
  

Abstract— The exponential sum associated with f is defined as S 

(f; q) = ∑ x mod q , where the sum is taken over a complete set of 
residues modulo q. The value of S (f; q) depends on the estimate of 
cardinality in the set V = {x mod q|fx ≡ 0 mod q} where fx is the 
partial derivatives of f with respect to x. In order to determine the 
cardinality, the p-adic sizes of common zeros of the partial derivative 
polynomials need to be obtained. This paper will give an estimation 
of the p-adic sizes of common zeros of partial derivative polynomials 
of degree eight in p  by using Newton polyhedron technique.  

 
Keywords—Exponential sums, Cardinality, p-adic sizes, Newton 

polyhedron.  

I. INTRODUCTION 
N our discussion, we use notations the ring of p-adic 
integers ( ), the completion of algebraic closure of  the 

field of rational p-adic numbers ( ) and the p-adic size of x 
which means the highest power of p dividing x (ordp x). It 
follows that for rational number x and y, ordp x = ∞ if and only 
if x = 0; ordp (xy) = ordp x + ordp y and ordp (x + y) ≥ min {ordp 

x, ordp y} with equality if ordp x ≠ ordp y.  
The researchers in [5] who investigate the exponential sums 

S (f ; q) = ∑ x mod q exp (2πif / q) where f  is a nonlinear 
polynomial in Z[x] showed that the number of common zeros 
of the partial derivative polynomials of f with respect to x 
modulo q gives the estimation of S (f ; q).   

Then from the works of [4], they found that the p-adic sizes 
of common zeros to partial derivative polynomials associated 
with f in the neighborhood of points in the product space ,   
n > 0, can estimate the cardinality of V.  

The estimations for lower degree two-variable polynomials 
by using Newton polyhedron technique are found by many 
researchers such as [6] who defines the p-adic sizes of 
common zeros, [1] who estimates the cardinality N(f; pα) of the 
set of solutions to congruence equations modulo a prime 
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power and also [2] who founds a better estimate for the 
exponential sums under various conditions on the coefficients 
of f (x, y) and obtained the estimate of S (f ; pα).  

Our approach entails the work developed by [7] who 
presented the p-adic Newton polyhedral method of finding the 
p-adic order of polynomials in [x, y] which is an analogue 
of Newton polygon defined by [3]. 

The researchers in [8] improved the result from [7]. Then, 
[9] discussed a method of determining the p-adic sizes of 
partial derivative polynomial of degree n where n is odd based 
on the p-adic Newton polyhedron technique at simple points of 
intersections in the combination of indicator diagrams 
associated with a pair of polynomials in Zp[x,y] where     
Zp[x,y] denote the set of polynomials in x and y with 
coefficients in Zp. From the works of [10], they estimates a 
method of the p-adic sizes of common zeros of partial 
derivative polynomials associated with a quintic form for        
p > 5 by using the similar technique as paper [9].  

Recently, [11] showed that the p-adic sizes of common zeros 
of partial derivative polynomials associated with a cubic form 
can be found explicitly on the overlapping segment of the 
indicator diagrams associated with the polynomials by using 
Newton polyhedron technique. 

Our work involves application of the Newton polyhedron 
technique at the point of intersection in the combination of 
indicator diagrams to determine explicitly the p-adic sizes of 
the component (ξ, η) a common root of partial derivative 
polynomials of in  [x, y] of an eighth  degree form. 

II. P-ADIC SIZES OF ZEROS OF A POLYNOMIAL 
In this work, we discuss about the p-adic sizes of common 

zeros of partial derivative polynomials associated with a 
polynomial f (x, y) of degree eight in . Researchers [8] 
proved that every point of intersection of the indicator 
diagrams, there exist common zeros of both polynomials in 

 whose  p-adic orders correspond to point (μ1, μ2) as 
mention in Theorem 1 as follows:    

 
Theorem 1  
Let p be a prime. Suppose f and g are polynomials in . 
Let (μ1, μ2) be a point of intersection of the indicator diagrams 
associated with f and g at the vertices or simple points of 
intersections. Then there are ξ and η in  satisfying f (ξ, η) = 
g (ξ, η) = 0 and ordp ξ = μ1,      ordp η = μ2.    
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Our work concentrates on the p-adic sizes of common zeros 
of partial derivative associated with a polynomial 

. From our 
investigation, we found that the p-adic sizes of  is as the 
following theorem.   
 
Theorem 2  
Let  be a 
polynomial in  with p > 7 be a prime. Let 

, . If fx(0, 0), 
 fy(0, 0) ≥ α > 8δ then there exists (ξ, η) in  such that 

fx(ξ, η) = 0, fy(ξ, η) = 0 and 
 

 and  and 

 or  or 

 or  or 

 or  or 

 or  or 

 or  or 

   
 
for some .  
     In order to prove Theorem 2, we need the result of the 
following lemmas. 
 
