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A Method of Estimating the p-Adic Sizes
Polynomials
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Abstract— The exponential sum associated with f is defined as S

T

(f; ) =X xmoaq® ¢ , Where the sum is taken over a complete set of
residues modulo g. The value of S (f; q) depends on the estimate of
cardinality in the set V = {x mod q|fy = 0 mod g} where f; is the
partial derivatives of f with respect to x. In order to determine the
cardinality, the p-adic sizes of common zeros of the partial derivative
polynomials need to be obtained. This paper will give an estimation
of the p-adic sizes of common zeros of partial derivative polynomials
of degree eight in Z, [x,¥] by using Newton polyhedron technique.

Keywords—Exponential sums, Cardinality, p-adic sizes, Newton
polyhedron.

I. INTRODUCTION

N our discussion, we use notations the ring of p-adic
integers (Z,), the completion of algebraic closure of G, the

field of rational p-adic numbers (£2,) and the p-adic size of x

which means the highest power of p dividing x (ord, x). It
follows that for rational number x and y, ord, x = oo if and only
if x = 0; ord, (xy) = ord,x + ord,y and ord, (x +y) > min {ord,
X, ord, y} with equality if ord, x # ord,y.

The researchers in [5] who investigate the exponential sums
S (f; ) =X x mod q XP (27if' / o) where f is a nonlinear
polynomial in Z[x] showed that the number of common zeros
of the partial derivative polynomials of f with respect to x
modulo q gives the estimation of S (f ; ).

Then from the works of [4], they found that the p-adic sizes
of common zeros to partial derivative polynomials associated
with f in the neighborhood of points in the product space ©7,

n > 0, can estimate the cardinality of V.

The estimations for lower degree two-variable polynomials
by using Newton polyhedron technique are found by many
researchers such as [6] who defines the p-adic sizes of
common zeros, [1] who estimates the cardinality N(f; p*) of the
set of solutions to congruence equations modulo a prime
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power and also [2] who founds a better estimate for the
exponential sums under various conditions on the coefficients
of f (x, y) and obtained the estimate of S (f ; p%).

Our approach entails the work developed by [7] who
presented the p-adic Newton polyhedral method of finding the
p-adic order of polynomials in £2,[x, y] which is an analogue

of Newton polygon defined by [3].

The researchers in [8] improved the result from [7]. Then,
[9] discussed a method of determining the p-adic sizes of
partial derivative polynomial of degree n where n is odd based
on the p-adic Newton polyhedron technique at simple points of
intersections in the combination of indicator diagrams
associated with a pair of polynomials in Z[x,y] where
Zo[x,y] denote the set of polynomials in x and y with
coefficients in Z,. From the works of [10], they estimates a
method of the p-adic sizes of common zeros of partial
derivative polynomials associated with a quintic form for
p > 5 by using the similar technique as paper [9].

Recently, [11] showed that the p-adic sizes of common zeros
of partial derivative polynomials associated with a cubic form
can be found explicitly on the overlapping segment of the
indicator diagrams associated with the polynomials by using
Newton polyhedron technique.

Our work involves application of the Newton polyhedron
technique at the point of intersection in the combination of
indicator diagrams to determine explicitly the p-adic sizes of
the component (&, ) a common root of partial derivative
polynomials of f (x,y)in &, [x, y] of an eighth degree form.

Il. P-ADIC SIZES OF ZEROS OF APOLYNOMIAL

In this work, we discuss about the p-adic sizes of common
zeros of partial derivative polynomials associated with a
polynomial f (x, y) of degree eight in Z,, [, v]. Researchers [8]
proved that every point of intersection of the indicator
diagrams, there exist common zeros of both polynomials in
Z, [x.v] whose p-adic orders correspond to point (us, o) as
mention in Theorem 1 as follows:

Theorem 1

Let p be a prime. Suppose f and g are polynomials in Z,, L, v].
Let (11, p) be a point of intersection of the indicator diagrams
associated with f and g at the vertices or simple points of
intersections. Then there are ¢ and # in 22 satisfying f (&, #) =

g(&n)=0andord, &=y,  Ordyn = pp.
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Our work concentrates on the p-adic sizes of common zeros
of partial derivative associated with a polynomial
flx.y) =ax®+ bx"y + cx®y? +sx+ty + k. From our
investigation, we found that the p-adic sizes of f(x. ¥} is as the
following theorem.

