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Analytic and Numeric Solution of Nonlinear
Partial Differential
Equations of Fractional Order

M. A. ABDOU, M. M. EL - KOJOK & S. A. RAAD

Abstract— The existence and uniqueness solution of the Cauchy
problem are discussed and proved in a Banach space E due to
Bielecki method and Picard method depending on the properties we
expect a solution to possess. Moreover, some properties concerning
the stability of solutions are obtained. The product Nystrém method
is used as a numerical method to obtain a nonlinear system of
algebraic equations. Also, many important theorems related to the
existence and uniqueness solution of the algebraic system are
derived. Finally, an application is given and numerical results are
obtained.

Keywords— nonlinear partial differential equation of fractional
order , semigroups, nonlinear algebraic system , Nystrom method.

I. INTRODUCTION

Any authors have interested in using the semigroups
methods for partial differential equations. In [1],
Claeyssen and Schuchman discussed the minimal extension of
the classical semigroup theory for second-order damped
differential equations in Banach spaces with closed, densely
defined linear operators as coefficients. In [2], Picho'r and
Rudnicki proved a new theorem for asymptotic stability of
Markov semigroups .In [3], Ntouyas and Tsamatos studied the
global existence of solutions for semilinear evolution
equations with nonlocal conditions , via a fixed point analysis
approach. In [4], Li and Shaw studied a natural generalization
of the above two notions to a wider class of operator families,
called exponentially equicontinuous n-times integrated C-
semigroups. The n-times integrated exponentially bounded
semigroups of operators, ne N, on a Banach space, especially
for n =1, were investigated in [5-10] and applied to abstract
Cauchy problems with operators which do not generate C, -
semigroups (see also Bcais [11]). In [12], Mijatovie and
Pilipovie introduced and analyzed - times integrated

semigroups for ae(l’lj' In [13] , El-Borai studied the
2
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Cauchy problem in a Banach space E for a linear fractional
evolution equation . In his paper , the existence and uniqueness
of the solution of the Cauchy problem were discussed and
proved. Also, the solution was obtained in terms of some
probability densities. In [14], El-Borai discussed the existence
and uniqueness solution of the nonlinear Cauchy problem.
Also, some properties concerning the stability of solutions
were obtained. In [15] Abdou et al., improved the work of El-
Borai in [13] and used the product Nystrdm method (PNM) to
obtain numerically the solution of the Cauchy problem .

In this work , we treat the following Cauchy problem of the
fractional evolution equation

o%u(x,t)
ot”
with the initial condition u (x,0) = uq(x),
in a Banach space E . Here u(x,t) is an E-valued function
on Ex[0,T],T<w,A isa linear closed operator defined on
adense set S in E into E, {B(t),t €[0,T]}is a family of linear

=Au(xt)+F (xt,Bt)u(x,t)),

closed operators defined on a dense set 5, 5, in E into E,
F is a given abstract function defined on E x[0,T] with values
inE, up(x)eE and 0<a <1.

Il. NONLINEAR FRACTIONAL EVOLUTION EQUATION

Consider the following Cauchy problem of the fractional
evolution equation

%:Au (x,t)+F (x,t, B(t)u (x,1)), (1)
with the initial condition : u (x,0) = ug(x), (2

in a Banach space E , where u(x,t)is an E-valued function
on Ex[0,T],T<ew, A is a linear closed and bounded
operator defined on a dense set S;,{B(t),t €[0,T1}is a family
of linear closed and bounded operators defined on a dense set
S, o §; inEinto E, Fis a given abstract function defined on
E x[0,T]with values in E, ug(x)eE and 0<a <1 .

It is assumed that A generates an analytic semigroup
Q(t) . This condition implies :

|Q(t)|<k for t>0 , and HAQ(t)Hs% for t>0 , (3)
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where |- |is the norm in E and k is a positive constant ( see

Zaidman [16] ).
Let us suppose that B(t)g is uniformly Holder continuous

in t[0,T], forevery g €S ; that is

|B(t2)g-B(t)g|<ki(ta —t,)” . (4)
for all t, >t;, t;,t, €[0,T], where k; and g are positive
constants, g<1.

We suppose also that there exists a number y e (0,1), such
that

IBE)QMh] =<2 n| ®

4
where t; >0 , t, €[0,T],

constant (see[13,17,18]).

( Notice that Q(t)he S, for each he E and each t >0) .

