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Abstract—This paper presents an artificial neural network 

based pid controller of a three link rigid manipulator. We 
develop neural network control algorithms to solve the 
nonlinear problems for compensating robot manipulator 
control with uncertainties so that accurate position could 
be achieved. The back propagation algorithm has been 
used for training a two layered feedforward artificial 
neural network. Our proposed controller is simply 
combining the ANN with other conventional control 
method and provide the network with more data about the 
structure and the behavior of the system, the neural 
network is trained with the data generated by pid 
controller. The simulation result shows that the controller 
works well and performs better than the conventional PID. 
Keywords—Dynamic modelling, Three link rigid 

manipulator, Lagrange-Euler, PID controller, ANNC 

 
I. INTRODUCTION 

 
Robot manipulators, referred to as robotic arms, 

perform operations that require among others high 
precision, high speed, continuous work, 
manipulating heavy payloads or dealing with bio-
hazardous materials or working in hazardous 
environments. Robotic arms have a wide 
applicability, since they resemble human arms in 
many functional aspects. They are vastly used in 
industrial manufacturing, doing tasks like pick and 
place, surface finishing, assembly operations, 
drilling, palletizing or welding [1]. The physical 
assembly is made of rigid links connected by mobile 
joints. The type of joint used to connect links might 
be: prismatic joint, revolute joint, cylindrical joint, 
spherical joint [2]. With the knowledge of 
kinematics and dynamics of a serial link 

manipulator, we would like to servo the 
manipulator’s joint actuators to achieve a desired 
task by controlling the manipulator to move to a pre-
specified coordinates or to follow a desired path. 
One of the important parts that defines the accuracy 
and repeatability of a robot is the manipulator 
controller. To design the controller, the parameters 
of the systems is needed as well as solving complex 
equations which demands time and engineering 
knowledge. The neural approach was made up when 
the conventional and ordinary ways to control 
systems failed to tackle the problems such as vision, 
speech and pattern because real world cannot be 
represented in mathematical expressions. Artificial 
neural networks (ANN), computational models of 
the brain, are vastly utilized in engineering 
applications because of their capability to assess the 
relation between inputs and outputs from a learning 
process. Motivated by the seminal paper [3]. There 
exists a constantly raising interest in applying neural 
networks (NN) to identification and control of 
nonlinear systems. Most of these applications use 
feedforward structures [4]. This is due to NN 
universal function approximation property. 

NNC can be classified as non-parametric 
controllers in the sense that they are not 
parameterized in terms of system parameters [5].
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Also it does not need persistence of excitation and 
certainty of equivalence in case it is designed 
correctly.  

After introduction of ANN and its growing 
applications in the control area, many articles were 
published about the use of the ANN as the controller 
of a robot. A controller with a very simple structure 
was proposed in [6]; the whole controller was an ANN 
and was getting feedback from joint angles of the 
robot. the inverse dynamics of the robot was solved 
with two ANN, and the structure of the controller was 
just like the feedback linearization method in control 
theory. the only difference was that the equations that 
solve the robot inverse dynamics were substituted with 
two ANNs [7]. An adaptive controller with an ANN is 
introduced [8] which works in the Cartesian space. A 
controller was proposed to compensate for the 
structured and unstructured uncertainties in the robot 
model with combining the computed torque method 
and ANN [9]. An efficient method for the controlling 
the robot is proposed and that is production of a new 
path as a desired path [10]. The performance seems to 
be better than what is mentioned in [7] and the 
controller converges quite fast to the desired input. 
Akio Ishiguro trained ANN such that the network 
output compensates for the error between the real 
system and the model. an efficient method for 
controlling the manipulator is introduced and the ANN 
is used to regenerate a desired path and feed this path 
to a computed torque control system such that the 
output of the system traces the desired input [11]. In 
[12] mentioning the capability of using ANN as a 
controller for robotic manipulators and compared the 
ANN with adaptive control method. Despite both 
adaptive and ANN controllers demonstrate good 
performance, they proved that a NN with two linear 
layer is equal to an adaptive controller, while by use of 
a three-layer neural network with nonlinear function 
for the second layer output and a linear function for the 
third layer output the ANN shows better performance 
in systems with high nonlinearities. Tetsoro showed 
that the stability using the backpropagation (BP) 
method depends on both the initial value of the weight 
vector and the gain tuning parameters. That is, the 
(BP) method cannot guarantee the stability by itself 
and we have to find the quantitative stability condition 
by trial. In that article there is a comparison between 
the adaptive and ANN controllers. "An ANN with 