Theorem 2

Let flx.y) =ax®+bx"y +ex®y * +sx+ty+k Dbe a
polynomial inZ,[x,y] with p > 7 be a prime. Let
a=0,6= mm{urdpa, ordyb, u*rdpc}. If ord, (0, 0),
ordy f,(0, 0)> a > 84 then there exists (¢, 1) in £ such that
f& ) =0, (& ») = 0 and

wdpfzjj__'{ct—ﬁj and urdp-f:jj:{a—ﬂ—gl:]and
ordg Efj__'{u: — 85} or ordy? :_:-Tj__'(ct —85—¢gdor
ordg Efj__'{u: — 75} or ordy? :_:-Tj__'(ct —75—¢gdor
m‘dpn Ejj__'{n: —&6&) or u'rd_u?;l :_*%{ct — B4 — El:] or
ordy? :_*jj__'{ct — 86 — 5&;) ord,1 :_*%{a — 85 — & — 5&;)
or or

ordy? :_*jj__'{ct — 76 — 5&p) ord,1 :_*%{a — 75 — & — 5&p)
or or

ordy? :_*jj__'{ct — 66 — 5&p) ord,1 :_*%{ct — 66 — &, — S5

for some .5, = 0,
In order to prove Theorem 2, we need the result of the
following lemmas.

Lemma 1

Let p > 7 be a prime. Let a, b and ¢ in I, and 4,.4; zeros
of k(1) = 4cA* + 4bci + (49b% — 192ac) and suppose

.‘:El + 2dyc and . = b + ;¢

2lea + A4 B) <
Therefore, ord,, (o, — &) =

2 ord, (192ac — 48%) + ord,2c — ord,A and
ord, (e, + a,)= ord,12be — ord, A , where
A=16ac — 7B%. '

Proof.

Let.;l.[ =

oy = .
L ziea + A;B)

b+ 192ac-480°
-— al ¥ -_ - . .
— . = 1 or 2. Given that

), i=1, 2. Then we have

.= 1 o
[1ezac—42877 7 2( 16ar - 767 ]

(.‘-i:l + 2djc
g =\0—/—/——— =
L 28z + ;)

@y — 8z = Ic (Bq + A, B0 (Bq + A5 B) (1)
and
b [7B? - 16ac)
%1 +u::risc + 1y B (e + A5B)° (2)
By substituting the values of % ¢ = 1.2, we have
(8a +1,8)(8Ba + A,b) =':”’“% 3)

By substituting (3) into (1), we obtain
_ 2c[tszac- 49&-3]1*'2

p 3 , where A= 16ac — 7h*,

oy — o
Therefore,
El'?"dp (ﬂj_ - ﬂ:)
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=>ord,(192ac — 48b?) +ord,2c — ord,A.
By substituting (3) into (2), we obtain

12bc

A

oy + &g = — . where A= 16as — 7h*,
Thus,
ord, (&g + @2) = ord, 12bc — ord,A .

as asserted.

O
Throughout the following discussion,
_ B +2e _ TB+2;¢
17 See + 1,0 and  a; = 2iBa + Azh) )

with 4, 1, are the zeros
of k() = 4c%3? + 4bch + (n— 1)*b* — 4nln — 2)ac.
oy F oy SiNCe Aq £ Ay,

Lemma 2 )

Suppose (U,V) inQg. Let p > 7 be a prime, a, b and ¢
coefficients of @ and a; as in (4) in Z,,. Then

ordy (e, V — e, )=

ord, [6b(U — V) +v192ac — 4867 (U + V)] + ord, c —
ord, &

where A = 16ac — 752,

Proof.

We have

7B+ ¢ ) v _(TEI+:.1:r
2(ea + A;B)

ordy, (a,V — a,U) = ord, [{

)]

2l + A, B)
= ord [':.'-i:l + 2y cllBa + AP V-(7h + 2A5c) (B + Ay B) i.-'] (5)
P ziea + A, B0 (Ba + A5 B) '
Let
— b +v 1920c—4807 .
A== i=1lor2.

From the numerator of the éauation (5), it can be proved that
(7b + 20} (8a + M bIV-(7b + 2,6)(Ba + MBIV =
(*2=75) [66@ — V) +V192ac — 4857 (U + V)]
Therefore, by (3) and (5), we obtain

ordy (a,V — a,U) =

ordy 66U — V) ++192ac — 485% (U + V)] + ordy ¢ —
u:r'd;:, A -
where A = 16ac — 757 as asserted.

