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Abstract: This paper is dedicated to the study of some
properties of the operators which admit residually non-
analytic functional calculus initiated in [16]. We shall also
define and study the spectral s-capacities, and give several
s-decomposability criteria. We shall further study the
restrictions and the S-decomposable operators’ quotients.

The concepts of 4g -spectral function, respectively

Ag -decomposable and are

Ag -spectral

introduced and characterized here and several elementary

properties concerning them are studied. These operators are
natural generalizations of the notions of 4 -scalar, A -

decomposable and _7 -spectral operators studied in [8] and

operators

appear, in generally, as restrictions or quotients of the last
one.
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1. INTRODUCTION

Let X be a Banach space, let B(X) be

the algebra of all linear bounded operators on X
and let C be the complex plane. If T e B(X) and

Y < X is a (closed) invariant subspace to T, let
us denote by T|Y the restriction of T to Y,
respectively by T the operator induced by T in

the quotient space X = X /Y . In what follows, by
subspace of X we understand a closed linear
manifold of X . Recall that Y is a spectral
maximal space of T if it is an invariant subspace
such that for any other subspace Z < X also

invariant to T, the inclusion o (T [Z)co(T|Y)
implies ZcY ([8]). A family of open sets

Gg U{Gi}:n:lis an S -covering of the closed set
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n —_—
occCif GsU|[JGj|20US and GiNS =0

i=1
(i=1,2,...,n) (where ScC is also closed)
([14]).
The operator TeB(X) is S-

decomposable (where S <o (T) is compact) if

n

i Of

for any finite open S -covering G5 U{G;j}

o(T), there is a system Yg U{Y;} in:1 of spectral
maximal spaces of T such that o(T |Yg)<=Gg,

n
o(T1Y;)=Gj(i=12..,n)and X =Yg+ Y;

i=1
([4D. f dimS=0, then S= and T is

decomposable ([8]). An open set Q c C is said
to be a set of analytic uniqueness for T e B(X)

if for any open set wcQ and any analytic
function fy:w— X satisfying the equation

(A1-T)fq(2)=0 it follows that fy(1)=0 in
o ([14]). For T eB(X) there is a unique
maximal open set Qi of analytic uniqueness
([14]). We shall denote by St =CQ7 =C\Q7

and call it the analytic spectral residuum of T.
For xe X, a point A is in &7 (x) if in a
neighborhood V, of A, there is at least an
analytic X -valued function f, (called T -
associated to x) such that (u1-T)fy (u)=x,
for © eV, . We shall put

y1 (x)=C671 (x)=C\57 (x), p1(x)=571 (X)NQ7

o1 (x)=Cor (x)=C\pr (X)=77 (x)UST and
X1 (F)={xeX;or(x)=F}

where St < F < C ([14], [15]).
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An operator T e B( X)) is said to have the

single-valued extension property if for any
analytic function f:o—> X (where @ c C is an

open set), with (11 -T)f(4)=0, it follows that
f(4)=0 ([10]). T has the single-valued
extension property if and only if St =& ; then we
have o1 (x)=y7(x) and
p7(x)=67(x) a unique analytic function
x(/l), T -associated to x, for any xe X . We
shall recall that if TeB(X), St #d, St cF
and X1 (F) is closed, for F < C closed, then
Xt (F) is a spectral maximal space of T ([14]).

there is in

We say that two operators Ty, T, € B(X)
are quasinilpotent equivalent if
1

lim H(Tl—Tz)[n] "= lim H(TZ—Tl)[n] n -0
where
(Tl—Tz)[n]= (—1)n_k(:j T T3 (8.

k=0

Definition 1.1. ([16]) Let Q be a set of the

complex plane C and let S—Q be a compact
subset. An algebra A4g of C-valued functions

defined on Q is called S-normal if for any finite
open S -covering Gg U{Gi}in:1 of Q, there are
the functions, fg, fj € 45 (1<i<n) such that:
1) f5(Q)<[0,1], fj(Q)<[0,1]
(1<i<n);
2)supp( fs)=Gg, supp( fj) = G;
(1<i<n);

n
3) fs+> fi=1lon Q
i=1
where the support of f e 4g is defined as:

Supp(f):{,ueQ; f(,u);tO}.
Definition 1.2. ([16]) An algebra Ag of C-

valued functions defined on Q is called S-
admissible if:
1) AeAg,1e Ag (where A and 1

denote the functions f(1)=4 and f(1)=1);
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2) Ag is S -normal;
3)forany f e 45 andany & ¢supp(f),
the function
M, for 2e Q\{&}
fe(2)=1&-4
0, forA eQﬂ{f}
belongsto Ag.