linear output function has identical structure of the 
adaptive controller but a three layer ANN with 
nonlinear output function could demonstrate better 
performance in event of nonlinearities." He mentions 
in his article. He suggests that an ANN controller 
should be utilized if the nonlinearity of the system 
can't be neglected. 

The methods that are mentioned earlier have their 
own pros and cons. Our proposed controller is simply 
combining the ANN with other conventional control 
method and provide the network with more data about 
the structure and the behavior of the system. We 
simply train the NN using the data generated from the 
conventional controller (PID), selecting suitable 
number of neurons in the hidden layer, we get better 
response than that of the PID controller.   

 
This paper is organized as follows: Section II 

presents system model, conventional PID controller. 
Section III introduces the neural network controller 
design, simulation results and Section IIII illustrates 
conclusion and future work. 

 
II. System model and PID controller 

 
We consider the three-link robotic manipulator. 

The physical system is shown in fig. (1). The system 
consists of three masses connected by weightless bars. 
The bars have length d1, d2 & d3. Let ߠ ߠ ,1 ߠ & 2 3 
denote the angles. 

 
The dynamic equations are derived by the 

Lagrangian Euler (L-E) formulation for a three–links 
robot manipulator system with revolute joints. All the 
rotation axes at the joints are along the z-axis 
perpendicular to the plane of the paper. The mass of 
the three links m1, m2 and m3 are represented by point 
masses at the end of the links (weightless bars). The 
load mass is represented by m3 and is supposed to be 
at the end of the link 3.  

By applying the Lagrange function to the robot arm 
yields the necessary generalized torque ࣎i for joint i to 
drive the i-th link of the manipulator [13], for i = 1, 2, 
3 which gives: 

߬1 = [(m1 + m2 + m3) d12 + (m2 + m3) d22 + m3 d32+ 
2 (m2 + m3) d1 d2 cos 2+2ߠ m3 d2 d3 cos 2 +3ߠ m3 d1 d2 
cos (3ߠ + 2ߠ)]	Ӫ	1+[(m1+ m2) d22+ m3d32 + (m2+m3) 
d1 d2 cos2 + 2ߠ m3 d2 d3 cos3ߠ + m3 d1 d2 cos(3ߠ+2ߠ)] 
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Ӫ2 + [m3 d32+m3 d2 d3 cos3ߠ+m3 d1 d2 d3 cos (3ߠ+2ߠ)] 
Ӫ3 - [(m2 + m3) d1 d2 sin 2ߠ+ m3 d1 d2 sin (3ߠ + 2ߠ)] 

ሶߠ [(3ߠ + 2ߠ) m3 d1 d2 sin + 3ߠ m3 d2 d3 sin] - ሶ22ߠ 32 -[2 

(m2 + m3) d1 d2 sin 2 + 2ߠ m3 d1 d2 sin (	3ߠ + 2ߠ)] ߠሶ 1 
ሶߠ [(3ߠ + 2ߠ) m3 d1 d2 sin 2 + 3ߠ 2 m3 d2 d3 sin] - ሶ2ߠ  ሶ3ߠ 1
- [2 m3 d2 d3 sin 2 + 3ߠ m3 d1 d2 sin (3ߠ + 2ߠ)] ߠሶ ሶߠ 2 3 + 
[(m1 + m2 + m3) d1 g sin 1ߠ+ (m2 + m3) d2 g sin (2ߠ + 
 (1)                   (3ߠ + 2ߠ + 1ߠ	) m3 d3 g sin +(1ߠ