Lemma 3

Suppose in @) withU= x*+ ax? and

(x.y)
V= x2+ a,x?y where @, and @, as in (4). Letp>7be a
prime, a, b and c the coefficients of @; and &z, inZ,. If
u*rdp&: + u:r'dpac, then

Df‘!ip B = Df'd.pur D‘i"lipbz < D‘i"dp ac

u'.'"dp x>=-W m‘dpr-__W

AN ET
W —Fordy o2

ordy y > - ordy ¥ > ;

2w —Zora, So-fa] | 3[W —Sordyi—2e]
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where W = m:‘ﬂ{urdpt’, u'.r'de} for some £y > 0 which can
be specified explicitly.

Proof. i i i i
Solve U= xz+ a@,x2y and V= x2+ayxiy
simultaneously, we have
_ fEmV—aytnyg o V=0
x_{r:i—r::)’ '1}-_- ﬁi' (6)
Ly — aplx3

From the result of Lemmas 1 and 2, equation (6) become
ord, x == ord, [6b(U — V) ++192ac — 4867 (U + V)] -

> ord, [192ac — 4857] ©)

and )

ord, y = Zord, (U — V) —ord,c — % ord,(192ac — 48b7)

+ord,(16ac — 7b* ) — 2 ord,b. ®)

Now, let consider (7) and (8). From these two equations, we
will consider two conditions with two cases for each condition
as follows:

CONDITION 1: u*rdp&: = urdpac
In this condition, we have to consider two cases. That is,

CASE 1: ord, 6b(U —V) # ord, v192ac — 486° (U + V)
CASE 2: ord, 6b(U —V) = ord, v192ac —48b% (U + V).

Now, we consider CASE 1.
another two cases. That is,
(i) Suppose min

{u*.r'dp 6b(U — V), ord, v192ac — 48b%(U + =

ord, v192ac — 48b7 (r+v).

By applylng the above condition into (7), we have

ordy x = - ord, V192ar — 4802 (U + V) — = wd 192ac .
Slnce p> 7 a prime and um?_ﬂh = ordyac, then

—t ord, ac + % ord, (r+v) — % ordyac.

In this case, we have to consider

ord, X =
Therefore,

u:r'dp x =
It follows that,

Zord,, (U + V). ()

ordy ¥ = %W
where W = m:‘ﬂ{m‘d V. ord U}
By adding x and y in equatlon (6), we obtain

ord, (U + V) = ord, (?.r + (o, + o )xt }) (10)
Thus, from (9), we have
ord, x2 = grd, (U + V)
Therefore,
ordy x = ovdylay + az)y

From (8), we have

ord, = Zord, (U —V) —ord,c - m"d 192ac

+ur‘dp12u.c —;urdpb. (12)

By solving equation (11), we obtain
ordy y=2 [W - Zord, T
where W = min {urdp V.ord, u}.

ISSN: 2313-0571

Volume 1, 2014

(if) Suppose min

{ord, 6b(U — V), ord, V192ac — 4867 (U + 1)}

= ord, 6Bl — V.

By applylng the above condition into (7), we have

ord, x = - ord, (U — V) + = (ord, 6b* — ord,192ac). (12)
Slnce p> 7 a prime and m"dp&‘ = ord,ac, then

ordy, x = : ord, (U — V). (13)
It follows that, .
ordy x = % W
where W = min{ord,V, ord, U}. .
From (13), we have ' i '
ord, xi= ord, (U + V).

By substituting equation (13) into (12), we obtain

ord, x = : ord, (U + V) + % I::m"dpuc - urdpac}, (14)
since m"dﬂb.: = ord,ac. .
So that, it can be shown that

u:r'dp x = u:v'dp{ct,_ + )y . (15)

From (15), by using the similar method as equation (8), we
have

ord, ¥ 2: [W — -ordy fﬂi:]
where W = min {m"dp V.ord, U}.

Now, we consider CASE 2. That is,

ord, 6b(U —V) = ord, V192ac — 4857 (U + V).
From (7), we have

ordy x = ém:’ﬂ

{ord, 6b(U — V), ord, vT02ac — 4852 (U + 1)}
—j—__' ordy192ac.

Since p > 7 aprime and ord,b® > ordyac, then
u:r'd 7+ 'Ir’:].

L

ordy X = -

Thus,
ordy x = %W
where W = min {m"dp v, urdp.{f}.

