robot with flexible links may lead to
interesting results.

International Journal of Neural Networks and Advanced Applications Volume 6, 2019

ISSN: 2313-0563 67

APPENDIX. A

D11 = (m1 + m2 + m3) d12 + (m2 + m3) d22 + m3 d32

 + 2 m3 d2 d3 cos x5 + 2 (m2 + m3) d1 d2 cosx3

 + 2 m3 d1 d2 cos (x3 + x5)

D122 = (m2 + m3) d1 d2 sin x3 + m3d1d2 sin (x3 + x5)

D133 = m3 d2 d3 sin x5 + m3 d1 d2 sin (x3 + x5)

D112 = 2 (m2 + m3) d1 d2 sin x3 + 2 m3 d1 d2 sin (x3 + x5)

D113 = 2 m3 d2 d3 sin x5 + 2 m3 d1 d2 sin (x3 + x5)

D123 = 2 m3 d2 d3 sin x5 + 2 m3 d1 d2 sin (x3 + x5)

C1 = (m1 + m2 + m3) g d1 sin x1 + (m2 + m3) g d2 sin

 (x1 + x3) + m3 g d3 sin (x1 + x3 + x5)

D22 = (m2 + m3) d22 + m3 d32 + 2 m3 d1 d2 cos x5

D211 = (m2 + m3) d1 d2 sin x3 + m3 d1 d2 sin (x3+ x5)

D233 = m3 d2 d3 sin x5

D213 = 2 m3 d2 d3 sin x5

D223 = 2 m3 d1 d2 sin x5

C2 = (m2+m3) d2 g sin (x1 x3) + m3 d3 g sin (x1+x3 + x5)

D33 = m3 d32

D311 = m3 d2 d3 sin x5 + m3 d1 d2 sin (x3 + x5)

D322 = m3 d1 d2 sin x5

D312 = 2 m3 d2 d3 sin x5

C3 = m3 d3 g sin (x1 + x5 + x3)

REFERENCES

[1] Frank L. Lewis, Darren M. Dawson, and Chaouki T.
Abdallah. "Robot Manipulator Control: Theory and
Practice", chapter 1 - Commercial Robot Manipulators,
pages 1–19. CRC Press, 2003.

[2] Maple Soft. Robot Manipulators - Position, Orientation
and Coordinate Transformations [User-guide].
Retrieved from: https: //www. maplesoft.com /content/
EngineeringFundamentals/13/MapleDocument_13/Posi
tion%20Orientation%20and%20Coordinate%20Transfo
rmations.pdf., 2016.

[3] Narendra K. S. and K Parthasarathy, "Identification and
control of dynamical systems using neural networks",
IEEE Trans. on Neural Networks, vol. 1, no. 1, pp 4-27,
1990.

[4] K. Hunt, G. Irwin and K. Warwick (Eds.), Neural
Networks Engineering in Dynamic Control Systems,
Springer Verlang, New York, USA, 1995.

[5] George Philipp, Jaime G. Carbonell, '' Nonparametric
Neural Networks'' ICLR, 2017.

[6] Proceedings of I993 International Joint Conference on
Neural Networks, ROBOTIC MANIPULAI'OR
TRAJECTORY CONTROL USING
NEURALNETWORKS Bin Jin Department of
Electrical Engineering, Shanghai University of
Technology, 149 Yan-chang Road, Shanghai 200072,
P.R. Chinam, 1993.

[7] Trajectory Control of Robotic Manipulators Using
Neural Networks, Tomochika Ozaki, Tatsuya Suzuki,
Member, IEEE, Takeshi Furuhashi, Member, IEEE,
Shigeru Okuma, Member, IEEE, and Yoshiki Uchikawa,
1991.

[8] Adaptive Neural Network Control of Robot
Manipulators in Task Space, Shuzhi S. Ge, Member,
IEEE, C. C. Hang, Senior Member, IEEE, and L. C.
Woon. 1998.

[9] A Neural Network for the Trajectory Control of Robotic
Manipulators with Uncertainties, Boo Hee Nam, Sang
Jae Lee, and Seok Won Lee, ERC-ACI, Dept. of Control
and Instrumentation Eng., Kangwon National Univ.,
Chunchon, Kangwondo 200-701, Korea. 1997.

[10] A new neural network control technique for robot
manipulators, seul jung and T.C. Hsia, Robotics
Research Laboratory, Department of Electrical and
computer Engineering, University of California, 1995.

[11] A Neural Network Compensator for Uncertainties
of Robotics Manipulators Akio Ishiguro, Takeshi
Furuhashi, Shigeru Okuma, Member, ZEEE, and
Yoshiki Uchikawa. 1992.

[12] Possibility of Neural Networks Controller for
Robot Manipulators' Tetsuro YABUTA and Takayuki
YAMADA NTT Transmission Systems Laboratories,
Tokai, Ibaraki, 31 9-1 1, JAPAN. 1990.

[13] Sherif ahmad, A. E International Journal of
Computer Applications 179(34), Dynamic Modelling
with a Modified PID Controller of a Three Link Rigid
Manipulator. 2018.

[14] Derek Rowell, 2002. 'State-Space Representation
of LTI Systems'.

[15] Sung, S. W. and In-Beum Lee. “Limitations and
Countermeasures of PID Controllers,” Department
of Chemical Engineering, Pohang University of
Science and Technology, Pohang, Korea, 1996.

[16] A Method for the Solution of Certain Non-Linear
Problems in Least Squares, Kenneth. Levenberg (1944).
The Quarterly of Applied Mathematics 2: 164–168.

[17] Matlab robotics toolbox by peter I. Corke.
http://www.ict.csiro.au/downloads/robotics.2018.

International Journal of Neural Networks and Advanced Applications Volume 6, 2019

ISSN: 2313-0563 68

