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Abstract—Two modified binomial approximations to a 

hypergeometric distribution—modified binomial distributions 2 
and 3—are proposed and their accuracy is investigated in terms of 
the total variation distance. In addition, an efficiency comparison 
with a binomial approximation was conducted using a simulation 
study for 162 situations. It is found that the total variation 
distances of the two modified binomial approximations are less 
than that of a binomial approximation for almost all situations and 
tend to zero for a small sampling fraction whatever the levels of 
population size. Even for the large population size of 20,000, there 
seems to be no difference in the efficiencies of the two modified 
binomial approximations and the binomial approximation at all 
levels of the sampling fraction and the proportion of the population 
that has the specified attribute. 
 

I. INTRODUCTION 
RANDOM sample from a finite population is one in 
which each member of the population can be classified 

as either having or not having a specified attribute. If 
sampling is with replacement, the process of observing 
whether or not each member selected has the specified 
attribute that constitutes a Bernoulli trial. Hence, for random 
sampling with replacement, the number of members 
contained that have a specified attribute is a binomial 
random variable. Specifically, the number of members 
obtained that have the specified attribute has a binomial 
distribution with parameters n and p where n is the sample 
size and p is the proportion of the population that has the 
specified attribute. However, if sampling is without 
replacement, the trials are not independent. Hence, the 
process of observing whether or not each member selected 
has the specified attribute does not constitute a Bernoulli 
trial. In particular, the number of members obtained that 
have the specified attribute has a hypergeometric distribution 
with parameters  N, n and D where N is the population size, 
n is the sample size and D is the number of items that fall 
into a class of interest when D N≤  [1].  

A family of hypergeometric random variables is closely 
related to a family of binomial random variables. Weiss [2] 
mentioned that if a sample size n is small relative to a 
population size N, the hypergeometric distribution with 
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parameters N, n and D can be approximated by the binomial 
distribution. As a rule of thumb, the hypergeometric 
distribution can be adequately approximated by the binomial 
distribution, provided that the sample size does not exceed 
5% of the population size [2]. Additionally, Montgomery [3] 
and Evans et al. [4] mentioned that if the sampling fraction 

nf
N

 = 
 

 is small—it is not greater than 0.1—then the 

binomial distribution with parameters Dp
N

=  and n is a 

good approximation to a hypergeometric distribution.     
The hypergeometric distribution is particularly important 

in statistical quality control and the statistical estimation of 
population proportions for sampling survey theory [5], [6]. 
In certain quality control problems, it is sometimes useful to 
approximate a hypergeometric distribution with a binomial 
distribution or an asymptotic binomial distribution [7]. This 
is particularly helpful in situations where the original 
distribution is difficult to manipulate analytically. For 
example, this approximation is useful in the design of 
acceptance–sampling plans [3], [8], [9]. However, if the 
sampling fraction is greater than 0.1, then the approximation 
to a hypergeometric distribution with a binomial distribution 
is no better. 

Therefore, this study proposes two modified binomial 
approximations to the hypergeometric distribution—
modified binomial distributions 2 and 3—using an 
expansion of hypergeometric probabilities in term of 
Krawtchouk’s polynomial [10]. These are good 
approximations to a hypergeometric distribution whatever 
the sampling fraction.  

II. MATERIALS AND METHODS  
This study proposes two modified binomial 

approximations to the hypergeometric distribution—
modified binomial distributions 2 and 3—using an 
expansion of hypergeometric probabilities in term of 
Krawtchouk’s polynomial. An accuracy comparison of the 
two modified binomial approximations in terms of the total 
variation distance [11] with a binomial approximation was 
empirically performed using a simulation study. 

 

A. Distributions of Random Variable 
Consider a finite population of size N in which each 

member is classified as either having or not having a 
specified attribute. Let D be the number in the population 
having the specified attribute ( D N≤ ), then N D−  
corresponds to the number in the population not having the 
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specified attribute. These numbers are not known to us in 
advance. A random sample of size n, n N,≤ is taken without 
replacement from the population. The sample contains X 
elements that have the specified attribute. Then X is called a 
hypergeometric random variable and is said to have a 
hypergeometric distribution with parameters N, n and D. 
Additionally, the probability mass function of X is  

 

D N D
x n x

h(x;n,D, N)
N
n

−  
  −  =

 
 
 

  

 

where Max{0, n (N D)} x Min{n, D},− − ≤ ≤  n ,+∈  

N +∈  and D N≤ (see [1], [12]). 
However, if a random sample of size n is taken with 

replacement from a finite population of size N where each 
element in the population has an equal and independent 
probability p of having a specified attribute, then X is called 
a binomial random variable and is said to have a binomial 
distribution with parameters n and p. The probability mass 
function of X is 

 

x n xn
b(x;n,p) p q

x
− 

=  
 

    

 

where p + q =1, p 0,> q 0,> n ,+∈ and x = 0, 1, 2, …, n  
(see [1], [4], [12]).   