From (8), since p > 7 a prime and ordy E:‘ = ordyac, then
5

ord, y = ord, (U —-V) — —m"d - -
ord,, [66(U — V) +102ac — 4857 {U+ Vi) (16)
Let
g = ord, 6B(U — V) = ord, v192ac — 4862 (U + V).(17)
There exists m and n such that
65( — V) = pFm with ord, m =0 (18)
V192ac — 487U + V) = pPawithord, n=0. (19)
Hence, from (17), we have '
ord, (U —V) =§ —ord, b. (20)
Therefore by substituting (18) and (19) |nto (16), we obtain
urdu}——ﬁ—ﬂf‘d bh—= clmf —clmf (m+n),
Suppose &, = ord,, (m +n), then
m"du}=-3—m"d b—- m"d —EED.

That is, from (20), we obtain
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It follows that,

ordy, ¥ = [W - -m‘d _z ED]
where W = mm{m‘d 'Ir ord, U} and ED = u*r'd (m +n).
Hence, for the condition ordy B = ordac, we have

ord, x>~ ZW and ord, ¥ >3 [1'1"—%0'-'"%%:] or

5
2%

where W = m:’ﬂ{u'r'dp'lr’, u*r'dp-[f} for &y = 0 as asserted.

ordy, y =2 [W —ord, = -

CONDITION 2: grd, b* = ord,ac
By using the slmllar process as CONDITION 1, we will obtain
ordy X > -W and ord, y>= [W——m“d . ]

5
— %

where W = mm{urdpt,urdptf} for £, = 0 as asserted.

ordy ¥ >~ [11-" —-m"dr, =

O

Lemma 4

Suppose  (U,¥) in @ andU= XT+ ayxey,

V= x?+ ,x2y where @, and @, as in (4). Letp> 7 be a
prime, a, b, ¢, sand tin L, 6= mctx{urdpa, ord,b, u'r'dpc}

and ordys ordyt>a = 86, If ord, U :Em"duL‘hr_ and
: : 2 TEa + 1,40
ord, V =1 ord, — et then
- 2 Pea +3

L 1
m"d_u.r:_?;{a — &) and urdpx:j;{a —§—g) and

L 1
ordyy = ;{ct - 86) or ord,y = ;{rx -85 — &) or

L 1
ordyy = ;{a - 76) or ord,y = ;{u - 75 — &) or

L 1
ordyy = ;{a — 66) or ord,y = ;{u - 65 —z,) or
urdp}rz%{a—ﬂﬁ—ﬁsnj urdp_‘}-':_*-i{a—ﬂﬁ—&l—ﬁsnj
or or
urdp}rz%{a—?ﬁ—ﬁsnj urdp_‘}-':_*-i{a—?ﬁ—&l—ﬁsnj
or or
urdp}rz%{a—ﬁﬁ—ﬁsnj urdp_‘}-':_*—i{ct—ﬁn’i—sl—ﬁsnj
where £, = ordy(m +n) ande; = ord,(d; +d;) for
some &g, £, = 0.
Proof.
From Lemma 3 for both conditions which are
u*rdp&: = ordyac and ord, B2 ~=: ord,ac, We have

ordy x > W (21)
and  ordy y 22 [W - ord, 2] (22)
z 1 cb® 5
or ord, _1}:>;['|.1.."—; erF_EE] (23)
or ordyy>2[W -2ord, 5] (24)
or ordyy >§ [W —%m’du;—;—gsn] (25)
where W = min {ord, I/, ord, V}.
Now,
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.3+.11r 2+ Apt

I'J‘J"d u= m"dpm. (26)

After substltutlng (26) |nto equations (21), (22), (23), (24) and
(25), we obtain

m"d and m"d V==

ordy x> = [ord, (s + At) —ord,(8a + AB)]  (27)
and
ordy ¥ = l_' [m"dp{s + Mt) — u*r'dp(ﬂa + bl —
ord,ch® + ord,a’] (28)
or
ordy, ¥ = l_' [m"dp{s + Mt) — m"dp(ﬂa + bl —
ord,ch® + ordya® — 5z 29
or
ordy ¥ = l_' [m"dp{s + Mt) — u*r'dp(ﬂa + bl — r.l'rd_u.::"_'+
ord,b’] (30)
or
ordy, ¥ = l_' [m"dp{s + Mt) — m"dp(ﬂa + bl — r.l'rdp.::"_'+
ord,b’ — Sz (31)
where i =1, 2.