Lemma 1 
Let p > 7 be a prime. Let a, b and c in  and  zeros 
of  and suppose  

  and   . 
Therefore,  = 

 and  

 =  , where 
.  

Proof. 

Let    , i = 1 or 2. Given that 

= , i = 1, 2. Then we have 

                  =                    (1) 
and 
                 = .                            (2) 

By substituting the values of , we have         

              = .                  (3) 
By substituting (3) into (1), we obtain 

 , where .  
Therefore,  

( )                      

                  = . 
By substituting (3) into (2), we obtain 

  =  , where .  
Thus, 

                  ( ) =  
as asserted.                                                                           □ 
Throughout the following discussion, 
                   and           (4) 
with λ1, λ2 are the zeros 
of . 

since λ1 ≠ λ2. 
 
Lemma 2 
Suppose ( , ) in . Let p > 7 be a prime, a, b and c 
coefficients of  and  as in (4) in . Then   

=  

where . 
Proof.  
We have 
  =  

            = (5)                           
Let  

   , i = 1 or 2. 
From the numerator of the equation (5), it can be proved that 

Therefore, by (3) and (5), we obtain 
 = 

where as asserted.                                       □ 
 
Lemma 3 
Suppose (x,y) in  with  and 

 where  and  as in (4). Let p > 7 be a 
prime, a, b and c the coefficients of  and , in . If 

 then  
 

  
 ≥      ≥     

 ≥ 

  
 ≥    

 ≥ 

 

 ≥ 
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where  for some ≥ 0 which can 
be specified explicitly.    
Proof.   
Solve    and    
simultaneously, we have 

                   ,        .               (6) 

From the result of Lemmas 1 and 2, equation (6) become 
    =                    

                                                        (7) 
and       

     

.                                       (8)              
Now, let consider (7) and (8). From these two equations, we 
will consider two conditions with two cases for each condition 
as follows: 
 
CONDITION 1:  
In this condition, we have to consider two cases. That is, 
CASE 1:    
CASE 2:   .  
Now, we consider CASE 1. In this case, we have to consider 
another two cases. That is, 
(i)   Suppose min 

=

. 
By applying the above condition into (7), we have 
     . 
Since p > 7 a prime and , then             

    
Therefore, 
                                                    (9) 
It follows that, 
                                    
where .  
By adding x and y in equation (6), we obtain   
           = .        (10) 

Thus, from (9), we have 
                     
Therefore, 
                     . 
From (8), we have 

                  

.                                                (11) 
By solving equation (11), we obtain 
                      ≥  

where .  

(ii) Suppose min 
 

. 
By applying the above condition into (7), we have 

  . (12) 
Since p > 7 a prime and , then  
                            .                      (13)                                                           
It follows that, 
                                           
where .  
From (13), we have 

. 
By substituting equation (13) into (12), we obtain 
     ,        (14) 
since . 
So that, it can be shown that 
              .                                (15) 

From (15), by using the similar method as equation (8), we 
have 

 ≥  
where .  
Now, we consider CASE 2. That is, 

. 
From (7), we have 

  

. 
Since p > 7 a prime and , then 
                       
Thus, 
                                 
where .   
From (8), since p > 7 a prime and , then  

   
.                (16)                                                                                          

Let 
   .(17) 
There exists m and n such that  
             6  with                    (18)          
      with .      (19) 
Hence, from (17), we have 
        .                                     (20) 

Therefore, by substituting (18) and (19) into (16), we obtain                                      
 . 

Suppose , then 
               .    
That is, from (20), we obtain 
            .  
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It follows that, 
                      
where  and .              
Hence, for the condition , we have      

 ≥  and   ≥   or  

 ≥  

where  for  as asserted.  
 
CONDITION 2:  
By using the similar process as CONDITION 1, we will obtain 

 ≥   and   ≥  or   

 ≥  

where  for  as asserted.      □ 
 
Lemma 4                                      
Suppose ( , ) in  and , 

 where  and  as in (4). Let p > 7 be a 
prime, a, b, c, s and t in ,  
and ≥ . If  =   and 

 =  then  
 

 and  and 

 or  or 

 or  or 

 or  or 

 
or  or 

 
or  or 

 
  

 
where  and   for 
some .  
Proof.   
From Lemma 3 for both conditions which are 

 and , we have 
                                   ≥                                   (21) 

and      ≥                                    (22) 

or    ≥                                (23) 

or    ≥                                          (24) 

or    ≥                                (25) 
where W = min {ordp , ordp }. 
Now, 

  =   and  =  .         (26) 

After substituting (26) into equations (21), (22), (23), (24) and 
(25), we obtain 
        ≥       (27)                                                                                      
and  

or 

or   

or 

where i = 1, 2.                          
In order to solve the above equations, we have to consider two 
cases. That is,      
             CASE 1: min ,  i = 1, 2. 
             CASE 2: min , i = 1, 2. 
Now, we consider the first case. In this case, we will consider 
another two cases. Let p > 7 be a prime. 
From equation (27), we have 
Case (i):  

(i) min .  