߬2 = [(m1 + m2) d22 + m3 d32 + (m2 + m3) d1 d2 cos 
 +Ӫ1 [(3ߠ + 1ߠ) m3 d1 d2 cos + 3ߠ m3 d2 d3 cos 2 +2ߠ
[(m2 + m3) d22 + m3 d32 + 2 m3 d1 d2 cos 3ߠ] Ӫ2 + [m3 
d32 + m3 d2 d3 cos 3ߠ] Ӫ3+ [(m2 + m3) d1 d2 sin 2ߠ + 

m3 d1 d2 sin (3ߠ + 2ߠ)] ߠሶ12 - [m2 d2 d3 sin 3ߠ] ߠሶ32 - [2 

m3 d2 d3 sin ߠ [3ߠሶ ሶߠ 1 3 - [2 m3 d1 d2 sin 3ߠ] ߠሶ2 ߠሶ 3+ [(m2 
+ m3) d1 g sin (2ߠ + 1ߠ) + m3 d3 g sin (3ߠ+ 2ߠ + 1ߠ)]  

                                                                 (2)  

߬3 = [m3 + d32 + m3 d2 d3 cos 3ߠ + m3 d1 d2 cos ሺ2ߠ 
 Ӫ2+ m3 d32 [3ߠ m3 d32 + m3 d2 d3 cos] + Ӫ1  [(3ߠ +

Ӫ3+ [m3 d2 d3 sin 3ߠ + m3 d1 d2 sin (3ߠ + 2ߠ)] ߠሶ 12 + 

[m3 d1 d2 sin 3ߠ] ߠሶ22 - [2 m3 d2 d3 sin 3ߠ] ߠሶ  ሶ2 + m3 d3ߠ 1
g sin (	3ߠ +2ߠ+ߠ)                                           (3) 

 

 

 

Fig. 1. Three links manipulator 

 

The general form of equations of motion can be 
written as  

 

Table 1.  System description 

Description                                                              Notation 

Length of link 1                                                                   d1 

Length of link 2                                                                   d2 

Length of link 3                                                                   d3 

Mass of d1                                                                           m1 

Mass of d2                                                                           m2 

Mass of d3                                                                           m3 

Gravitational acceleration                                                g 

Angle of d1                                                                           1ߠ 

Angle of d2                                                                           2ߠ 

Angle of d3                                                                           3ߠ 

                                          

࣎ = M (ݍ)ݍሷ  + V (ݍ,ݍሶ ) + G (ݍ)                                       (4) 

Where, q is the generalized joint coordinates 

    M (ݍ) is the mass matrix (inertia matrix) 

    V (ݍ,ݍሶ ) is the centrifugal & Coriolis forces 

    G (ݍ) is the gravity forces 

    ߬ is the generalized forces. (torques applied to the 
robot) 

And      ݍ ൌ ൥
ଵߠ	
ଶߠ	
ଷߠ	
൩                                                         (5) 

ሻݍሺ	ܯ 				ൌ 	 ൥
ଵଵܦ 0 0
0 ଶଶܦ 0
0 0 ଷଷܦ

൩                         (6)      

ܸ	ሺݍ	ݍሶ ሻ 	ൌ

	቎
െܦଵଶଶ	ߠሶଶ

ଶെܦଵଷଷ	ߠሶଷ
ଶെܦଵଶଶ	ߠሶଵߠሶଶെܦଵଷଷ	ߠሶଵߠሶଷെܦଵଶଷ	ߠሶଶߠሶଷ

ሶଵଶߠ	ଶଵଵܦሶଷ൅ߠሶଶߠ	ଶଶଷܦሶଷെߠሶଵߠ	ଶଵଷܦሶଷെߠ	ଶଷଷܦ

ሶଶଶߠ	ଷଶଶܦሶଵଶ൅ߠ	ଷଵଵܦ ൅ ሶଶߠሶଵߠ	ଷଵଶܦ

቏

                                                                                

                                                                                 (7)     

G (ݍ) = [D311 (θሶ 1)2 + D322 (θሶ 2)2 + D312 θሶ 1	θሶ 2]           (8) 