Also, it is assumed that, the function F satisfies the following
conditions :
(i) F is uniformly Holder continuous in t €[0,T]; that is

| F (%t W) — F(x, 1, W) [ £(t ~t)” (6)
forall t,>t,t,t,€[0,T] and all x ,WeE, where ¢and
3 are positive constants, B<1,W =B(t)u(x,t), and |- is

the normin E .
(ii) F satisfies Lipschitz condition

< N(x,t)‘

heEand kyis a positive

<1y),

()
forallx, W ,W* eE and all t[0,T], where ¢, is a positive
constant .

(

*is a constant ). (8)

Following Gelfand and Shilov [19], Schneider and Wayes
[20], we can define the integral of order « >0 by

19§ (t)=—— [ (t-0)“"L f (0)do .

I'(a )I

If O0<a <1, we can define the derivative of order « by

def (t 1 ¢ £ o df@
©_ oL (0=,
dt FA-a)q (t-0) do

where f is an abstract function with values in E .
Now, it is suitable to rewrite the Cauchy problem (1) , (2) , in
the form

u(x,t)= uo(x)+—j (t-0)*1Au(x,0)do

[(a) 5

~0)*7LF (x,0,B(0)u(x,0))do

1
+ @ ) 9)

Let Cg(Ex[0,T]) be the set of all continuous functions
u(x,t) e E, and define on Cg (E x[0,T]) a norm by
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Ju(xt) HCE(Ex[O,T]) = TﬁXHU(X't) |g - forall te[0,T], xeE.

By a solution of the Cauchy problem (1), (2), we mean an
abstract function u(x,t)such that the following conditions
are satisfied :

(@ u(x,t)eCg(Ex[0,T])
te[0,T], xeE.

and u(x,t)eS; for all

(b) % u(x) exists and continuous on E x[0,T], where
ot*

O<axl.

(c) u(x,t)satisfies Eq.( 1) with the initial condition (2) on
Ex[0,T] .
Lemmal:

Let E be a Banach space of elements u(x,t),
(E,d;) is a complete metric space, where

then

dp (U(x,1),v(x,t)) = max{e"%(“x)u(xt) V(x| } (1>0)-
t

(10)
Corollary 1:
If E is a Banach space , then for the positive constants L,

Mand 7, (E,J) is acomplete metric spaces , where

d (u(x,t),v(x1t)=
o (LergmyPT2e L

maxle 2@y ) X)||U(x,t)—v(x,t)|| (12)
Xt E
Lemma 2 :

If A>1and 0<&<1,then

t

_ 1.5-
[t-ndp < ()7t (12)
A

0
and

; 1 1

[e*t-n)’tdy < (3)5[1+§]e’“. (13)

0

I1l. THE EXISTENCE AND UNIQUENESS SOLUTION OF
NONLINEAR FRACTIONAL EVOLUTION EQUATION
Here, the existence and uniqueness solution of Eq.( 9)
and consequently its equivalent Cauchy problem (1), (2),
will be discussed and proved in a Banach space E by virtue
of Bielecki method and Picard method .
(a) Modified Bielecki method :
In this method , we will prove the existence and uniqueness

solution of Eq.(9) for %<a<1, and O<a<1.

Case (i) : For l< a <1 , we consider the following theorem .
2

Theorem 1:
If A and B are linear bounded operators, and F satisfies the

conditions (7) and (8) , then for %< a <1, Eq.(9) has a unique
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solution in a Banach space E .
Proof :

Let K be an operator defined by

t
[KC —0)*tAu(x,0)do+

IZu(x,t):uo(x)JrF 1a)

j(t 0)*~1F (x,0,B(O)u(x,0))dé . 14)

I'(a)

Hence , we have

- t
H K u(xt) Hg |ug(x) | + j (t-6)"Y| Au(x,0)|do+

1
I'(a)
e )j( ~0)“ F (x,6,B(8)u(x,6))[dé.
Since A and B are bounded operators ,
constants L and M such that

| Au(x.t)[|<Lju(x.t)|.and] BE)u(x,t)| <M [u(xt)|, (15)

Using the conditions (8) and (15) ,
becomes

there exists positive

the above inequality

~ L+/0™M _
”Ku(x,t)“s||uo(x)||+gj' (t-0)% 1||u(x 6)|de.
0
Squaring both sides of the above inequality ,
Cauchy-Schwarz inequality, we obtain

~ 2
” Ku(x,t) H < 2| ug(x) ||2 +2 67 [u(x.0) ||2
TO!