In order to solve the above equations, we have to consider two
cases. That is,
CASE 1: min {ord,s, ordy 4;t} = ordys i=1,2.
CASE 2: min {urct_,,s, ord, At} = ordy At i=1,2.
Now, we consider the first case. In this case, we will consider

another two cases. Let p > 7 be a prime.
From equation (27), we have

Case (i): {m‘dpﬂa * m"dp.ll-b}
(i) min {m"dpﬂa, urdp.ll-f:} = ordga.
ord, x = %_I::m"dps - m"dpu.}.
By applying the hypothesis, we obtain
ordy x = %{u — &)
(i) min {ord,8a, ordyd;b} = ord,d;b.
ord, x = %{urdps - u:r'dp.?ll-b}_
Since ordy, 4;b = ord,a, then
ord, x = %_I::m"dps - m"dpu.}.
Therefore,
ordy X = %{a — &)
Case (ii): {ord,8a = ord,d;b}
Let& = ord,8a = ord,A;b. Then, there exist d; and d; such
that
8a = p®d, with ord,d, =0
A:b = pPd with ord,d; = 0.
Suppose ord,a = & for p > 7 a prime.
By substituting (32) and (33) into (27), we obtain
ordys — ord, {padl +p%d, ]l)
= :_(m"dps —ordya—ord,(d, + d:]),
where ord,a = 8.
Let e, = ord,(d, + d.). Therefore,
ord, x = -:{ct -6 =&

(32)
(33)

m‘d x}
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From equation (28), we have

Case (i): {m‘dpﬂa * u*rdpi{l-b}
(i) min {m"dpﬂa, wdpﬂib} = ordya
ord, ¥ = % [m"d_us —ordya —ord,c — dordgb +
Gord,al

= T:[m"dps— (u*r'dpc+ ordy %)] (34)

If ord, b* = ord,ac, then

ordyc + ordy :—: = ordyc + ord, :—E.f =7 ord,b—
Gordy,a < 7 ordyb.

Since & = max{ﬁrdna, ord,b, ord,c),

ordys, ordyt>a = 86 and -by subsﬁtuting (35) into (34), we
have

(35)

ordy ¥ = l_' [m"dps — ?ur‘dph].
By applying the hypothesis; we obtain
ord, ¥ = > (a — 76).
If um?pb: < ord,ac, then .
ordyc + ordy 2—55 = ordyc + ord, ;—: = Bord,c — SDpob =

(36)

6urdp c.

where ord, 1; =< ordyc implies urd_ﬂ% = um?_u% .
Since § = mm{urdpa, ord,b, u*rdpc},
ord,s ord,t>a > 85 and by substituting (36) into (34), we
have
ord, ¥ = %[u'rd_us - ﬁm"d_uf:].
By applying the hypothesis,'we obtain
ord,y = 1__":& — 65).
(i) min {mﬂd_ﬂﬂa, ufrdpﬂ.l-b} = ord,A;b
ordy ¥ = l_' [m"dps —ordyd;b—ordyc —
dordy,b + bordyal
Since ord, A;b = ordya, then
ordy, ¥ = % [u:r'dps —ordya —ordyc — Sordyb + ﬁu:r'dpa]
Thus, by the similar method as (35) and (36), we have
ord, y= (e —76) and ord,y = (& — 65).
Case (ii): {m"dpéa = m"dpﬂl-b} .
Let & =ord,8a = ordyd;b,
Therefore, by substituting (32) and (33) into (28), we obtain
ordy, ¥ = j:{clmfps - urdp{_'padl + pad:} - u:r'dpcbs‘ +

u:r'dp L:.E'}

é{urdps —ordya — urdp{dl +d,) — ordyc — dordyb +
Gord,a),
where ord,a = 8.

Let s, = ord,(d, + d.). Therefore,
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ordy ¥ = é{urdps —ordya — &, —ordyc — Sord, b +
Gord,a)

We solve the above equation by applying the similar method
as (34), thus we obtain

ord, y = jj__'{ct —76—¢&) and ord,y:= j:{r.:t — 65 — &)
From equation (29), by using the same process as equation
(28) which is not involving =g, we obtain

>(a —76 —5z) or
i__":a - 75 — &, — 5g;)

%{a — 65 — 5&p)

j—_'{ct — 66 — & — 5gp)

" and ¢, = ord, (d, + d)

ord, Y
ordyy or

ordyy or

ordy ¥
where &y = ordy(m + n)
some &g, £, = 0.
From equation (30), we have two cases as follow.
Case (i): {ord,8a = ord,A:b}