.  
By applying the hypothesis, we obtain   
                        . 

(ii) min . 

.  
Since , then 

.  
Therefore, 

. 
Case (ii):  
Let . Then, there exist  and  such 
that    
                        with                               (32) 
                        with .                             (33) 
Suppose  for p > 7 a prime.   
By substituting (32) and (33) into (27), we obtain 
      

                     
where   
Let  Therefore,  
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From equation (28), we have 
Case (i):   

(i)    min   

            .                (34)                                                                                    

If , then 

Since , 
≥  and by substituting (35) into (34), we 

have   
                          .  
By applying the hypothesis, we obtain  

. 
If , then 

 

where  implies  .  
Since , 

≥  and by substituting (36) into (34), we 
have  
                           . 
By applying the hypothesis, we obtain  

. 
(ii) min   

Since , then 

 
Thus, by the similar method as (35) and (36), we have 

    and    . 
Case (ii):  
Let .  
Therefore, by substituting (32) and (33) into (28), we obtain     

  
                     

where     
Let  Therefore,  

We solve the above equation by applying the similar method 
as (34), thus we obtain 

    and    . 
From equation (29), by using the same process as equation 
(28) which is not involving , we obtain    

       or 

        or 

           or      

 
where  and  for 
some .   
From equation (30), we have two cases as follow. 
Case (i):  

(i) Suppose min .  

             .               (37)                                                                                     

If , then 

Since , 
≥   and by substituting (38) into (37), we 

have 
                       .  
By applying the hypothesis, we obtain  

. 
We have  

 , i =1, 2. 
Since p > 7 a prime, then we have 

. 
Since , we have 

  
Thus, 
                             
By applying the hypothesis, we obtain  
                                                       (39) 

(ii) Suppose min .  

  
Since , then 

Thus, by the similar method as (38) and (39), we have 
   

INTERNATIONAL JOURNAL of PURE MATHEMATICS Volume 1, 2014

ISSN: 2313-0571 26



 
Case (ii):  
Let .  
Therefore, by substituting (32) and (33) into (30), we obtain 

  
where     
Let  Therefore,  

. 
We solve the above equation by applying the similar method 
as (37), thus we obtain 

  
From equation (31), by using the same process as equation 
(30) which not involving , we obtain   

   or   

 
where  and  for 
some .  
Now, we consider the second case. That is, min 

, i = 1, 2. In this case, we also 
consider another two cases. 
For equation (27), we use the similar method as the first case, 
and then we will obtain the same result as follows. 
Case (i):  
By applying the hypothesis, we obtain  

. 

Case (ii):  
By applying the hypothesis, we obtain  

   
Next, from equation (28), we have 
Case (i):  

(i) min . 

                 .          (40)                                                                                   

If , then 

  

.                                                                       (41) 
Since , 

≥  and by substituting (41) into (40), we 
have 

. 
By applying the hypothesis, we obtain  

.  
If , then                                                                                           

 

.                                                                        (42) 

where  implies  .  
Since , 

≥  and by substituting (42) into (40), we 
have 
                             . 
By applying the hypothesis, we obtain  

.  
(ii) Suppose min . 

Since , then 

Thus, by using the similar method as (41) and (42), we have 
     and    . 

Case (ii):  
Let .  
Therefore, by substituting (32) and (33) into (28), we obtain 

where    
Let  Therefore,  

We solve the above equation by applying the similar method 
as (40), thus we obtain 

    and    . 
From equation (29), by using the same process as equation 
(28) which is not involving , we obtain    

  or  

  or  

 or               

 
where  and  for 
some .  
From equation (30), we have 
Case (i):  

(i) Suppose min . 

              

Therefore, 
                .                        (43)                                                                                                           
Since , 

≥ , thus 
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                         . 
(ii) Suppose min . 

 Since , then  

 Thus, by using the similar method as (43), we have 
      

Case (ii):  
Let .  
By substituting (32) and (33) into (30), we obtain 

where   
Let  Therefore,  

. 
We solve the above equation by applying the similar method 
as (43), thus we obtain 

    
From equation (31), by using the same process as equation 
(30) which not involving , we obtain   

   or   

 
where  and  for 
some  as asserted.                                                  □ 
 
Proof of Theorem 2                                     
Let g =  and h =  and be a constant. Then 

= 
. 