(5( ]\/2a—1J'

Inequality (16) shows that , the operator K maps the ball
By, < E into itself , where

then applying

L+/¢*M
I'(a)

(16)

202
1-257
Since >0, o>0, therefore 5 <1. Also ,

2

=

. (o=]ue(M])-

the inequality
(16) involves the boundedness of the operator K .

For the two functions u(x,t)and v(x,t)in E, the formula (14)
leads to

t
[Ku(t)-Kv(xn]< 1"(105){-({ (t-0)21 A (x,0) - v(x,0)) |do

t
+ j t-0)"7Y F(x,6,B(e)u(x,e))—F(x,e,B(e)v(x,H))dH} .
0
In view of the conditions (15) and (7) ,
takes the form
(Lo [ F )
r(){£ (t-6)*"|u(x,0)

Squaring both sides of the above inequality ,
Cauchy-Schwarz inequality, we get

the above inequality

v(x,0) |do }

then applying

HKu (x,t)— Kv(x t)H
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(LreaM)? 261
2a-1 T )(

t+X)

H Ku(x,t)-Kv(xt) H2 < max{e ( Ju(x,t)=v(x.t) 2}
Xt
(LM 2 q2at ((Uzﬂ) 7202 (g1x)
[(a) (2a-1) 0
Thus , we have

3

1 i ) () Ju(x,t) —v(x,t) ||2

() ! il
(17)

In view of (11) , the previous inequality (17) can be adapted in
the form

dé.

(L+/1M

2a-1
2a-1 T

max
x,t

A ” Ku (x,t) - }Zv(x, t) HZ}S

max

(L+€1M) 2a 1
e_( 2a-1 T
Xt

d (Ru(e),Rv(x0)== L F ).

( )

then _= 1, therefore d is a contraction

Since 1<a <1,
2 F(a)

mapping . By Banach fixed point theorem , K has a unique
fixed point which is , of course , the unique solution of Eq.(9).
Case (ii) : For 0 <a <1, we consider the following theorem .
Theorem 2 :

If A and B are linear bounded operators , and F satisfies the
conditions (7) and (8) , then for 0<a <1, Eq.( 9) has a unique
solution in a Banach space E .

Proof :

From Eq.(14) , we have

~ t
“ K u(xt) “s |up(x) | + j (t—6) Y| Au(x,60)[do+

1
I'(a)
P )j( ~0)* 7Y F (x,6,B(0)u(x,0))]d .

In view of the conditions (15) and (8)
becomes

” K u(x,t) ”s Juo(x) |+

, the above inequality

(L+OM) b ot
Wi(t—e) u(x,6)|dé .

Using (12) in (17) , we get

”IZu(x,t)”s||u0(x)||+(L;(( )M)( T ux b))
(T=maxt) . 18)
0<t<T

Inequality (18) shows that, the operator K maps the ball
By, < Einto itself, where

o (L+¢*M) 1.4 A1
n=—— ; (oc=|ug(X)|, 6 =——7—7=
25125, (o=|upM]| . & @) ( ) T)
Since r, >0, >0, therefore &, <1 . Also , the inequality

(18) involves the boundedness of the operator K .
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For the two functions u(x,t)and v(x,t) in E , the formula
(14) leads to

1
[(a)

HRu(x,t)—Rv(x,t)Hs {} t-0)*1Fdo
0

t
+f (t-0)* A(u(x,e)—v(x,e))de}
0

where F = |F (x,6,B(@)u(x0)-F (x,6,B@)V(x,0)) |
Using the conditions (15) and (7) , the above inequality
becomes

H IZu(x,t)—IZv(x,t)Hg

t
% {g(t—e)a—lu(xﬂ)—v(xﬁ) dg}
Hence for 4 >1, we have
[Ruxt -Rvixt)< %

x max {e"m“) Ju(x,t) —v(x.t)] }

t
J'(t _9)(1—161(9+X) dg
Xt 0

In view of (13) , the above inequality takes the form
max {e"l(”x)” Ku(x,t) — Kv(x,t) H }g
x,t

19)

oq max {e’“”x)"u(x,t) —v(x,t) ||} ,
Xt
_(L+6M) 1 } _

1 a
— 1+
ro ) [
The last inequality (19) can be adapted in the form

dy (K u(xt), Kv(x,t))< oq di(u(x,t),v(xt)) .
If we choose A sufficiently large , then we have oy <1 ;

where o1

therefore dy is a contraction mapping . By Banach fixed point

theorem, K has a unique fixed point which is , of course, the
unique solution of Eq.(9) .