B. Modified Binomial Approximation to Hypergeometric 
Distribution 
This section proposes two modified binomial 

approximations to the hypergeometric distribution which are 
called modified binomial distribution 2 and modified 
binomial distribution 3.  A procedure to derive the proposed 
distributions is as follows: 
Let (x)α  be a step function with the jump, at the point x, of 
   

   x n xn
j(x) p q

x
− 

=  
 

    

 

where p + q =1, p 0,> q 0,> n ,+∈ and x = 0, 1, 2, …, n.   
Then Krawtchouk’ s polynomial is defined by 

 

( ) ( )
m

m j j
m

j 0

x n x
k x;n,p p q

j m j
−

=

−  
= −  −  

∑   for m 0,1, ..., n=  

(see [13], [14]). 
 

For any integers x, N, D, and n satisfying the four 
conditions as follows: 

1) Max{0, n (N D)} x Min{n, D}− − ≤ ≤  
2) 1 n N≤ ≤  
3) D N≤  
4) 0 p 1,< <  0 q 1< <  and p + q = 1,  an expansion of the 

hypergeometric probability in term of Krawtchouk’s 
polynomial is given by  

 
 

( )
1n

m
m m

m 0

N
h(x;n,D, N) b(x;n,p) pq k (x;n,p)k (D; N,p).

m

−
−

=

 
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∑

 
An approximation of the relationship between the 

hypergeometric and the binomial probabilities is given by 
 
 

rb (x;n,p)  
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m m
m 0

b(x;n,p) k (x;n,p)
=
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where r 0,1,..., n=  
 

( ) ( )
1

m
m m

N
pq k D; N,p

m

−
− 

=  
 

δ  for  m 0,1,..., n=  

 

( ) ( )m 1 m m 1
m q p

N m pq+ −= − − +  −
δ δ δ  for m 1,..., n 1= −  

 

Dp
N

=  

 

q 1 p= −  
 

( )mk x;n,p  and ( )mk D; N,p are Krawtchouk’s polynomials 
[10]  
 

For r = 0, 1, 2, 3, the ( )rk x;n,p ,  ( )rk D; N,p  and rδ are 
as follows: 

 

( ) ( )
0

0 j j
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−

=
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=  
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3
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3
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x n x
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j 3 j
−
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3

2
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( ) ( )
0
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If r = 0, then 
0

0 m m
m 0

b (x;n,p) b(x;n,p) k (x;n,p)
=

= ∑δ  

b(x;n,p)=  which is the binomial approximation to the 
hypergeometric distribution. 

If r = 1, then 
1

1 m m
m 0

b (x;n,p) b(x;n,p) k (x;n,p)
=

= ∑δ  

b(x;n,p)=  which is the binomial approximation to the 
hypergeometric distribution. 

For r = 2, a modified binomial distribution 2 has a 
probability distribution in the form of 

 

2b (x;n,p) =  2 b(x;n,p)×η for x = 0, 1, 2, …, n   (2) 
 

where b(x;n,p)  is the probability mass function of a  
binomial random variable  

( )2
11 A

2 N 1 pq
= −

−
η  

( ) ( )2 2A x x 1 q 2xx pq x x 1 p′ ′ ′= − − + −  

x n x′ = −  
Dp
N

=  and q  =  1 p− . 

For r = 3, a modified binomial distribution 3 has a 
probability distribution in the form of 

 

3b (x;n,p) =  3 b(x;n,p)×η for x = 0, 1, 2, …, n   (3) 
 

where b(x;n,p)  is the probability mass function of a  
binomial random variable 

( )
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p q11 A B
2 N 1 pq 3 N 2 N 1 p q

−
= − −

− − −
η  

( ) ( )2 2A x x 1 q 2xx pq x x 1 p′ ′ ′= − − + −  

( )( ) ( )
( ) ( )( )

3 2

2 3

B x x 1 x 2 q 3x x 1 x pq

3xx x 1 p q x x 1 x 2 p

′= − − − −

′ ′ ′ ′ ′+ − − − −
 

x n x′ = −  
Dp
N

=  and q  =  1 p− . 

