
The streamers dynamics study by an intelligent        

                        system based on Neural Networks 

 
Abstract—The formation and propagation of streamers is an 

important precursor to determine the characteristics of electrical 

breakdown of many HV electrode configurations. Understanding 

of the study of the interaction between the polymer surface and 

the development process of the streamer is of major importance 

when we want to improve internal and external performance 

insulation systems. In this context, a numerical tool using neural 

networks is developed. This model allows evaluating the speed of 

streamers as a function of the amplitude of voltage initiation and 

the nature of the insulating materials. For this, a database was 

created to train the neural model from a laboratory model. This 

investigation builds a database for predicting the propagation of 

streamers on the polymers surface by different neuronal methods 

and this presents an interesting tool for estimating the 

propagation phenomena in functions of very important 

parameters.  
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I. INTRODUCTION 

Formation of a streamer is due to photo ionization 
mechanisms occurring within the primary avalanche. The 
electrons accelerated by the electric field excited by collisions 
of neutral molecules which return to their ground state with 
emission of a photon. The head of the avalanche is home of a 
significant release of photons that are absorbed by the 
surrounding gas. 

If the electron produced is located in the vicinity of the 
primary avalanche, it will create a new so-called secondary 
avalanche, with the same mechanism of electron 
multiplication, but the avalanche is now growing in a field that 
is enhanced by the presence of the positive space charge. 
Indeed, in an electric field sufficient to create the boot, the 
electron velocity is about 100 times higher than that of positive 
ions, so that the avalanche develops as a cloud of electrons 
leaving behind positive ions near stationary, then the avalanche 
leads to the formation of a dipole structure as shown in fig.1: 

-a region (towards the anode) of high electron density, 
     -a region (towards the cathode) of a high density of positive 
ions. 

 

Fig. 1. Electron Avalanche 

Therefore the separation of electrons and ions generates a 

significant space charge produces an electric field ( ) of 
dipolar structure and opposing the separation, which is 
vectorially added to the external field (Fig.1). 

II. MEASUREMENT TECHNIQUES 

A. Optical Measurement 

The luminous phenomena occurring within the range can 
be recorded by cameras, streak cameras called ultra fast image 
converters, photomultipliers, spectroscopy and strioscopy. 
Cameras whose optical axes are placed at 90° from one another 
possible to reconstruct the actual length of the discharge in all 
three dimensions. 

The image converter restores both the axial development of 
the discharge and its temporal development.  

Photomultipliers can be used to measure streamers in 
relatively small intervals [4] over large intervals in Fig. 2. 

 

Fig. 2. Schematic diagram of the arrangement of electrodes with 
photomultipliers 
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B.  Insulated Materials Used 

Intervals involved in Fig. 2 are polymers. In the electrical 
field, the scope of application of insulating organic solids 
(polymers) is expanded: power transmission lines, 
telecommunication cables, capacitors, alternators, electric 
motors, electronic systems and terrestrial power components 
and on board satellites... 

The use of these materials in electrical insulation has 
several advantages such as, excellent electrical properties 
(resistivity, stiffness, and permittivity), good mechanical 
strength and easy implementation, low weight and for some 
possibility of recycling [5]. These materials had excellent 
electrical insulating properties because of its low relative 
permittivity, low dissipation factor, good stability over a wide 
frequency range, and high dielectric breakdown strength [6]. 

The polymeric materials have a complex structure which 
leads to different properties within the same material. 
Knowledge of the structure of an individual macromolecule, 
but also the arrangement of the macromolecules relative to 
each other, is essential to understand the complexity of these 
systems. The microstructure of a polymer insulator dictates the 
physical, mechanical and electrical properties that are expected 
of this material [5]. 

Insulating materials used in the experimental [4] are: 

1   Polytetrafluoroethylene (PTFE). 

2   PTFE carbonized (CPTFE). 

3   Molybdenumdisuflide PTFE (MPTFE). 

4   Nylon. 

5   Ceramic coating (CERG). 

III. NEURAL NETWORKS 

A. Learning Process   

Among the desirable properties for a neural network, 
probably the most fundamental is the ability to learn from its 
environment, to improve its performance through a learning 
process [7]. 

Learning is a dynamic and iterative process for changing 
the parameters of a network in response to the stimuli it 
receives from its environment. The type of learning is 
determined by how parameter changes occur. Thus, the 
network may improve overtime [7]. 

That to say the weight 
jiw ,
 connecting the neuron i to its 

input j .At time t , a change jiw ,∆ of weight can be simply 

expressed as follows: 

)()1()( ,,, twtwtw jijiji −+=∆                                    (1) 

and, therefore, 

)()()1( ,,, twtwtw jijiji ∆+=+                                    (2) 

With 
)1(, +tw ji and 

)(, tw ji representing respectively the 

values of the new and old weight jiw , . 
     A set of clear rules for carrying out such a process of 
adaptation of the weights is called learning algorithm of the 
network [7]. 

B. Multilayer  Perceptron 

These are best known neural networks. A perceptron is an 
artificial neural network feedforward type ,i.e., direct 
propagation. 