This completes the proof of the theorem .

(b) Picard's method :

The formula (9) is equivalent to the following integral
equation ( see[13] )

u(xt) = [ £,(0)Q*0) ug(x)do
0

t o
+a [ 0t-n""¢,O)Q(t-n)"O)W(xn)dody , (20)
00

where ¢, (0) is a probability density function defined on
[0,00),

wW(x,t)=F (x,t,B(t)u(x,t))=F (x,t, W (x,t)),
and

(21)
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W (x,t) = [ £, (0) B(Q(t*O)up () dO+
0

t oo
af[Ot-n""¢,(0)BO Q- O)W(xn)dodn . (22)
00
Theorem 2:
The Cauchy problem (1), (2), has a unique solution in the
Banach space Cg (E x[0,T]).

The proof of this theorem comes as a result of the following
lemmas .

Lemma 3 :

Under the conditions (5) and (7) , the integral equation (20)
has a solution in Cg (E x[0,T]).

Proof :
Using the method of successive approximations , the formulas
(21) and (22) , lead to

Wny1 (60 =F (6t [ £, (0)B(1)Q(t*0)ug(x)d6
0

t o

+a [ [ 0t-m"7¢(0)BO)QE-n)"0)Wn(x.7)dodn).
00

Hence , in view of the condition (7) , we get

too

|00~ (x D] < @ 0] [ 0t -n) "2, (0)] BQ iy [d0y,
00

where [BQ Wy | = BOQ (- o) [ (1)W1 01|

Using the condition (5) , we obtain

t
” Wn+1(X,t) - \TVn (X,t) " <M* J‘el(n‘*x) (t _ Tl)v_ldn

emax e 20 w0 -waen]] @3

where ,

v=a(-y),M" =aly [ 07 ¢, (0)d0 and 1>1. (24)
0
Introducing (13) in (24) ,we have

max [ef’i(tJ’X) [ Wi 2. (x, 1) = Wy (x, 1) | JS

(2 e L[ 0 -0k

14
We can choose A sufficiently large such that

ST, 1
MY = | |1+=|= 1.
[Aj { +v] “s
Hence , the above inequality can be adapted in the form
—A(t ~ ~
max e~ [ 3 (x,0) ~ i (x O [1 <

(25)

4 max [ e A+ | Wiy (X, ) = Wiy g (%, 1) |1 -
X,t

By a successive application of the above inequality , we get
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max[e~* (0 @y 3 (x,8) iy (x, 1) ]
X,t
< pomax [ e () " Wi (X, 1) = W _1 (X, t) "]
X,t
< ()% max[e U Wy (x,0) =W _p (%, 1) ]
X,t

<< ()" max e |y (x, 1) — o (x, 1) |1,
X,t

where Wy (x,t) is the zero approximation which can be taken

the zero element in the space E. Thus, the series

> H W1 (X, 1) = Wi (X, 1) H converges uniformly in E x[0,T].
n=0

n
Since Wy yq(X,1)=> (Wi, 1(X,1) = Wi (x,1)) , it follows that
i=0
the sequence {v~vn(x,t)} converges uniformly in the space
Ce(Ex[0,T]) to a continuous function F (x,t,W(x,t))
which  satisfies Eq.(20) for all  (x,t)e Ex[0,T].
Consequently, u(x,t) € Cg (E x[0,T]) , where

u(xt)=[¢©O)Q(t* Oug(x)d6 +
0

t oo
af[ot-m* ¢, (O)Q(t-n)* O)F (x7.W (xn)dodr .
00

Lemma 4 :

Under the conditions (5) and (7) , the integral equation (20)
has a unique solution in Cg (E x[0,T]) .