Definition 1.3. ([16]) An operator T eB(X) is
said to be _Ag-scalar if there are an S-
admissible algebra 45 and an algebraic
homomorphism U : 45 —B(X) such that
U;=I1 and U, =T (where 1 is the function
f(4)=1and 4 is the function f(1)=2). The
mapping U is A g -spectral
homomorphism (_4g-spectral function or Ag -

functional calculus) for T .
If S=0, then we put 4= A4, and we obtain

an _4 -spectral function and an _4 -scalar operator

(8D

The support of an A4g-spectral function

called

U is denoted by supp(U) and it is defined as
the smallest closed set F < Q such that U ; =0

for f e 45 with supp(f)NF=9.
A subspace Y of X is said to be
invariant with respect to an _4g -spectral function

U:Ag >B(X)ifUsYcY, forany fe Ag.

We recall several important properties of
an _4-spectral function U ([8]), because we

want to obtain similar properties for an Ag-

spectral function:
1.U, has the single-valued extension

property, where A is the identical function
f (/1) =1

2.aui(U fx)csupp(f),for any fe A4
and xe X ;

31foy, (x)Nsupp( f)=2 then

U (x)=0,forany fe 4 and xeX;
4.xeXy, (F)={xeX;oy, (x)cF}
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<Ug(x)=0, for any fe 4 with

property supp( f )ﬂ F=9, F cQ closed;

5.5upp(U)=0c(U,);
6. U , is decomposable.

Theorem 1.4. Let TeB(X) be an 4g-scalar
operator and let U be an g -spectral function
for T . Then we have:

supp(U) co(T)US and o(T) <= supp(U)US.
Proof. Let us consider f e 4g such that
supp( f)N(o(T)US)=@. If £esupp(f) and
A

is the identical function f (1)=A, then we have

(§1-U Ut =Ueayr, =Us
hence
U f§ ZER(K;:,U/I)U f ,fOI’

Eep(U,)NCsupp(f).
The function

R(ET)Ug, for Eep(Uy)
F(g):{u for for & eCsupp( f)

is entire and lim |F(&)[ =0, therefore F=0.

g0
It follows that Uf, =0 on Csupp(f) and
U¢ =0, hence

supp(U) co(T)US.

Let now &g esupp(U)US , let Vg, bean
open neighborhood of £y and let W be an open
neighborhood of supp(U)US such that
Véo NW =¢. Because the algebra Ag is S-
normal, then there is a function f e 4g with
f(x#)=1 on W and f(u)=0 for HeVe, .
Consequently

supp(1- f)N(supp(U)US)=@

hence
Ul—f :O,i.e.Uf =1.

Whence

U, (Sol-Uz)=(Sol-U )U¢, =Us=I
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therefore we finally have & ¢o(U,)=0c(T)
and hence o (T) < supp(U)US.

Theorem 1.5. (Properties of 4g -spectral
functions)

Let U be an 4g-spectral function (particularly,
U is an 4g-spectral function for an 4g-scalar
operator T eB(X), T =U,). Then we have the
following properties:

(1) The spectral analytic residuum St
has the property: Sy c<S; when Sy =9
(particularly, S=&), then T has the single-
valued extension property;

(2 If (Ag1-U,)xo=0, with xo=0
and fe dg with f(1)=c, for 1eGNQ,

where G is a neighborhood of /g, then
U Xg =CXp;
3 If feAg and xeX, then

’T (U f x) < supp( f );moreover,if supp(f)>S,
then o1 (U fx)csupp(f);

(4) If f e Ag such that
oy, (x)Nsupp(f )= and St =<, then
U¢x=0;

(5) If F<Q closed, with F oS, xe X
and St =&, then xe Xy (F) if and only if
U¢x=0, for any f e A4g with the property
supp(f)NF =;

(6) U ; is S -decomposable.

Proof. The assertions (1) and (2) are proved in
[16], Theorem 3.2, respectively Lemma 3.1.