There is a three-layer perceptron. The first is the input (it is 
not considered neural layer by some authors because it is linear 
and only distributes the input variables). The second is called 
hidden layer (or intermediate layer) and is the heart of the 
neural network. Its activation functions are sigmoid type. The 
third, consisting here of a single neuron is the output layer. Its 
activation function is the linear bounded [8]. 

Its learning is supervised type, by correcting errors. In this 
case only, the error signal is "feeds back" to the inputs to 
update the weights of neurons [7]. This is the error 
backpopagation method. 

The multilayer perceptron is a neural network used for most 
problems of approximation, classification and prediction. It 
usually consists of two or three layers of neurons fully 
connected [7]. 

One problem of using neural networks is in the 
choice of topology. For example there is no general rule that 
gives the number of neurons to remember for the intermediate 
layer. This choice is application-specific and, in general, these 
are just arbitrary choices of which we verify later the 
validity [8]. 

C. Radial Basis Function Networks  

Neural networks Feedforward (NNF) and neural networks 
based on radial basis function (RBFN) are a class of models 
widely used in nonlinear system identification [9], [10]. 
Justification for this is that these networks with one hidden 
layer can approximate any continuous function having a finite 
number of discontinuities [11], [12]. 

A net boost for RBFN neural networks has been observed 
in recent years because they offer major advantages over 
commonly used to NNF. These benefits include the complexity 
of the model and not a lighter load during learning [13]. 

Neural networks RBFN (Radial Basis Function Network) 
have been developed by Moody and Darken [14]. They have 
proven successful in several areas since they can approach 
several types of functions [15]. 

The network is a network feedforward RBFN composed of 
three layers: an input layer, a hidden layer and output layer. 
The activation function in the hidden layer is a radial function. 
The activation function most commonly used is the Gaussian 
function [16]. 

The input layer is used as a distributor of inputs to the 
hidden layer. Unlike NNF, the values of entries in the input 
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layer are routed directly to the hidden layer without 
being multiplied by the weight values. 

The unit of the hidden layer measures the distance between 
the input vector and the center of the radial function, and 
produces an output value depending on the distance. The center 
of the radial function is called the reference vector [17]. 

IV. PROBLEM FORMULATION 

The algorithms of artificial neural networks (ANN) have 
been applied successfully in many applications in many fields. 
In the field of high voltage, the ANN has also been applied 
effectively to the first partial discharges [18]. 

The major field of application of ANN is the estimation of 
functions, because the useful properties such as adaptability 
and nonlinearity are in agreement with the estimation of the 
equation describing functions when the function is unknown 
and the only requirement is to have a representative sample of 
the behaviour of the function. In this work, learning the 
important data have been made of experimental studies on the 
propagation of streamers on the surface of insulators [4].More 
detailed studies and tests were conducted to determine the 
parameters of the ANN to give better results and to have 
a quality model. A certain approach using ANN as an estimator 
function was used to effectively model the propagation 

velocity of streamers V  depending on several parameters: 

The nature of the polymer, represented byT . 

The initiation voltageu . 

The relationship is as follows:   

),( TDfV =                                                                   (3) 

It was found that when learning is complete, the ANN is 
able to estimate the speeds of different functions efficiently and 
effectively. This study attempts to show the effectiveness of 
ANN as function estimator in studies of the propagation of 
streamers [4]. Modelling the propagation velocities of the 

streamer as a function of the applied voltage  and the type of 

material T  by neural networks as a function estimated with 
the aid of experimental data. 

Each learning model includes two input parameters 

u andT , and an output parameter which is the corresponding 
values of V  

The neural network model has two input nodes and one 
output node [4]. 

Once the neural network trained by the training data, the 
network is tested by the test data. 

The collection of experimental data was obtained from the 
experimental curve from article [4]. The shape of the curve of 
the measured velocities as a function of applied voltage is 
given as follows: 
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Fig. 3. Velocities measured by the voltages applied 

A. The Learning Algorithm  

The root mean square error learning RMSE is given by: 
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                        (4) 

The accuracy of learning is measured by the RMSE whose 
expression was given by equation (4), and test accuracy is 
measured by the percentage of the mean absolute error (MAE 
%), given by: 

100% ×
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n
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Ot
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k
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                             (5) 

Where: 

kt  is the experimental result corresponding to the given 

test input to the output neuron k , 

kO is the output determined for the output neuron 

k corresponding to the data test input, and n is the number of 
input test data. 