Proof :

Let uj(x,t) and u,(x,t) be two solutions of Eq.(20) , then
from the formulas (21) and (22) with the aid of condition (7) ,
we have

H VT/Z (X,t)—VTIl(X,t)“ fa Zl

t o

[[oe=n"c, 0 |[BOQU - &), (1) - a(xn)]|d0dn,
00

Using the same argument of lemma (3) , we get
n;atx[e’/l (t+x) W (x,8) =Wy (x,8) [ 1< e o

where p =max[e * %) W (x, ) = Wy (x,8) |2 1 -
x,t

Thus , from (25) we have
p= nlatx[e_’l(”x) [ (x,t) = W (x,1) [ c 1=0 -

This completes the proof of the lemma .
Lemma5:
Under the conditions (4) , (5) and (6) , the solution u(x,t) of

Eq.(20) satisfies a uniform Holder condition .(see [13] )

Proof of Theorem 3 :

By virtue of lemmas (3)-(5) , we deduce that the solution
u(x,t) of Eq.(20) represents the unique solution of the Cauchy
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problem (1), (2) in the Banach space Cg(E x[0,T]) , and
u(x,t)e ;.

Now, we will prove the stability of the solutions of the Cauchy
problem (1) , (2). In other words , we will show that the
Cauchy problem (1), (2) is correctly formulated .

Theorem 4 :

Let {u,(x,t) } be a sequence of functions , each of which is a

solution of Eq.(1) with the initial condition u,(x,0) = g,(x),
where g, (x)eS; (n=12,...).1f the sequence {g,(x)}
converges to an element ug(x) € S;, the sequence { Ag,(x) }
converges and the sequence {B(t)g,(x)} converges
uniformly on Ex[0,T]. Then, the sequence of solutions
{up(x,t)} converges uniformly on Ex[0,T] to a limit
function u(x,t), which is the solution of the Cauchy problem

D,@.

Proof :

Consider the sequences { f,(x,t) } and {u:(x,t) } , Where
o%un (x,1) "

T—Aun(x,t)Z fn(X,t) y

u:(x,t):un(x,t)—gn(x) ) un(X!O):gn(X) )

too
ur(t) =a [ [ 0t-n)" "¢, O)QUt-m6) fn(xm)dody,
00

and
fr(x,t) = F (x,t, B{E) U (x,t) + B (1) 95 (X)) + A gy (%).
Thus , we get

| fa(t) = f ()| <[ Agn(¥) - Agm () |+

H F(xtBUS (%, 1) +Bgn(X)—F (xt,BU (X, 1)+ B gp(X) H
Using the condition (7) , we obtain

| () = fn(x,)| < zle B()[u: (x.t) —u:‘n(x,t)]H+

1] B®) 9n (x) =B®) 9 () [+ Agn (X) = Agm (X) | -
Consequently ,
[ 2 (0) = f(x1)

to

valy[[0e-m ¢, OB QLfy - fn]|dodn.
00

BQ Lt~ fl[=[ BOQUE-0" O (x)- fn (1)

In view of the conditions (5) and (24) , the above inequality
becomes

<01 B ) 9n ()~ B(1) 9y () |+] Agn (¥~ Agry (¥) |

t
| fo( )= fn (D) < M* [ (t=2)" Y £ (6. 12) = T (x) [ d 2
0
+01[BO) 9000 ~B® g () [+] Aga ()= Agm (9.
Given ¢>0, we can find a positive integer N = N(&) such
that
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| fa(xt) = fr(x,) | <

t

M [ (t=n)" 7 fa () = frn Om) [d + (L= p12) &
0

forall n>N,m>N and (x,t) eEx[0,T].

Using (13), the above inequality takes the form
(- ) e M0 £ (x,) - F (8| < Q- ) e g
Thus , for sufficiently large A4 , we get
max[e * | £, (x,t) — f(x D) 1< &

x,t

Since E is a complete space , it follows that the sequence
{fn(x,t)} converges uniformly on Ex[O,T] to a continuous

function f (x,t), so the sequence {u:(x,t)} converges

uniformly on Ex[0,T] to a continuous function u*(xt). It
can be proved that f (x,t) satisfies a uniform Hélder condition

on [0,T], thus u™(x,t) € S;.

This completes the proof of the theorem .

Corollary 2 :

The integral equation (20) has a unique solution in the Banach
space Cy (R x[0,T]).