By solving the function ݍሷ , we get 

ሷݍ ൌ ሶݍ	ݍሻିଵሾെܸሺݍሺ	ܯ	 ሻ 	െ ሻሿݍሺ	ܩ	 	൅                ܨ	
(9) 

Where,     ܯ = ܨ	ሺݍሻିଵ ࣎                                             (10) 

The physical torque inputs to the system are 

x

y

d1

d2

x1  x2

y1

y2 m2 d3

θ1

θ2

g

x3

θ3y3

m1

m3
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 ൥
ଵߠ	࣎
ଶߠ	࣎
ଷߠ	࣎

൩ ൌ ܯ	ሺݍሻ	൥
࣎ଵ
࣎ଶ
࣎ଷ
൩                                             (11) 

The controller for any joint would be 

i = ݇௣௜ ݁ (t) + ݇௩௜ ሶ݁ + ݇୧୧ܨ ׬	 ݁ dt  , i = 1, 2, 3        (12) 

The error (݁) signals general form is 

 ௜  ,                                                      (13)ߠ	 – ௜௙ߠ	 = (௜ߠ	) ݁

Where 	ߠ௜௙ is the target position. 

Then the complete system equations would be [13] 

቎
ሷଵߠ
ሷଶߠ
ሷଷߠ

቏ = ܯ	ሺݍሻିଵ ∗ ሾെܸ	ሺݍሶ ሻ	ݍ	 	െ              + ሿ	ሻݍሺ	ܩ	

൦

݇௣ଵ	൫ߠଵ௙ െ ଵ൯ߠ െ ݇ௗଵ	ߠଵሶ ൅ ݇௜ଵ	ݔଵ
݇௣ଶ	൫ߠଶ௙ െ ଶ൯ߠ െ ݇ௗଶ	ߠଶሶ ൅ ݇௜ଶ	ݔଶ
݇௣ଷ	൫ߠଷ௙ െ ଷ൯ߠ െ ݇ௗଷ	ߠଷሶ ൅ ݇௜ଷ	ݔଷ

൪              

(14) 

 ൥
ଵߠ߬
ଶߠ߬
ଷߠ߬

൩ ൌ ሻݍሺ	ܯ   ൦

݇௣ଵ	൫ߠଵ௙ െ ଵ൯ߠ െ ݇ௗଵ	ߠଵሶ ൅ ݇௜ଵ	ݔଵ
݇௣ଶ	൫ߠଶ௙ െ ଶ൯ߠ െ ݇ௗଶ	ߠଶሶ ൅ ݇௜ଶ	ݔଶ
݇௣ଷ	൫ߠଷ௙ െ ଷ൯ߠ െ ݇ௗଷ	ߠଷሶ ൅ ݇௜ଷ	ݔଷ

൪ 

(15) 

This is a second order non-linear system; we have to 
convert it to a first order system by using state space. 
By choosing a proper set of state variables, complex 
systems may be brought to a more convenient form 
(state-space form), which only requires solving first 
order ODE’s in matrix form [14]. 

 

III. Neural Network Controller Design 
 
A.  Limitations of PID  
 

Although a PID controller provides an optimum 
solution to various processes, it is not an antidote to 
every control problem which could be encountered. 
This is specifically valid for processes with ramp-style 
changes in set-point values or slow disturbances [15]. 

So, PID controller is easy to implement but its 
performance is not optimized because the robot arm is 
not a linear system & considering all the torques that 
are produced by dynamics of the system such as noise 

will result in shaky performance of the system & 
sometimes even instability. The problem for the ANN 
is to solve the system's inverse dynamics. For training 
the ANN to learn this function it is possible to train it 
with random data or use the controller to provide good 
examples for training the ANN. 

B.  Controller Structure (ANN) 
 

In other words, the ANN can work alone as the 
controller or it could get used in parallel with other 
controllers. The idea is to construct a controller with 
the simplest structure and observe the performance of 
the system. If the results are not good, we can increase 
the intricacy of the controller and simplify the problem 
to be solved by the ANN. 
 