(3) We observe that for any &esupp(f) we
have f:e As and the X-valued function

&E—->U £ X is analytic. Consequently,
(E1-T)U f§x=(§| -U,)U féx:U £ X,

therefore £ e ot (U fx), hence

7T (U fx)csupp(f).

Furthermore, for f € _4g with
supp(f)> S, we deduce
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or(Uex)=StUrr (U ¢x)
cSUyt (U fx)csupp(f) '
(4) Let x(&) be the unique analytic X -valued
function defined on py  (x) which satisfies the
equality
(&1-U )x(&)=xon py, (x).
It results that
(E1-U U ¢ x(&)=U¢(S1-U;)x(5)=U ¢ x
on py, (x)
hence the following inclusions are obtained
pu, (X)cpy, (U fX) and
oy, (U fx)CGU/1 (x).
From assertion (3),
oy, (U fX):O'T (U fX):ST Uyt (U fx)

=1 (U fx)csupp(f)
hence
oy, (U fx)csupp( f)Noy, (x)=9,
therefore according to Proposition 1.1.2, [8], it
follows that U ¢ x=0.

The property (5) can be obtained by using
(4), as in the proof of Proposition 3.1.17, [8] and
will be omitted.

The proof of (6) is presented in [14],
Theorem 3.3.

Lemma 1.6. Let U be an 4g-spectral function.
If Gy is an open neighborhood of supp(U),
Gy osupp(U) and G, is an open set such that
GIUG, o Q, GyNsupp(U)=D (ie. {G, Gy}
iS an open covering of 5), then by S -normality
of the algebra Ag it results that there are tow
functions f;, f, € Ag such that:

0<f1(4)<1, 0<f(2)<1, 1€Q,

supp( f1) =Gy, supp(f,)=G, and

fi+f,=1o0on Q.

With these conditions we have:

U =1,U¢ =0

b) For f e Ag having the property that
f =1 on a neighborhood of supp(U ), it results
that U ¢ =1.
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Proof. We have
supp(1—- fy)=supp(f,)=G,
supp(1- fy) N supp(U )=
hence
0=Uy_f, =U-Uy,
therefore
Ug =Up=landUy =0.
Moreover, for f € 45 with the property
that f =1 on a neighborhood of supp(U) we
have
Ug=I
because it can be chosen in this case:
fy="f, f, =g, with supp(g)Nsupp(U)=3,
hence U 4 =0 and accordingly
Ufig=Ui=1=Uys+Ug, whence Uy =1.

Remark 1.7. From Lemma 1.6, it results that if
feAg and f=1 in a neighborhood of

supp(U), then Ugs=1. If we denote by

fV U:Y the linear subspace of X generated
eﬂo

by UY ,where Y« X and A is the set of all

functions in _4g with compact support, then we

have:

V UfX=X.
fejlo

Definition1.8. Let U be an g -spectral
function. For any open set G € G5 we denote

= V
X[U](G) supp(f)cGUfX

and for any closed set F € Fg we put
Xw)(F)= N X[u3(6).
GoF

where Fg (respectively, Gg) is the family of all

closed (respectively, open) subsets F cC
(respectively, G — C) having the property: either
FNS=Q or F>S (respectively, GNS= or
G>oS)

Theorem 19. Let U be an A4g-spectral
function. Then
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X(u](F)=Xu, (F)={x< X; oy, (x)<= F}, for
FeXs, F>S.
Proof. If oy, (x)c F, for FeFg,with F>S,
let us consider GeGg an open set with
G>F oS.Then by S-normality of A4g there is
a function f € Ag such that
1, for £ in a neighborhood of Q NF
( ):{0, for & in a neighborhood of Q\(G N Q)

and therefore supp( f ) = G, whence
supp(1-f) N oy, (x)csupp(1-f)NF=0.
According to Theorem 1.5, U;_; x=0,
hence
x=U¢ xe X[U](G).
G e Gg being an arbitrary open set with
GoF, FeFs,wehave