The probability functions 2b (x;n,p)  and 3b (x;n, p)  as 
shown in equations (2) and (3) are called the modified 
binomial probability functions 2 and 3, respectively. 

III. SIMULATION RESULTS 
A simulation study was conducted to empirically evaluate 

the validity and reliability of the two modified binomials and 
the binomial approximation to the hypergeometric 
distribution. In the study, finite populations of size N = 100, 
500 and 20,000 were generated in the form of a 
hypergeometric distribution with the sampling fractions 

nf
N

 = 
 

 at 0.01, 0.02, 0.06, 0.1, 0.2 and 0.5. Moreover, 

proportions having a specified attribute Dp
N

 = 
 

 were 

studied at 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6 and 0.8. 
Thus a total of 162 situations were created for the simulation 
study. Then, the total variation distances were compared 
empirically among the modified binomial 2, the modified 
binomial 3 and the binomial approximations to the 
hypergeometric distribution. 

Let ( )d b,h  be a total variation distance between the 
binomial and the hypergeometric distributions, 

( )2d b ,h  be a total variation distance between the 
modified binomial distribution 2 and the hypergeometric 
distribution, 

( )3d b ,h  be a total variation distance between the 
modified binomial distribution 3 and the hypergeometric 
distribution. 

The simulation results in Fig. 1 to 6 reveal the total 
variation distances of the binomial, the modified binomial 2 
and the modified binomial 3 approximations to the 
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hypergeometric distribution. In Fig. 1(a), when the 
population size and the sampling fraction are 100 and 0.01 
respectively, the total variation distances of the three 
estimations seem to be the same at all levels of p. When the 
sampling fraction is greater than 0.01, Fig 2(a) to 6(a) 
indicate that ( )2d b ,h  and ( )3d b ,h  are less than ( )d b,h  
for the population size of 100 and all levels of p. 
Additionally, the total variation distances of the three 
estimations seem to increase whenever the sampling fraction 
increases. 

Fig. 1(b) to 6(b) indicate that ( )2d b ,h  and ( )3d b ,h  are 

less than ( )d b,h  for population size of 500 at all levels of 
sampling fraction and p. The total variation distances of the 
three estimations tend to increase whenever the sampling 
fraction increases. For a large population size of N = 20,000, 
Fig. 1(c) to 6(c) indicate that the total variation distances of 
the three estimations seem to be slightly different at all 
levels of the sampling fraction and p.  

Further, Fig. 1 to 4 indicate that the total variation 
distances of the modified binomial 2 and the modified 
binomial 3 approximations to the hypergeometric 
distribution are not greater than 0.005 when the sampling 
fraction is not greater than 0.1 for population sizes of N = 
100, 500 and 20,000 whatever the values of p. In addition, 
the total variation distances of the binomial approximation 
compared to the hypergeometric distribution are not greater 
than 0.025 when the sampling fraction is not greater than 0.1 
for population sizes of N = 100 and 500 whatever the values 
of p. Even for the large population size of N = 20,000, the 
total variation distances of the binomial approximation 
compared to the hypergeometric distribution are small (less 
than 0.005) when the sampling fraction is not greater than 
0.1 whatever the values of p. When the sampling fraction is  
greater than 0.1, Fig. 5 and 6 indicate that the total variation 
distances of the modified binomial 2 and the modified 
binomial 3 approximations to the hypergeometric 
distribution are not greater than 0.05 for population sizes of 
N = 100, 500 and 20,000.  

In addition, the total variation distances of the binomial 
approximation to the hypergeometric distribution seem to be 
large for population sizes of N = 100, 500 at a small value of 
p and the sampling fraction is greater than 0.1. Further, the 

( )2d b ,h  and ( )3d b ,h  seem to be the same for almost all 
situations of the study, especially a large population size 
whatever the values of the sampling fraction and p. 

 

 
(a) Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h when f = 0.01 
for N=100. 

 

 
(b) Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h when f = 
0.01 for N=500. 

 

 
(c) Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h when f = 0.01 
for N=20,000. 
 
Fig. 1. Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h  when the 
sampling fraction of  f = 0.01 for different values of the population size of 
N. 
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(a) Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h when f = 0.02 
for N=100. 

 

 
(b) Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h when f = 
0.02 for N=500. 

 

 
(c) Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h when f = 0.02 
for N=20,000. 
 