(i) Suppose min {ord, 8a. ord,;b} = ord,a.

for

u:r'dp v = l_' [m"dps — m"dpa — ?urdpc +
Tord,b]
= % [m‘dps - (m‘dpa + ord, ;—)]

Ifm"dpb: > ordyac, then

@37)

c’ &
ordya+ ord, Pl ord,a + ord, pre Gord,c —

(38)

Sord,b = Bord,c
Since § = mm{ﬁrdﬂa, ord, b, ord,c),
ord,s, ord,t >a > 85 and by substituting (38) into (37), we
have '
ordy ¥ = %[urdps — ﬁu'r'dp.:'].
By applying the hypothesis, we obtain
ord, ¥ = > (a — 66).

We have
1= —-b+4 il;nzr.:r—:wa:
Since p > 7 a prime, then we have

ord,d; = ord, [—EJ + w"m] — ordyc.

Since ord, b* < ord,ac, we have

=1, 2.

ordyd; = ordyb — ord,c = ord, 5
Thus,
ord, ¥ = é[urdps - ﬁu'rdpc].
By applying the hypothesis,-we obtain
ord, ¥ = %_{t:t — 66,
(i) Suppose min {ord,8a, ord,d;b} = ord,d;b.

(39)

ord, ¥ = j—__'[u:'"d_us —ordgd;b—Tord,c +
Jordy,b]

Since ord, A;b = ordya, then

ordy ¥ = l_' [m"dps —ordya —Jordyc +

Tord,b]

Thus, by the similar method as (38) and (39), we have
ord, y = > (o — 66).
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Case (ii): {m"dpﬂa = m"dpi{l-b}
Let& =ord,8a = ordyd;b,

Therefore, by substituting (32) and (33) into (30), we obtain
ord, ¥ = %{u'rd_us - urdp{_'padi + pad:} - urd_uc'-' +
ordyb’)
é{urdps —ordya — ﬂ'?"dp':dl +d,) — Jordyc + ?u:r'dph},
where ord,a = #.
Let s, = ord,(d, + d,J. Therefore,

ordy ¥ = é{urdps —ordya — & — Jord,c + ?u:r'dph}.
We solve the above equation by applying the similar method
as (37), thus we obtain

ord, ¥ = %_{n: — 66 — &4 )
From equation (31), by using the same process as equation
(30) which not involving &, we obtain
ordyy = 1—__'{|:t — 66 —5&,) or

ordyy = 1—__"(5: — 65 — &, — 5g;)

where £, = ord,(m +n) ands, = ord,(d, +d,} for
some &g, 54 = 0.

Now, we consider the second case. That is, min
{ord,s.ord, A;t} = ord,A;t, i = 1, 2. In this case, we also

consider another two cases.
For equation (27), we use the similar method as the first case,
and then we will obtain the same result as follows.

Case (i): {u'rdpﬂa. * urdp}l[h}
By applying the hypothesis, we obtain
ord, x = %{a — &),
Case (ii): {m"dpﬂa = m"dpi{l-b}
By applying the hypothesis, we obtain
ordy x = 1__":& —-&—z)
Next, from equation (28), we have
Case (i): {m‘dpEa * u*rdp.ll-b}
(i) min {m"dpﬂa, u'r'dp.lll-&} = ordy, i;b.
ord, ¥ = é[urdp At —ordy A;b— ordyc —
dordy,b + bordyal

HE
= %[urdpt—(urdpc-l—urdp%)], (40)
If ord,b* = ord,ac, then

) w6 [
ordyc + ordy % = ordyc + ord, % =8 ord,b—7ord,a
< Bordyb. (41)
Since & = mm{urdpu, ord,b, u*rdpc},
ordy,s, ord,t >a = 86 and by substituting (41) into (40), we
have

ord, ¥ = -i[m"dpt - Em"dp.b].
By applying the hypothesis, we obtain
ordy ¥ = 1__":& —85).