V. RESULTS AND DISCUSSION 

A. Choice of the Arrangement and the Number of Neurons 

We begin by a single neuron in the first layer, all 
calculations are performed for the second arrangement, and the 
number of neurons in the 1st, 2nd and 3rd layer is applied to 
other arrangements. We do the same thing with two neurons in 
the first layer, then three and four neurons the following 
summary table is obtained. 
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TABLE I.  CHOICE OF THE ARRANGEMENT AND THE NUMBER OF 
NEURONS FOR LOGSIG FUNCTION 

 Logsig Function, Arrangement 8, 

Number of layers : 3 

 Number of 

epochs 
RMSE MAE 

1st layer: 1 neuron 

2000 2.8577e-004 0.0213 2nd layer: 1 neuron 

3rd layer: 7 neurons 

1st layer: 2 neurons 

1000 3.1362e-004 0.0204 2nd layer: 2 neurons 

3rd layer:11 neurons 

1st layer: 3 neurons 

1000 2.5530e-004 0.0208 2nd layer: 9 neurons 

3rd layer:12 neurons 

1st layer: 4 neurons 

2000 2.9046e-004 0.0208 2nd layer: 3 neurons 

3rd layer: 9 neurons 

 

The best result was obtained for 02 neurons in the first 
hidden layer, 02 neurons in the second hidden layer and 11 
neurons in the third hidden layer. The number of iterations is 
now 1000 iterations. 

We change the number of iterations from 500 iterations to 
10000 iterations. 

TABLE II.   EFFECT OF THE NUMBER OF ITERATIONS FOR LOGSIG 
FUNCTION 

Logsig Function, Arrangement 8, Number of layers : 3 

1
st
 layer: 2 neurons 2

nd 
layer: 2 neurons 3

rd 
layer:11neurons 

Number of epochs RMSE MAE 

500 3.6131e-004 0.0211 

1000 3.1362e-004 0.0204 

2000 3.0301e-004 0.0205 

3000 2.9838e-004 0.0206 

4000 2.9530e-004 0.0208 

5000 2.9324e-004 0.0210 

10000 2.4590e-004 0.0217 

 

The best result is obtained for 1000 iterations, for the case 
of 02 neurons in the first hidden layer. 

The learning of the neural network is represented by the 
following Figure: 

 
Fig. 4. Learning of the neural network 

 

Testing the neural network is that of Fig. 5. 

 

 
Fig. 5. Test of the neural network 

B. Effect of changing activation function on RMSE and MAE  

TABLE III.  CHOICE OF THE ARRANGEMENT AND THE NUMBER OF 
NEURONS FOR TANSIG FUNCTION 

 Tansig Function, Arrangement 6, 

Number of layers : 3 

 Number of 

epochs 
RMSE MAE 

1st layer: 1 neuron 

2000 0.0103 0.2717 2nd layer: 1 neuron 
3rd layer: 7 neurons 
1st layer: 2 neurons 

1000 0.0505 1.5603 2nd layer: 2 neurons 
3rd layer:11 neurons 
1st layer: 3 neurons 

1000 1.8818e-004 0.0343 2nd layer: 9 neurons 
3rd layer:12 neurons 
1st layer: 4 neurons 

2000 0.0030 0.1053 2nd layer: 3 neurons 
3rd layer: 9 neurons 

 

The best learning error for tansig function for 1000 
iterations, while for the test error MAE, the lowest being for 
logsig function for 1000 iterations too. 

TABLE IV.  EFFECT OF THE NUMBER OF ITERATIONS FOR TANSIG 
FUNCTION 

Tansig Function, Arrangement 6, Number of layers : 3 
1
st
 layer: 3 neurons 2

nd 
layer: 9 neurons 3

rd 
layer:12neurons 

Number of epochs RMSE MAE 

500 2.0609e-004 0.0259 

1000 1.8818e-004 0.0343 

2000 1.4680e-004 0.0477 

3000 1.4124e-004 0.0526 

4000 1.3299e-004 0.1147 

5000 1.0685e-004 0.3703 

10000 1.2829e-005 0.5559 

 
The increase in the number of iterations in this case  has the 

effect of reducing the learning error for tansig function for 
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10,000 iterations. The error on the test remains the lowest for 
logsig function for only 1000 iterations. 

C. Comparison between Feedforward and Radial Basis 

Function Networks 

TABLE V.  SUMMARY TABLE BETWEEN FEEDFORWARD AND RBF 
NETWORKS  

 
Feedforward Network 

(Trainlm function) 

Radial Basis 

Function Networks 

(Newrb) 

 
 Logsig Tansig 

RMSE 
 RMSE MAE 

01 layer 2.3910e-004 2.2327e-004 

2.9883E-004 02 layers 2.3292e-004 2.1608e-004 

03 layers 2.4590e-004 1.2829e-005 

 

The best RMSE was obtained for the Feedforward network 
for the learning function Trainlm and the activation function 
tansig. 

The comparative curves of the experimental velocities 
(measured) and simulated according to voltages applied 
to the streamer, for different insulations and for air, are 
given in Figure the 8 following: 
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The comparative curves of the experimental velocities  (measured) and simulated       

according to voltages applied to the streamer, for different insulations,  and for air
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Fig. 6. Comparative curves of measured and simulated speeds depending 

on applied voltages 

VI. CONCLUSIONS  

The best result concerning the error of learning or RMSE is 
given for 03 hidden layers. 

The number of iterations that gave the best result is 10000. 

 The best arrangement is the arrangement No. 06. 

The activation function used in hidden layers is the function 
tansigmoïde. 

 The function used in learning is trainlm. 

Concerning the learning error for the RBF network, the 
number of iterations is small (100 iterations) which increases 
the speed of learning. 
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