IV. THE NUMERICAL SOLUTION OF NONLINEAR FRACTIONAL
EVOLUTION EQUATION

In this section , we will use the product Nystrdm method
(see Linz [21] , and Dzhuraev [22] ) , to obtain numerically ,
the solution of the Cauchy problem (1) , (2) , in the Banach

space Cqz (Rx[0,T]), where
Ju(xt) "Cm Rx[0,T]) — ”)‘(ix| u(xt|

Vte[0,T], —oo<X<o .
For this , we write Eq.(20) in the form

t
u(xt)= f*(X,T)+0€f Pt Q (7 F (x7,Bmu(xn))drn,

0
(26)
where ,
P (1) =] £, (0) Qt“O)ug(x)dé (27)
0
Q' (tm)=[6¢,(0) QUt-m“6) db (28)
0

and the bad kernel
pt)=(t-n*"t, (0<a<l,0<p<t<T ; T<w).
(29)
Here , the unknown function u(x,t)eCgy (R x[0,T]),while
f*(x,t), Q"(t,7) and p(t,;7)are known functions and
satisfy the following conditions :
(1) f*(x,t) isa continuous function in (Rx[0,T]).
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(2) Q*(t,;) with its partial derivatives are continuous
function in [0,T |.
(3) p(t,n)is a badly behaved function of its arguments such
that :

(a) for each continuous function u(x,t)and 0<t; <t, <t,

the integrals
t
[ ot Q"(tm) F(xm,BGu(xn) Jdn
t

and

t
[ pE&mQ(t.n) Flxn.Bux.n) )y
0

are continuous functions in (R x[0,T]) .

(b) p(t,n)is absolutely integrable with respect to 7 for all
0<t<T.
(4) the given function F (x,t,B(t)u(x,t))is continuous in
R x[0,T], and satisfies Lipschitz condition
|F(x,t,B(t)u(xt)—F (xtBE)V(x1)|<

N* (1) | B(t) (u(xt) =V (x,1)] ;(max‘ N*(x,t)‘s )
x,t

(30)
for all u(x,t),v(x,t)eCy (R x[0,T]), where L is a positive
constant .

Remark 1 :
In view of Corollary (3), the integral equation (26) has a
unique solution in the Banach space Cy (R x[0,T]).

Applying the product Nystrém method , then putting
t=ti =1 =X =X, ti:ih, h=ti+1—ti , (i=0,1,...,N ,
and N is even) and using the following notations

ut, x)=uj; , Q*(tiaﬂi)zQifj ) =

F (X7, B(mi)u(xi,m))=F; (Bjuj;)

the integral equation (26) can be transformed to the
following nonlinear algebraic system

N
uii = fili +a 2 wi Qi Fyj (Bjuj,j),

j=0
(i=012,...N) (31)
where ,
Wi o =A1(t) v Wije1=27j41(t)
Wioj=a"j)+ Bjalt) . Wi,N=06*%(ti)- (32)
And
. p
)= 5 [ ptin)(n=n2j-2) (1—112j-1) A7,
thjo
1
Fit)="7 [ pCtim) (252 —m) (25 —m)dn
i
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t2j
[pCti.n) (7 =n2j-2)(m2j —m)dn .
tj2

7j(ti)= (33)

2h?

Evaluating the integrals of Eq.(33), where p(t,n)= (t—zy)“‘l,
and introducing the results in the values of wW's , we get

—h¢ . . a+l
W= |[2]i-2[+a+2]|i-2["" -
7 2a(a+)(a+2)
-[2\i\2—3(2+a)\i\+2(a+1)(a+2)]\i\”} ,
S |
VI (D)@ +2)
(=22 -2 -2 -2 -2 7|
W= N 2)fi-2j 2 () |i-2j-2
"2 20 (@ +)(@+2)

+6(a+2)\i—2j\a+1+2\i—2j—2\a+2—2\i—2j+2\a+2} ,
and
_ha

Wiy (@ +D)(a+2)]i-N* +3(a+2)]i- N[
"N 2a(a+l)(a+2){( e+ 2)fi-N["+3(@+[i-N

+(a+2)\i-N+2\“+1+2\i-N\“+2-2\i-n+2\“+2}. (34)
The nonlinear algebraic system (31) represents

(N +1) equations in y; ;. Therefore , the approximate solution
of u(X,t) can written in the vector form

U=F"+aW”*F (BU).
Or in a matrix form as

(35)

r T B *
Uo,0 fo.0
ul,l f]fl
= +
LUNN | fRN
r * * * T1r |
Wo,0 Qo0  Wo1Qo1 Wo N Qo,n Fo,0 (Boug,0)
* * *
wioQro  Wi1Quy win QiN Fi1(Biu1a)
a