The problem being that the research space for finding 
the proper weights for the neurons is too wide and the 
ANN inputs make a very wide domination. To narrow 
this search space, we used the previous shown 
controller (pid) to trace the desired path to act as a 
supervisor for the ANN, as shown in fig. (2). 

 
Fig. 2. Training of NNC 

 
The PID controller accepts the angle and angular 

velocities of joints and generates the required torque 
for the motors to move the joints. Although this 
controller does not perform very well, the data which 
is collected from it are very good samples for training 
the ANN. After training ANN with samples from PID 
controller, the ANN takes over PID controller giving 
magnificent results. The sampled data from the PID 
controller are used to train the ANN as shown in fig 
(3). 

 
With this configuration the ANN tries to solve 

inverse dynamics of the system within a close range to 
the desired path and generates the required torques to 
be applied to move the motors for the manipulator 
follows the desired path. Mostly the manipulator is 
having a repetitive job and the path that the joints are 

Reference 
I/P

Integrator 

Three link 
Manipulator 

To 
Workspace 
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moving is periodic. If we define one period of the 
manipulator path as one cycle the ANN is trained in 
every cycle and the network identifies the manipulator 
behavior in more detail. This means that the 
manipulator's performance is improved and the error 
between the manipulator trajectory and the desired 
path limits to zero. Simulation results shows that the 
error converges to zero and it can be reduced to 
arbitrary value with enough no. of trainings. 

 
 

 

Fig. 3. training window of neurons 

 
C.  ANN STRUCTURE 
 

For constructing the ANNC for the manipulator with 
3 DOF we used simple yet powerful structure. We used 
one ANN for every joint of the manipulator, that is for 
simplifying the inverse dynamic problem. In other 
words, every ANN outputs one torque for only one joint 
motor and for n DOF manipulator the ANNC consists 
of n separate networks. The i/p for every network is 
angular velocity joint angle and integration of the angle 
error. Another candidate for the structure of the 
manipulator is only having one i/p per joint which 
could be the joint angle and construct the network as a 
dynamic network with delays in the first layer in order 
to reconstruct the angular velocity and acceleration of 
every joint. The drawback of such construction is that 
the sample time of the controller loop must be fixed and 
if the controller frequency is changed we would have to 
retrain the network from the beginning. 

 
Also we did not use neural networks with recursive 

layers because for training such networks there is still 
no sufficient way and it may take longer times to be 
trained however these networks when they are trained 
they gives better results also they are more powerful in 
solving differential equations with nonlinearity. 

The two-layer standard feedforward neural 
network (FFNN) is shown in fig (4) is being used as 
the controller. It has been composed of an input buffer, 
non-linear hidden layer and a linear output. So, every 
ANN consists of one hidden layer which is the first 

layer output function is the sigmoid function and the 
second layer output function is a linear function. It has 
been proven that a network with such structure and 
enough amounts of neurons in its hidden layer can 
produce any function with limited no. of discontinuity. 

D. Training method 
 

The problem that the network must solve the 
inverse dynamics of the system which could be 
presented as a simple function, Y = F(x). For training 
the network we must provide the ANN with a pair of 
[ X Y]. 

As mentioned earlier the ANN is trained with the data 
which is generated by PID controller such that when 
the PID generated the Torque [Ti] this Torque is 
applied to the manipulator with the joint angles of 
vector [Ji] and angular velocities of [Wi] and then the 
error integration as [Ai], Y = [Ti]. In other words, we 
get the data from the forward dynamics of the system 
which is solved by the simulator or the real 
manipulator and use this data to solve the inverse 
dynamics of the system. 
 