XEX[U](F), i.e. XUA(F)Q X[U](F)'
Conversely, let us show that
X[U](F)c Xy, (F), forany FeFs, FoS.
Let XEX[U](F)CX[U](G), for any
openset GeGy, GO F S, and let G, eGg be

an arbitrary open set containing G. By S-
normality of Ag, there is a function f; e Ag

such that
1, for EeGNQ
f1(£)=
0, for £eQ\(G; N Q)
hence supp( f,)  G1. Therefore for any f e Ag
with supp(f)=G we have f, f = f,so that
U f1U f =U f,i.e.
Ut 1X[u1(6)=11X[y(6)

whence
U X=X.
1

According to Theorem 1.5 it follows that

O'U/I(X)ZO'U}L(Uf1X)=]/U/1(UfIX)USU/1
and hence L
ou,(x)= (] G1=G.
G1€G¢
Glza

ISSN: 2313-0571

:7Ul

60

Volume 1, 2014

G e Gg being an arbitrary openset, GoF 5§,
we obtain

oy, (X)= [) G=F, hence xe Xy (F).
Gegy
GoF>S

Corollary 1.10. If U isan _4g-spectral function,
then for any F € Fg with F S, X[U](F) is a

maximal spectral space for U ;.
Proof. It results easily from the previous theorem.

Theorem 1.11. Let Ty, T, eB(X). If Ty is S-
decomposable (in particular, decomposable) and
Ty, T, are spectral equivalent, then T, is also

S -decomposable (in particular, decomposable)
and

X1, (F)=Xr,(F),
forany F — C closed, F oS (when S=, for

any F c C closed).
If T, and T, are decomposable, then T; is

spectral equivalent to T, if and only if their
spectral spaces Xy (F) and Xg (F) are
equal, ie. X1 (F)=Xg,(F), forany FcC
closed ([8], 2.2.1, 2.2.2).

If T, and T, are S -decomposable and spectral
equivalent, then their spectral spaces are equal,
ie. X1 (F)=Xg, (F), forany FcC closed,
F oS, but conversely is not true.

2. THE STRUCTURE OF SPECTRAL
MAXIMAL SPACES OF
S-DECOMPOSABLE OPERATORS

This paragraph is devoted to the study of
the S-decomposable operators defined in the
introduction (see [6], [7]). First, we reveal some
structural properties of spectral maximal spaces
of the S-decomposable operators. Then, we shall

(Mespﬂ)d@bplﬁef\ii))cﬁﬂhese operators at direct

sums, at projections, at separate parts of the
spectrum, at the Riesz-Dunfort functional
calculus and at the quasinilpotent equivalence.
We will also give proof of an important structural
theorem of spectral maximal spaces, generalising
the following from [11] and [12].
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21. Let TeB(X)be a S-

decomposable operator, and let G be an open set
such that:

LemmA

Gn(s(T)\S)=
then there exists a maximal spectral space
Y # {0} of T such that o(T/Y)c G. If dimS <1
and G N Into(T)= @ (G being an open set), then
there exists a maximal spectral space Y = {0} of T
such that o(T /Y)c G.

Proof. Let G be an open set such that:
ScGg polT)
and
G, UG > o(T).

T being S-decomposable, there exists a system of
spectral maximal spaces Y, Y from T such that:

o(T|Ys)c G, o(T|Y)cG

and

X = X, +Y.
If  Y={0}, we have Y,=X and
o(T|Y;)=0o(T)c G, contradiction,  hence

Y = {0}. When dimS <1 and G nInto(T )= @ it
follows that G N (o(T |Y)\S)#= @&, consequently
Y = {0}.

22. If TeB(X)
decomposable where dimS <1, then
c°(T)=c"(T)=D (see [8],Theorem 1.3.6),

p
T has the single-valued extension property
(S; =@) and o(T)=0,(T). If S, #, then
S; < S and dimS =2.

THEOREM is S-

Proof. If ¢%(T)=4, let G be a component
of o} (T). Then, by [37] Proposition 1.3.7, there

doesn’t exist any spectral maximal space Y # {0}
of T such that

o(T|Y)cG;
by the preceding lemma, G N o(T )=, therefore
Gno)(T)=2 which is impossible (since
G co)(T)c Into(T)). Same for o, (T).
Consequently
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G%(T)ZG?(T)Z@
since S, :m, and o°(T)=o(T)\o,(T), we
have S; =& (meaning that T has the single-
valued extension property) and

o(T)=o,(T).
Now let S; = . In order to verify the inclusion

S; =S it will suffice to verify that o} (T)cS.
Suppose that oO(T)S; then there exists a
component G, of o°(T) such that:
G, ¢S and G, n(s(T)\S)=@.
By the preceding lemma there follows that there
exists a spectral maximal space Y, of T, Y, = {0}
such that:
G(T |Y0)C G,

contradicts [8] Proposition 1.3.7, consequently
S; cS. But S; # implies dimS=2 (we
have IntS; =) hence IntS #0.