- Wy QR | LFNN (Bun ) |
(36)

* *
|WNoQNo Wn1Qni

Theorem 5 :
The algebraic system (31) has a unique solution in the

Banach space ¢*, under the following conditions :

SUP‘ fiTi‘ <q , (g is a constant) . (37)
[
N
sup . ‘Wi,j Qi*,j‘g g . (q"isaconstant). (38)
i j=0
(39)

sup|Biui’i| <M sup|ui’i| , (M isaconstant) .
[ [
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The known functions
D>D;, D>D,, satisfy
Sl_Jp‘Fi,i(BiUi,i)‘SDlwp‘BiUi,i‘ ,

| I

Fii(Bjuj;), for the constants

(40)

Then the algebraic system (31) has a unique solution in the

Banach space ¢*.
Proof :

Let Y be the set of all functions U Z{Ui,i} in ¢* such that

||U ||€oo <7, 1 isaconstant . Define the operator T *by

T*U=F"+aW"F(BU). (42)
From the formulas (31) and (42) , we have
N
‘T*Ui,i < sup‘ fi’i‘ﬂzsqu‘Wi’j Q:J sup‘ FJ,J (B] uj,j) J Vi -
i i j=0 i
Using the conditions (37- 40), we get
7|, <a+alul. o (h=adDM). @)

Inequality (43) shows that , the operator T* maps the set

Y into itself , where 7/1:% ,
!

Since y; >0, q>0, therefore 4; <1. Also , the inequality

(43) involves the boundedness of the operator T ",

For the two functions U and V in ¢*, the formulas (31) and
(42) lead to

‘T*Ui,i —T*Vi,i‘ﬁ a
N . )
sup 3 |, Qi sup| i (Bj uj )= (Bj vy )] v
i j=0 j
Using the conditions (38) , (39) and (41), we obtain

[Tru-Tv sz < AU =V, (44)

The previous inequality (44) proves that , the operator T

is continuous in ¢*, and under the condition 2 <1,T" is

contractive . Hence , by Banach fixed point theorem , T™ has
a unique fixed point which is the unique solution of the

nonlinear algebraic system in ¢”
Theorem 6 :
If the conditions (38) , (39) and (41) are satisfied , and the

sequence of functions {Fr; }: {(fij‘i)m } converges uniformly to

the function F*:{fif‘i} in £”. Then , the sequence of
approximate solutions {U m }: {(ui Im } converges uniformly

to the exact solution U = {Ui,i} of the nonlinear algebraic

system (31) in (.
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Proof :
In view of Eq.(31) , we get

|Ui,i —(Ui,i)m|S Sl{p| fii —(fi,i)m|+

N
asup Z‘Wi,j Qi*,j‘ sup| Fj(Bjuj )~ Fij (Bjuj,m) | Vi.
i j=0 J
The above inequality with the aid of conditions (38) , (39)
and (41), takes the form

1

|V -Unl- s | FP-Fal. o a<d

Since HF*—F;} —>0 as m-—>o, So that
>

Ju —Um”[w -0 .

This completes the proof of the theorem .
When N — oo, the sum
N
z Wi j Qlﬂjj FJ,J(BJUJ,J) ; 0<1i, j<N becomes
j=0

—,o—

f p(t,7) Q" (t,7) F (x,77, B(r7) u(x,77)) dn ,consequently
0

the solution of the algebraic system (31) is the same solution
of the integral equation (26) . The next theorem shows the
convergence of the sequence of approximate solutions to the
exact solution of EQ.(26) in the Banach space

Cxr(Rx[0,T]).
Theorem 7 :
If the sequence of continuous functions {f:(x,t)}

converges uniformly to the function f*(x,t) , and the

functions Q*(t,77), p(t,n) and F (x,t,B(t)u(x,t))satisfy,
respectively , the conditions (2" , (3'- b) and (30). Then, the
sequence of approximate solutions {un(x,t)} converges
uniformly to the exact solution of Eq.(4.1) in the Banach space
Cir (Rx[0,T]).
Proof :

The formula (26) with its approximate solution give

max | u(x,t) —up (x,t) | < max‘ f*(x,1) - fn*(x,t)‘
Xt x,t

t
raflpn)||Q wm|F dn
0

VO<p<t<T,-—oo< X<, (45)

Where
F* :nQE:]X| F (tiﬂv B(U)U(XJ?)) - F(tiﬂy B(U)Un(xﬁ)) |

In view of the conditions (2" and (3'-b) , there exist two
constants ¢y and C,, such that

t
@ @m|ser and [[penldnse, . @)
0
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Hence, the inequality (45) with the aid of (15), (46) and (30)
takes the form
1

—X
(L-D%
(D*=accyM LY.