 
 

Fig. 4. Structure of ANN 
 

E.  Learning Function 
 

The inputs X = [ ݍௗ	qሶ ௗ ׬ ݁ ]T are multiplied by 
weights (߱ଵ

௜௝) and summed at each hidden node, then 
the nodes are activated through a nonlinear function, 
F(.), called sigmoid function which is bounded 
between 0 and 1: 
 

                           F(.) = 
૚

ሾ૚ାܘܠ܍	ሺି࢚ࢋ࢔ሻሿ
                      (16) 

 
Where net is the weighted sum of the products, that is; 
net = x1	߱1 + x2	߱2 + x3	߱3 + …… + xm	߱m 
The activated signals are weighted (߱ଶ

௝௞) and summed 
at each output node. Thus, the output at a linear output 
node ∅௡ can be calculated from inputs as follows: 
 

∑	] =࢔∅ ࣓૛
࢐࢑

ࢎ࢔
࢐ୀ૚  (

૚

૚ାܘܠ܍	ሺି∑ ૚࢐࢈࢐ା࢏૚࣓࢏࢞
࢏࢔
స૚࢏ ሻሻ

ሻ ] + ܾଶ௄(17)     
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Where; 
 no. of I/Ps ..…… ࢏࢔
 no. of O/Ps .…… ࢎ࢔
 ith I/P of vector X .…..…...   ࢏࢞
࣓૚

 first layer weight between ith i/p and jth hidden…࢐࢏
layer 
࣓૛

࢐࢑ .2nd weight layer between jth hidden and kth o/p 
layer 
 biased weight for jth hidden layer .………… ૚࢐࢈
 biased weight for kth output layer ………… ૛࢑࢈
 

The back-propagation algorithm uses supervised 
learning, and the goal is to reduce the error. The 
training begins with random weights, until we adjust 
them to get minimum error. As shown in fig. (5).  
 

 

Fig. 5. Flow chart of the error back-propagation 
algorithm 

The ANN o/p serves as the i/p to the closed loop 
manipulator system as shown in figure (6). The 
training function is the "trainlm" function from Matlab 
toolbox. Trainlm is a network training function that 
updates weight and bias values according to 
Levenberg Marquardt optimization [16].  

This algorithm typically requires more memory but 
less time. Training automatically stops when 
generalization stops improving. 

 

 
Fig. 6.  Multilayered feedforward neural network structure  

We started training the ANN starting with random 
number of neurons in the hidden layer (three neurons) seeing 
the results (Performance, Error Histogram and 
Regression), increasing number of neurons the results 
get better, as shown in table (2), till we have the best 
Performance, Error Histogram and Regression at 27 
neurons in the hidden layer, as shown in figures (7-9). 
Simulating NN or deploying with Simulink coder 
tools, generating a Simulink diagram. 

 

Table 2. Performance of NN 
 

 
NO. OF 

NEURONS 

 
MSE 

 
ALL REGRESSION 

3 1141 0.69 

10 54 0.81 

27 2*10-3 0.93 

 
 
 

 

: Buffer : Linear Fn : Sigmond Fn : Bias 

Integration of 
error1

Integration of 
error2

Integration of 
error3
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Fig. 7. validation performance 
 

 
Fig. 8. Error histogram 

 
Fig. (9) Over all error  

 
 
 
 
 
 
 

 
F.  Simulation Results  
 

The simulation is done in Matlab and Matlab 
toolbox Peter I. Cork [17]. The simulations were 
performed depending on the dynamic model 
previously derived. As we have said the ANN was 
designed with three layers (including the input layer), 
three nodes for the input layer, twenty-seven nodes for 
the hidden layer, and one node for the output layer. 

 
 The first input signal used is generated using square 

generator block in Matlab library sources. Figs. (10 a, 
b and c) show system response to the input signal of 
the three joints. Fig. (11 a, b and c) gives the response 
for another form of input signal. The blue line 
indicates the desired path and the red line indicates the 
tracking control result which is not easy to be seen 
since it is almost completely covered by the blue one. 