If ord,b* = ord,ac, then

i & &
ordyc + ordy % = ordyc + ordy :._E = Jordyc — Gordyb

= Jord p . (42)
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where ord, 1; = ordyc implies ord, E < ordy 5 .
Since § = max{urdpa, ord,b, u*rdp.:'},
ord,s ord,t>a = 84 and by substituting (42) into (40), we
have '
ordy ¥ = j:_'[u*rdpt — ?u'rdp.:'].
By applying the hypothesis, we obtain
ord,y = jf_{ct - 75).
(ii)  Suppose min {urd_,,E-n, u:rd_ﬂ.f{[b} = ordya.
ord, ¥ = % [t:l'.i"t:l_rJ Ait—ordyn — ordyc —
Jordyb + 6ord,a]
Since ordya = ord, 4;b, then
ordy ¥ = l_' [m"dp At —ordy 4;b—ordyc —
dordy,b + bordyal
Thus, by using the similar method as (41) and (42), we have
ord, ¥ = %{a —86) and ord,y = %_{a — 75),
Case (ii): {m"dpﬂa = m"dpi{l-b}
Let & = ord,8a = ordyd;b,
Therefore, by substituting (32) and (33) into (28), we obtain
ord, ¥ = %{urd_u.l[t - u*rd_u{padl + pﬂd:} - u*rd_,,cbs‘ +
ord,a®)
%_{m"d_u.l[t — ordydib — urd_u{dl +d;) — ordy,C —
Sord,b + 6ord,a),
where ord, 15 = 6.
Let e, = ord,(d, + d,). Therefore,
ord, ¥ = —i{m"d_u.l[t — ordgdib — & —ord,c — dordyb +
bord,a) .

We solve the above equation by applying the similar method
as (40), thus we obtain

ord, ¥ = Tj__'{u: -85 —2) and ord,y= %_{n: — 78 — &),

From equation (29), by using the same process as equation
(28) which is not involving &5, we obtain

ord,y = j—__'{ct — 85 —5&,) or
ord,y = -:{ct — 88 — & —5g,) OF
ordyy = 1—__'{|:t — 78 —5gp) or
ordyy = 1—__"(5: - 75 — &, — 5g;)
where &, = ordy(m + n)and &, = ord,(d, + d;) for
some &g, 53 = 0.
From equation (30), we have
Case (i): {u'rdpﬂa. * urdp}l[h}
(i) Suppose min {urdpaa, u*rd_,,:{[b} = ord, 4;b.
ordy ¥ = l_' [m"dp At —ordy 4;b— Tordyc+
Tord,b]
= -i[u'r'dpt + bordyb — ?u*rdpc].
Therefore,
u:r'dp v = %[urdpt - ?u*rdpc].
Since & = mu,x{urdpa, ordyb, urdpc},
ord,s, ord,t>a > 348, thus

(43)
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1__-':& - 75).
(if) Suppose min {urdpﬂa, mﬂdpﬂib} = ordya.

ordy ¥ =

u:r'dp y = l_' [m"dp At — u:v'ri_ua — ?u*r'dpc +

Tord, b]

Since ordya = ordy A;b, then

ord, ¥ = % [ord, At — ord, 4;5— u'rd_uf:'_' +

u:r'dpb'_']

Thus, by using the similar method as (43), we have
ordy, ¥ = E{a — 780

Case (ii): {u:r'd Ba = ord,d; EJ}
Let & = ord, 8a = ordy i ik,

By substituting (32) and (33) into (30), we obtain

ordp Y = _:{Wd-”;{‘t — ordy (p%d, +p%d;) - ordyc’ +
u:r'dpb'_'}

= 2(ordyd;t — ord,dih — ordy(d, + d;) — Tordyc +
Tord,b)

where ord,d;b = 8.
Let s, = ord,(d, + d.). Therefore,
ordy ¥ = %{urdpﬁl[t —ordydib— &, — Tordyc + ?u:r'dph}.
We solve the above equation by applying the similar method
as (43), thus we obtain

ord, ¥ = %{a — 76 — &)
From equation (31), by using the same process as equation
(30) which not involving &g, we obtain

ordyy = 1—__'{|:t — 76 —5&,) or
ordyy = jj__'{ct - 78 — & — 5gp)
where &, = ordy(m + n)and &; = ordy(d, + d;) for

some &g, £, = 0 as asserted. o
Proof of Theorem 2
Letg = fi and h = f, and 4 be a constant. Then
(g + AMix,y) =
(Ba + Ab)x™ + (7b + 22c) x% + Gex®y? + (s + 48).
That is,
(g+ ARMx .y T Th+2c 3.2 2+ 40
Ba+ b =%+ (Bc+.1b) '1} +(Bc+lﬂ)x Y +Br.'+.1i:"
By completing the square the above equation, we obtain
(g+ AR (x40 Th+zie 2 AY B+t
oo+ Ab (.r + 2(2a +18) x‘}) +(Bc+.1&-) (44)
if
BC Th+zdc 3F _
T (:':Br.' +1B) :I =0. (45)