Treorem 2.3. Let TeB(X) be a S-

decomposable operator and let FcC be a
closed set such that
ScFcoll).

Then X, (F) is a spectral maximal space of T
and

o(T | X;(F))cF.
Conversely, for any spectral maximal space Y of
Tsuch that o(T |Y)> 'S we have

Y =X, (s(T|Y)).

Proof. Let F — o(T) be closed such that
ScF(S; cScF)andlet Gg, H be two open
sets satisfying conditions G oF, HNF =9
and Gg U H > o(T). We shall consider

G, =G;,G,=H.
Let {Yi }f be a corresponding system of spectral
maximal spaces of T such that:
o(T|Y,)cG, (i=12)

and

X=Y,+Y,.
If xe X;(F),then x=vy,+v,, y, €Y, (i=12)
and o, (x)c F; for & e p;(x) x(1) has meaning
and

(M =T )x(A) = x
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hence for A € CF np(T |Y,) we have
A =TYRALTIY, )y, -x(1) =y, —x=-y,,
from which it follows that Aep,(y,). But
LegS>S;, Aedr(y1)n
NQr =pr (Y1) and from this it derives that
o;(y,)c Fua(T|Y,)c FUG,
therefore

consequently

CF ﬂCGZ T (yl) .
Let now I' be a bounded system of simple closed
curves surrounding F and included in CF N CG,.

For A eI" we have
y,(x)=-R(, T 1Y, )y, +x(»), Hence

—J. v (2

1

S ROLTIY2) Y, dx+—j

The spectral maximal space Y, of T being T-
absorbing ([14], Proposition 3.1), if y, €VY,, then
y,(A)eY, for L ep;(y,) and since o(T|Y,) is
“outside” T" we obtain

l
yl( ) d}LEYl,

Consequently

1
X=—o
27l

) di=

dk

R(A,T)x di=—1

A) dA
27l X( )

r
AT

jryl dieY,

thus

cY=2.

G,oF
By other means, if z € Z then from the inclusions
Yt (Z) < Yy, (Z) = G(T | Yl) cG

it follows that
GT(Z): Yt (Z)UST = nGl =k
G,oF

hence zeX;(F) and Zc X;(F); so we
conclude that
F)= (Y.

G, oF
from where it follows that X, (F) is closed. By
[14] Proposition 3.4, X, (F) is a spectral maximal
space of T and o(T | X;(F))c F. Conversely, if
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Y is a spectral maximal space of T such that
o(T|Y)> S, then according to those proved

before we obtain that
o(T | X (s(T|Y))=o(T|Y)

X;(c(T|Y))cY
But from the evident inclusion Y < X, (o(T |Y))
one finally obtains

Y =X, (o(T|Y)).
At this moment the theorem is completely
proved. When T has the single-valued extension
property (S; =) we have the following

hence

CoroLLARYy 2.4. Let TeB(X) a s-
decomposable operator with S; =& and let
F € C be such that either SNF =g or F oS,
and FN(S\S,)=, where S, is a separated
part of S. Then X, (F) is a spectral maximal
space of T and o(T | X; (F))c F. Conversely, if

Y is a spectral maximal space of T such that
o(T |Y)=F and F has one of the two properties

above, then Y = X, (o(T |Y)).

Proof. If FNS=@ (F co(T) closed),
by the preceding theorem X, (S) and X,(F uUS)
are spectral maximal spaces of T and

XT(F US): XT(F)+ XT(S)’

whence it follows that X, (F) is also a spectral
maximal space for T (see [4], Proposition 4.9)
and o(T(X;(F))c F.

If

S=5,U(S\S,),

where S, is a separated part of S and F oS,
F(S\S,)=a, then

XT(F U(S \Sl)): XT(F)+ XT(S \Sl);
therefore X, (F) is again a spectral maximal

space of T. The final part of the corollary results
identically as in the preceding theorem namely
from the evident inclusions Y < X, (o(T |Y)) and

o(T | X (o(TY)) = o(T V).