That is, 
 =       . 

By completing the square the above equation, we obtain 

    =             (44)                                                                                        
if 

                           = 0.                      (45)                                                                                                     
By solving equation (45), we obtain 
                    = 0.                             
Thus, 

      and       
where  be the zeros of the equation (45) whose 
expressions are given in Lemma 1. , since 

and implies b2 ≠ ac.   
Now, let 

                                          (46) 

                                                 (47) 

                                               (48)  
         .                                     (49) 
Substitution of U and V in (44), for i = 1, 2, we have 

=

 

gives the following polynomials in (U, V), 
                      (50) 
  .                    (51) 
The combination of the indicator diagrams associated with the 
Newton polyhedron of (50) and (51) takes the form shown in 
Figure 1. 
 

       V        =    
 
     
                               
                                                 

          =    
                                                                           U 
        
                                                                                                                                                                    
           

 
 

Fig 1. The indicator diagrams of 
 (bold line) and  

 (broken line) with p > 7. 
 

From Fig. 1 and by Theorem 1, there exists  in  
such that  = 0,  = 0 and  = ,  = 

 with =    and also  =  .     

Let  and  in (46) and (47). Thus, there exists 
 in  such that 

                                                          (52) 

                      .                                  (53) 
By multiplying  to (52) and  to (53), we have 

                                              (54) 

                     .                        (55)                                        
Thus, by subtracting (55) and (54), we have 

                                . 
Therefore, 

 =   . 
Then, by subtracting (52) and (53), we have 
                                 . 

Therefore, 
 =  .  
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Since  =    and  =   

, then from Lemma 4, we let  =  and = . 

Since  = 0 and  = 0, by back substitution in 
(50) and (51) we would have g(  ) = ( , ) = 0 and h( , ) 
= ( , ) = 0. Thus,    

 
 and  and 

 or  or 

 or  or 

 or  or 

 or  or 

 or  or 

   
where ( , ) is a common zero of  and  and 

 for some  ≥ 0.            □                  

ACKNOWLEDGMENT 
We would like to thank the financial support from Graduate 

Research Fellowship Grant of Universiti Putra Malaysia and 
grant FRGS Vot No 5524311 that has enabled us to carry out 
this research.    

    
REFERENCES   

[1]  K. L. Chan and K. A. Mohd. Atan, “On the estimate to solutions of   
congruence equations associated with a quartic form”, J. Phys. Sci. 8, pp. 21-
34, 1997. 
[2]   S. H. Heng and K. A. Mohd. Atan, “An estimation of exponential sums 
associated with a cubic form”, J. Phys. Sci. 10,pp. 1-21, 1999. 
[3]   N. Koblitz, “ p-adic Numbers, p-adic Analysis, and Zeta-Functions”, 2nd 
ed, Springer-Verlag, New York, 1977. 
[4]   J. H. Loxton and  R. A. Smith, “Estimate for multiple exponential sums”, 
J. Aust. Math. Soc. 33, pp. 125-134, 1982. 
[5]   J. H. Loxton and R. C. Vaughan, “The estimate of complete exponential 
sums”, Canad. Math. Bull. 28(4), pp. 440-454, 1985. 
[6]   K. A. Mohd Atan, “Newton polyhedral method of determining p-adic 
orders of zeros common to two polynomials in Qp[x, y]”, Pertanika 9(3), pp. 
375-380, 1986. 
[7]   K. A. Mohd. Atan and J. H. Loxton, “Newton polyhedra and solutions of 
congruences”, In Proceeding of Diophantine Analysis, Cambridge University 
Press, 1986, eds. Loxton, J. H. and Poorten, A. Van der., pp. 67-82, 1986. 
[8]   S. H. Sapar and K. A. Mohd Atan, “Estimate for the cardinality of the set 
of solution to congruence equations”, J. Technology 36(C), pp. 13-40, 2002. 
[9]   S. H. Sapar and K. A. Mohd Atan, “A method of estimating the p-adic 
sizes of common zeros of partial derivative polynomials associated with an nth 

degree form”,  Malaysian Journal of Mathematical Sciences 1(1), pp. 23- 43, 
2007.  
[10]   S. H. Sapar and K. A. Mohd Atan, “A method of estimating the p-adic 
sizes of common zeros of partial derivative polynomials associated with a 
quintic form”, World Scientific 5, pp. 541-554, 2009.  
[11]   H. K. Yap, S. H. Sapar and K. A. Mohd Atan, “Estimation of p-adic 
sizes of common zeros of partial derivative associated with a cubic form”, 
Sains Malaysiana 40(8), pp. 921-926, 2011. 
 
 

INTERNATIONAL JOURNAL of PURE MATHEMATICS Volume 1, 2014

ISSN: 2313-0571 29