By solving equation (45), we obtain
4e%1% + 4bel + 4057 —192ac = 0.
Thus,

A= Ay =
where 4,44 be the zeros of the equatlon (45) whose
expressions are given in Lemma 1. 4;+ d; since
ord,b* = ord,acand ord,b® < ord,ac implies b’ # ac.
Now, let

- L —— - L ——
=D+ 19200-480° —b—+/19200-480°

and
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b+ 2d4c

u||

U= + 2Ea+ A4 B) _:_‘}-' (46)
I b+ 2dpc =
V=x1+ :':E!r.'+.1;[:ll" Y (47)
F(U,v) = (g + A4h)(x.¥) (48)
GVl = (g+ Ah)(xv). (49)
Substitution of U and V in (44), for i =1, 2, we have
(g + AR (x.¥)=
(xa+ﬁx ly) (a+ B) + =5 (8a + A;b)
gives the following polynomials in (U, V),
FWUV)=08a + A,U* + (s + A,t) (50)
GU.V) = (Ba + 1,B0V* + (s + 4,8, (51)

The combination of the indicator diagrams associated with the
Newton polyhedron of (50) and (51) takes the form shown in
Figure 1.

_ 1 2+ A,
\‘/‘ Wd!ﬂu - EWd.ﬂ (EE+.1,_E'
‘/Eul"unl
ro & sy e __.
ord,V = 3 ordy (9.:+.1.j, ?
Y|

Fig 1. The |nd|cator diagrams of
F(U.V) = (8a + 4;b)U* + s+ A4t (bold line) and
G(U.V) = (Ba+ A;b)V* + s+ A5t (broken line) with p > 7.

From Fig. 1 and by Theorem 1, there exists (7, ) in Q;

such thatF{U ) =0, 6¢0.7) = 0and ord, 0= p,, ord,V =
o with gy = : urdp (E.Z++.11r J and also gy = de (EL:A; )

Let U = and V=V in (46) and (47). Thus, there exists
(g3 in ©F such that

0= .rn_?+ ctl_rng_y,_\ (52)

V= -3’-'|:~é + I5'5:-]’-'r.\%.‘!f’r.\- (53)
By multiplying « to (52) and «; to (53), we have

'5‘:'[? = 5‘:-"0?"‘ ﬂlﬂ:xn?_‘}’n (54)

a,V = 17‘1.-"5[.\é + ﬂlﬂ:xng}’n- (55)

Thus, by subtracting (55) and (54), we have

oy Vgl =
To = ( 11":1—|:‘: ) '
Therefore, )
ordyxg= [urdp{ct,_i}— e, ) — ordy (e, — a,)].

Then, by subtracting (52) ang (33), we have
Yo = —

i 5
'.I:'i—ﬂ'::'xui

Therefore,

ordy,yy = u'rd_u{ﬁ - 1:;} - m"d_u{n:l - &) —

5
—ordyXp.
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4+ 04T

urdp (

), then from Lemma 4, we let x5 = f and v, =1.

Bl

) and ord,V

Bl

Since ord,U = 22+ 4,0
2+ At

ﬂTdr" (B::A-‘f L

Since F{Il,¥"y = 0 and &{I.¥) = 0, by back substitution in

(50) and (51) we would have g(£ #) = f.(§,7) = 0 and h(£, )

=f.(§,m) =0. Thus,

wdﬂfzjj__'{ct—ﬁj and urd;,-f:jj:{a—ﬂ—gl:]and

ordg Ej—_'{u: — 85} or ordy? 3:_:-1__'(51: —85—¢gdor

ordg Ej—__'{u: — 75} or ordy? 3:_:-1__'(51: —75—¢gdor

ord,? Ejj__'{n: — 64 or ord,1 :_*%{ct — 65 —&)or
ordy? :_=-1—__'{|:t — 86 — 5&;) ord,1 El__-':ﬂt — 85 — & — 5&;)
or . or .

ordy? :_=-1—__'{|:t — 76 — 5&p) ord,1 El__-':ﬂt — 75 — & — 5&p)
or . or .

ordy? :_*jj__'{ct — 66 — 5&p) ord,1 :_*%{ct — 66 — &, — S5

where (£, 1) is a common zero of f, and £, and

5= mm{urdﬂa, ord, b, u'r'dﬂc} for some &y £, > 0. o
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