 

 

(a)  

 

(b) 

 

(c) 

Fig. 10. Simulation results for (a)	ߠଵ, (b) ߠଶ and (c) ߠଷ 
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(a) 

 
(b) 

 

(c) 

Fig. 11. (a, b, c) Simulation results of the three joints for sinusoidal 

input  

As we can see from the above figures different 
signal forms have been used as input (reference) signal 
to stand on the efficiency and robustness of the 
controller. The rise time for θ1, θ2 and θ3 
approximately equals (0.8, 0.9 and 0.7) seconds 
respectively with very small overshoots and with 
almost no steady state error. The transient response of 
our controller is more convenient than that of the 
conventional PID controller. The system has a rapid 
and efficient response to different input signals with 
very small overshoot and approximately no error. 
Also, the controller has a good performance in 
disturbance rejection as shown in figure (12)  

 

Fig. 12. Disturbance rejection response 

As it is obvious in the system the network solves 
the inverse dynamics of the system very fast and a 
significant result is observed. The no. of neurons in the 

network may affect the performance of the system and 
as the no. of neurons increases the error of the system 
decreases, however the network needs more time to be 
trained. One idea to be applied is that at the first cycles 
of training we could construct the network with a few 
no. of neurons and as the training continues new 
networks with much neurons would be substituted 
with previous networks to accomplish best 
performance for the system. 

IIII. Conclusion and Future work 

In this thesis paper the mathematical model of a 
three link rigid manipulator is presented. This 
mathematical model is multi-input multi-output 
MIMO, coupled, and nonlinear equations. An efficient 
method for control of the manipulator is introduced. 
The ANN is used to identify both the dynamics and the 
kinematics of a manipulator. Although during training 
of the NN the MSE at first is large, however, after 
changing number of neurons in the hidden layer MSE 
converges to zero. The controller design is 
independent from parameters of the system and 
controller learns the system parameters during its 
operation. At the end the controller performance is 
tested by the simulation using MATLAB & 
SIMULINK. 

The topic of the thesis is related to other fields in 
robotics and there are lots of jobs that can be done in 
future. One good idea is to use Dynamic networks with 
concurrent layers and dynamic structures instead of a 
feed forwarded network because a network with this 
structure can solve more complex systems and the 
controller may show better performance in practice. 
The other good idea is to somehow increase the 
robustness of controller by changing the structure of 
the network such that the ANN controller receives 
feedback from the manipulator as a separate input. It 
is also possible to feed time to the network and analyze 
the performance of the controller to time varying 
systems. 

The other task that can increase the performance of the 
robot is to use a real-time operation system to control 
the robot or implement the ANN on an FPGA board 
for online processing. At last since the network can 
learn the structure of the manipulator using this 
controller on a robot with flexible links may lead to 
interesting results. 
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APPENDIX. A 

D11  = (m1 + m2 + m3) d12 + (m2 + m3) d22 + m3 d32 

           + 2 m3 d2 d3 cos x5 + 2 (m2 + m3) d1 d2 cosx3   

           + 2 m3 d1 d2 cos (x3 + x5) 

D122 = (m2 + m3) d1 d2 sin x3 + m3d1d2 sin (x3 + x5) 

D133 = m3 d2 d3 sin x5 + m3 d1 d2 sin (x3 + x5)  

D112 = 2 (m2 + m3) d1 d2 sin x3 + 2 m3 d1 d2 sin (x3 + x5) 

D113 = 2 m3 d2 d3 sin x5 + 2 m3 d1 d2 sin (x3 + x5) 

D123 = 2 m3 d2 d3 sin x5 + 2 m3 d1 d2 sin (x3 + x5) 

C1   = (m1 + m2 + m3) g d1 sin x1 + (m2 + m3) g d2 sin 

           (x1 + x3) + m3 g d3 sin (x1 + x3 + x5) 

D22  = (m2 + m3) d22 + m3 d32 + 2 m3 d1 d2 cos x5 

D211 = (m2 + m3) d1 d2 sin x3 + m3 d1 d2 sin (x3+ x5) 

D233 = m3 d2 d3 sin x5 

D213 = 2 m3 d2 d3 sin x5 

D223 = 2 m3 d1 d2 sin x5 

C2  = (m2+m3) d2 g sin (x1 x3) + m3 d3 g sin (x1+x3 + x5) 

D33  = m3 d32 

D311 = m3 d2 d3 sin x5 + m3 d1 d2 sin (x3 + x5) 

D322 = m3 d1 d2 sin x5 

D312 = 2 m3 d2 d3 sin x5 

C3    = m3 d3 g sin (x1 + x5 + x3) 
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