ProrosiTion 25. Let Te B(X) a S-
decomposable operator and S, a separated part
of Swith dimS, =0. Then T is S’ -decomposable
where S"=S\S,.
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Proof. The case S; =& has been proved in

Proposition 1.2.9. Keeping the notations from the
Proposition 1.2.9 proof, we will obtain the

spectral maximal spaces {Y¢ U {Y'}] of T such
that o(T |Ys )= G, o(T |Y/)c G/ (i=12,..,n)
and

X=Ys+Y/+Y, +...+Y,.
But Ys =Y, +Y, +Y_ +..+Y, , where
o(T|Ys)=0c'UcyUocyU...uGy,
o(TIY,)=0c" 0T |Y, )=0; (i=12..,n).Y,.Y,
being spectral maximal spaces of T, and ¢’ c G,
o, cG/ cG,.
Lets, =o, Ua(T|Y/). Sinces, NS =@, we
have X;(S'UG;)=X.(S')+Y,, where Y, are
spectral maximal spaces of T, ofT |Y, )c 6, G,
(i=12..,n). We have Y/'+Y c¥,
X1 (8)+Yy < Xy (d'US)=Yy,
X =Yg +Y, +..+Y; ,and T is S’-decomposable.

and
therefore

Remark 2.6. Let Te B(X) be a S-
decomposable operator and S, — S the closing of

the set of S*s points in which S has the dimension
0, dimS, =0 and thus that S"=S\S, be closed

(and thus separated from S;); then from the

preceding proposition it follows that T is S’-
decomposable.

ProposiTion 2.7 Let T, e(X,) (a=12)
and let T, ®T, e B(X,®X,). f Y c X, ® X, is
a spectral maximal space of T, ®T,, then
Y=Y, ®Y,, where Y;, Y, are spectral maximal
spaces of T, respectively T, .

Proof. Let P, and P, be the corresponding
projections: X, = P,(X, ® X,), X, = P,(X, ® X,).
It is easy to verify that P, and P, switch with
T, ®T, and since Y is ultrainvariant at T, ®T,, it
follows that Y is invariant to B, and P,. By
putting Y, =RY and Y, =PR,Y, we have Y, c Y,
Y,cY, Y,®Y,cY, B and P, also being
projections in the Banach space Y, Y,, Y, closed.
If yeY, then y=Py®PRYeY, ®Y,, so
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Y=Y, @Y, Let Z, (a=12) two invariant at T
subspace such that
o(T, 1Z,)co(T, 1Y,) (a=12).
Then Z=2Z,®Z, is an (closed)
subspace at T, ® T, and
oT,®T,12,®Z,)co(l,®T,|Y,®Y,),
hence Z, ®Z, cY, ®@Y,. From this inclusion it
obviously follows that
Z,cY, Z,cY,
consequently Y, and Y, are spectral maximal
spaces of T, , respectively T,.

invariant

3. SPECTRAL EQUIVALENCE OF
Ag-SCALAR OPERATORS.

Ag-DECOMPOSABLE AND -
SPECTRAL OPERATORS

For decomposable (respectively, spectral,
S -decomposable, S -spectral) operators, we have
several important results with respect to spectral

equivalence property. Thus if Ty, T, e B(X), T;
is decomposable (respectively, spectral, S-
decomposable, S -spectral) and T;,T, are

spectral equivalent, then T, is also decomposable

(respectively, spectral, S -decomposable, S -
spectral). Furthermore, if T; and T, are
decomposable (respectively, spectral), then

T1, T, are spectral equivalent if and only if the
spectral maximal spaces Xt (F), X7, (F) of

T; and T,, corresponding to any closed set
FcC, are equal (respectively, the spectral
measures Eq, E, of T; and T, are equal) ([8],
221, 222, 224). For S-decomposable
(respectively, S -spectral) operators, the equality
of the spectral spaces (respectively, the equality
of S -spectral measures) does not induce the
spectral equivalence of the operators, but only
their S -spectral equivalence.

The behaviour of 4-scalar and Ag-
scalar operators with respect to spectral
equivalence is completely different. If
T1eB(X) is _A-scalar (respectively, Ag-

scalar) and T, e B(X) is spectral equivalent to

Ty, then T, is not 4 -scalar (respectively, Ag-
scalar), in general; in this situation, we still know
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that T, is decomposable (respectively,S -
decomposable) and then T, is said to be 4-
decomposable (respectively, 4g-decomposable).