Ju(x,t) —up (x.t) "CR 0,7 =

H F*(x,t) - £ (x,t)

Car (RX[0,T])

—0 as n— oo,
Cq (RA0,T])

sothat [[u(x,t) —up (x.t) ||c%(

Since H 5 (x,) — . (x,1)

wx0T]) 9

Definition 1 :
The consistency error Ry of product Nystrém method is
determined by the following equation

Ry = tf p(tn Q" (tn ) F (x,77,B(m)u(x,m))dn
0N
- 2w Qi F(Bjuy ) |, (47)
also, Eq.(;)ogives
U(th)_uN(X:t):i)wi,jQ*(tilﬂj)
x[F(xj,n,-,B(n,-)]u(xj,nj»—F(xj,n,-.B(nj)uN(xi,nj)>]+RN-
(48)

Where uy (x,t) is the approximate solution of Eq.(26) .
Theorem 8 :
Assume that , the hypothesis of Theorem (7) are satisfied ,
then
lim Ry =0 - (49)
N—w©
Proof :

The formula (48) leads to
Ry < SlJI0| Ui i — (Ui i)n |+
1

N

sup 3. | Wi, Qf j|sup| i (Bjuj, )=, (Bj(uj )]
i j=0 i

Using the conditions (38) , (39) and (41) , we get

[Rllp <[V -Un]l» +a MU -U [0, ¥ N =123,....
Since ||U —UN"/oc —0 as N > (see Theorem (7)), it

follows that |Ry [, —0-

This completes the proof of theorem .
Application | :
In Eq.(26) , let:

O<a<l, Q*tn) =1, F(xtBE)u(xt)=(x+t)>2.
Thus , we get a nonlinear Volterra integral equation of the
second kind with Abel kernel
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a

2
u(x,t) =(x+1) - — 2xt 2
[24

2 4+ +
(a+l) (a+D)(a+2)

t
vaf t-n*Hx+n)? dy (50)
0

where the exact solution u (x,t) =x+t.

The results are obtained numerically in Table 1. which lists
various values of x,t €[0,0.8] together with the values of the
exact and approximate solutions and the error of Eq.(50) . It
can be observed from this table that :

1. TheerrorisOfor x=t=0 .

2. As x and t are increasing through [0,0.8] , the error is also
increasing for « =0.98, o« =0.8and ¢ =0.4.

3. As the values of « are increasing , the values of error are
also increasing for x,t [0,0.8].

a=04 a=0.8
x=t  Exact ApPProX. ApPPIOX.
Sc?lﬁtion Error S(E)IEtion Error
0 0 0 0 0 0
0.08 0.16 0.079507 0.000493 0.079929 7.0828e-05
0.16 0.32 0.158409 0.001591 0.159404 0.000596
0.24 0.48 0.234257 0.005743 0.238186 0.001814
0.32 0.64 0.312337 0.007663 0.315773 0.004227
0.4 0.8 0.376563 0.023437 0.39183 0.008170
0.48 0.96 0.452405 0.027595 0.466214 0.013786
0.56 1.12 0.513083 0.046917 0.538719 0.021281
0.64 1.28 0.589233 0.050767 0.608666 0.031334
0.72 1.44 0.621711 0.098289 0.675075 0.044925
0.8 1.6 0.693685 0.106315 0.739096 0.060904
a=0.98
=t Exact
X Apprgx. Error
Solution
0 0 0 0

0.08 0.16 0.079973 2.6855e-05

0.16 0.32 0.159638 0.000362

0.24 0.48 0.238938 0.001062

0.32 0.64 0.31712 0.002880

0.4 0.8 0.394762 0.005238

0.48 0.96 0.470214 0.009786

0.56 1.12 0.545146 0.014854

0.64 1.28 0.616527 0.023473

0.72 1.44 0.687461 0.032539

0.8 1.6 0.753268 0.046732
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