Fig. 2. Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h  when the 
sampling fraction of  f = 0.02 for different values of the population size of 
N. 

 

 
(a) Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h when f = 0.06 
for N=100. 

 

 
(b) Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h when f = 
0.06 for N=500. 

 

 
(c) Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h when f = 0.06 
for N=20,000. 
 
Fig. 3. Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h  when the 
sampling fraction of  f = 0.06 for different values of the population size of 
N. 
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(a) Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h when f = 0.1 
for N=100. 

 

 
(b) Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h when f = 0.1 
for N=500. 

 

 
(c) Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h when f = 0.1 
for N=20,000. 
 
Fig. 4. Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h  when the 
sampling fraction of  f = 0.1 for different values of the population size of 
N. 
 

 
 

 
(a) Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h when f = 0.2 
for N=100. 

 

 
(b) Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h when f = 0.2 
for N=500. 

 

 
(c) Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h when f = 0.2 
for N=20,000. 
 
Fig. 5. Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h  when the 
sampling fraction of  f = 0.2 for different values of the population size of 
N. 
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(a) Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h when f = 0.5 
for N=100. 

 

 
(b) Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h when f = 0.5 
for N=500. 

 

 
(c) Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h when f = 0.5 
for N=20,000. 
 
Fig. 6. Total Variation Distances ( )d b,h , ( )2d b ,h  and ( )3d b ,h  when the 
sampling fraction of  f = 0.5 for different values of the population size of 
N. 

 
Additionally, Fig. 1 to 6 indicate that the total variation 

distances of the three estimations tend to decrease whenever 

the population size increases whatever the levels of sampling 
fraction and p.  

Further, Fig. 6(a) indicates that the total variation distance 
of the binomial approximation to the hypergeometric 
distribution approximates 0.14 when the sampling fraction 
of f = 0.5 for population sizes of N = 100 and a small value 
of p = 0.02. Even for the same situation, the total variation 
distances of the modified binomial 2 and the modified 
binomial 3 approximations to the hypergeometric 
distribution approximate 0.04 which is smaller than that of a 
binomial approximation. 

IV. DISCUSSION 
The total variation distances of the binomial 

approximations to the hypergeometric distribution are not 
greater than 0.025 when the sampling fraction is not greater 
than 0.1 for all levels of the population size in this study 
whatever the values of p. However, when the sampling 
fraction is greater than 0.1, the total variation distances of 
the binomial approximations to the hypergeometric 
distribution seem to be large for population sizes of N = 100, 
500 and a small value of p.  

Hence, the binomial distribution with parameters Dp
N

=  

and n is a suitable approximation to the hypergeometric 
distribution for a small sampling fraction (the sampling 
fraction is not greater than 0.1) as mentioned by Weiss [2], 
Montgomery [3] and Evans et al. [4].  

Even the total variation distances of the modified 
binomial 2 and the modified binomial 3 approximations to 
the hypergeometric distribution are not greater than 0.005 
when the sampling fraction is not greater than 0.1 for all 
levels of the population size in this study, whatever the 
values of p. When the sampling fraction is greater than 0.1, 
the total variation distances of the modified binomial 2 and 
the modified binomial 3 approximations to the 
hypergeometric distribution are not greater than 0.05 for all 
levels of the population size in this study. Therefore, the 
efficiencies of the two modified binomial approximations to 
the hypergeometric distribution—the modified binomial 
distributions 2 and 3—using an expansion of hypergeometric 
probabilities in terms of Krawtchouk’s polynomial are better 
than that of a binomial approximation to the hypergeometric 
distribution whatever the sampling fraction and the 
population size. 

V. CONCLUSION 
This study proposes two modified binomial 

approximations to the hypergeometric distribution—the 
modified binomial distributions 2 and 3—using an 
expansion of hypergeometric probabilities in term of 
Krawtchouk’s polynomial. The results of the simulation 
study indicate that the total variation distances of the 
modified binomial 2 and the modified binomial 3 
approximations to the hypergeometric distribution are less 
than that of a binomial approximation for almost all 
situations of the study and tend to zero for a small sampling 
fraction whatever the levels of population size. Even for a 
large population size of N = 20,000, the total variation 
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distances of three estimations seem to be only slightly 
different at all levels of the sampling fraction and p. This 
work is particularly important in quality control problems. 
For example, the modified binomial distribution 2 and 3 are 
useful in the design of acceptance–sampling plans. In 
particular, if the sampling fraction is greater than 0.1, then 
the approximation to a hypergeometric distribution with a 
binomial distribution is no better. 
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