If in addition T commutes with one of its 4-
spectral (respectively, 4g-spectral) functions U ,

ie. TU¢ =U4T, forany fe 4 (respectively,
forany f e 4g), then T is said to be 4 -spectral
(respectively, A4 -spectral).

Definition 3.1. An operator T eB(X) is called

Ag-decomposable if there is an _4g-spectral
function U such that T is spectral equivalent to
u,.

In case that S=C, we have Ay=A4, Agy-
spectral function is _4-spectral function, Ag-

decomposable operator is _4-decomposable
operator ([8]).

Theorem 3.2. Let T € B(X) such that we

consider the following two assertions:
(I) There is an _4g-spectral function U such

that T is spectral equivalent to U, (i.e. T is
Ag -decomposable);

(I1) There is an _4g-spectral function U such
that for any closed set F c C, F o S, we have:

@ TXy,(F)c Xy, (F)

(b) O'(T‘XU/I(F))CF.

Then the assertion (I) implies the assertion (lI),
and for case S =, the assertions (1) and (I1) are
equivalent.

Proof. Let us suppose that there is an _4g -spectral

function U such that T and U, are spectral
equivalent. Since U, is S-decomposable

(Theorem 1.5), then, according to Theorem 1.11,
it results that T is S -decomposable and we have

X1 (F)=Xy,(F)for any FcC
closed, F >S.But X (F) isinvariantto T and
a(T|XT (F))c F (Theorem 2.1.3, [6]), whence

it follows (by (1)) that
TXUl (F)C Xu/1 (F)
and

J(T‘Xui(F))cF.
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In case S=O, if the assertion (II) is fulfilled,
according to Theorem 2.2.6, [8], we deduce that
T is decomposable and that the equality (1)
holds for any closed set FcC. Then T is
spectral equivalent to U ; (Theorem 2.2.2, [8])

and therefore (1) is verified.

Remark 3.3. If T eB(X) is 4g-decomposable

and U is one of its 4g -spectral functions, then:

1) T is S-decomposable;

2) X1(F)=Xy,(F), for any FcC
closed, F oS;

3) If V is another 4g-spectral function
of T, then U, and V, are spectral equivalent
(in particular, V , is spectral equivalentto T );

4) For S=9, if A4 is an inverse closed
algebra of continuous functions defined on a
closed subset of C and V is another 4 -spectral

function of T, then U and V; are spectral
equivalent, forany f € 4 (see [8]).

Definition 3.4. An operator T eB(X) is called
Ag-spectral if it is 4g-decomposable and
commutes with one of its _4g -spectral functions,
hence T is _4g-spectral if there is an Ag-

spectral function U commuting with T such that
T is spectral equivalentto U ;.

For S=¢, we have that an _4g-spectral
operator is an 4 -spectral operator ([8]).

Theorem 3.5. For an operator T e B( X ) we

consider the following four assertions:
(1) T is Ag-decomposable and commutes

with one of its 4g-spectral functions (i.e. T is
Ag -spectral);
(1) (1) T is S -decomposable;
(112) There is an 4 -spectral function U
commuting with T, i.e. U T=TU, for
any f e Ag;
(13) X1 (F)=Xy,(F),forany FcC
closed, F 5S;
(1)~ (1N1) There is an 4 -spectral function
U commuting with T ;
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(2) o(T Xy, (F))<F, forany
FcC closed, F>S;
(IV) T=S+Q, where S is an A4g-scalar
operator and Q is a quasinilpotent operator
commuting with an _4g-spectral function of S

(not to be confused the compact subset S with the
operator S from the equality T=S+Q, S being

the scalar part of T and Q the radical part of T).
Then the assertions (1) and (IV), respectively

(11) and (1) are equivalent, (1) implies (I1),
respectively (111), and finally (1V) implies (I1).
Proof. (1)=(I1),(I1). Assuming (1) fulfilled,

we prove that the assertions (I1) and (Ill) are
verified. If T is 4g-decomposable and

commutes with one of its 4g-spectral functions
U, then U, is spectral-equivalent to T.
Furthermore, U, being S -decomposable

(Theorem 1.5), then T is S-decomposable
(Theorem 1.12) and we have the equality:

X1 (F)=Xy, (F)

for any FcC closed, F>S, hence (1) is
fulfilled. From Theorem 2.2, it follows that

o(T|xu, (F))=o(T|x (F))=F
for any FcC closed, F>S, hence (IIl) is
also verified.
(1)=(IV) T being Ag-spectral, there is an
Ag-spectral function U commuting with T, i.e.
TU¢=U4T, for any fe 4g (in particular,
TU , =U,T) such that T is spectral equivalent

to U , . But the operator U ; is S -decomposable

(Theorem 1.5), hence by Theorem 1.12, T is also
S -decomposable and the following equality is
verified

X1 (F)=Xy, (F),forany FcC closed,
FoS.
Using the fact that T and U, commute, it
follows that T —U , is a quasinilpotent operator

commuting with U , because
n

(T-u )= Ry

k=0

n-k n

=

(T-U,)
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and the quasinilpotent equivalence of T and U ;
IS given by

lim H(T ~u )M = fim H(ul—T)[“] n -0
n—oo nN—oo
(we remember that an operator T is
1
quasinilpotent if lim HT Min=0 or,
N—o0

equivalently, a(T): 0). We remark that if U is
an Ag-spectral function, then U ; is an Ag-
scalar operator. Putting S=U ; and Q=T -U ,,
we have
T=S+Q

where S is Ag-scalar and Q is quasinilpotent
(S is the scalar part of T and Q is the radical
part of T).

(IV)=(1) By the hypothesis of assertion
(IV), since S is an Ag-scalar operator, we
deduce that there is at least one _4g-spectral
function U of S such that: S=U,, the
quasinilpotent operator Q commutes with U and

S is S-decomposable (Theorem 1.5). It also
results that T=S+Q commutes with U (since

we obviously have U ;U ¢ =U U ;= =U ;)
and since Q=T —S is quasinilpotent, then T is
spectral equivalentto S, consequently T is Ag -

spectral.
()= (1) Assume that there is an Ag-

spectral function U commuting with T such that
o(TlXUA(F))cF, for FcC closed,
F >S. On account of the definition and the
properties of an 4g -spectral function and of an
Ag-scalar operator, we remark that U, is an
Ag-scalar operator, hence U, is S-
decomposable (Theorem 1.5) and we have
XUE(F)=X[u](F)’ FcC closed, FoS

(Theorem 1.9). But Xul(F) is a spectral

maximal space of U, (Theorem 2.1.3, [6]),
hence it is ultrainvariant to U, (Proposition
1.3.2, [8]); therefore X, (F) isinvariant to T

and then the restriction T | Xy (F) makes sense

and o(T| Xy, (F))<F.
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()= (1) The operator T being §S-

decomposable, according to Theorem 2.1.3, [6],

we have that X 1 (F) is a spectral maximal space

of T, forany F c C closed, F o S and
o(TIX1(F))=FNo(T)

hence (by ((113))

o(T|Xu, (F))=o(T|xr (F))=F.
(IV)=(ll) S being Ag-scalar, there is an

Ag-spectral function U such that S=U ;. But

from Theorem 1.5, S is S-decomposable and
applying Theorem 1.11 to T and S, we get that
T is S -decomposable and

X1 (F)=Xs(F)=Xy, (F)
forany F c C closed, F ©S.
The function U commutes with the
quasinilpotent operator Q, i.e. QU =U¢Q,

for f € A, hence T =S+Q commutes with U .

Remark 3.6. With the same conditions as in
Theorem 2.4, if S=, then the four assertions
above are equivalent (see [8]).

Remark 3.7. Let Ty, T, e B( X ) be two spectral
equivalent operators. Then we have:

1)If T, eB(X) is Ag-scalar (respectively, -
scalar), then T, is not 4g-scalar (respectively,
A -scalar).

2) If Ty e B( X ) is 45 -decomposable(respectively,
A -decomposable), then T, is 4g-decomposable
(respectively, 4 -decomposable).

3)If T,eB(X) is _Ag-spectral (respectively,

A-spectral), then T, is not _4g-spectral
(respectively, 4 -spectral).

4. CONCLUSIONS

We will underline the relevance,

importance and necessity of studying the Ag-
scalar (respectively, _4g-decomposable or Ag-

spectral) operators, showing the consistence of
this class, in the sense of how many and how
substantial its subfamilies are. These operators

are natural generalizations of the notions of /-
scalar, A -decomposable and A -spectral
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operators studied in [8] and appear, in general, as
restrictions or quotients of the last one.

We demonstrated some of their
properties, leaving the challenge to proof and
generalize many others.
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