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Abstract—
Some recent results and perspectives for development of

contemporary group analysis for ordinary differential equa-
tions are considered. The article deals with regular algo-
rithms of searching for the higher symmetries (tangential, Lie–
Bäcklund and nonlocal – exponential and non-exponential).
The solution for an inverse problem in class of equations
admitting some non-exponential nonlocal operator is given.

Index Terms—

Ordinary differential equations, tangential operators, Lie–
Bäcklund and nonlocal operators, inverse problem.

I. INTRODUCTION

The present article generalizes and significantly develops
the results of authors announced on international conferences
MOGRAN (2000) [4], WSEAS (2002 [1], 2004 [2]) and
Europment (2014 [3]).

It is well known that the group analysis originated in the end
of XIX century (Sophus Lie) and initially it considered only
point transformation leaving ordinary differential equation
(ODE) invariant. It is possible to equally describe almost all
classic methods of integration known at that period on this
basis. However, there didn’t exist any new methods of solving
practically important model equations and further development
of group analysis became possible only after Ovsiannikov
L. V. (1950 – 1960), who cogently demonstrated that usage of
the group methods could give the huge number of physically
significant partial solutions of nonlinear model equations in
mathematical physics.

Since the search of particular solutions of partial equations
(for example, self–model solutions) in partial derivatives is
often reduced to the solution of nonlinear ODE, there appeared
an urgent need to elaborate the new methods for ODE solving
in closed form. Leaving meanwhile the occurrence of discrete–
group analysis, it’s possible to note that classic group analysis
was developed in two directions: nonpoint transformations
(local and nonlocal) research and inverse problem solution.
Wherein the first direction allows significantly expand the
number of ”solvable” ODE and the second – to describe the
multiplicity of all ODE of the given class coinciding with
several a priori conditions , for example, those having a first
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integral (conservation law) of given structure or having sym-
metry corresponding to the symmetry of certain application.
This in its turn gives the possibility to purposefully build
the model equations regarding the requirement of maximum
adequacy to describing phenomenon.

II. LOCAL TRANSFORMATIONS

Point transformations do not describe all possible sym-
metries of ODE, even local. Natural generalization of point
transformations in this case are tangential or contact trans-
formations. The well-known example of such transformations
– is the Legendre transformation. Let’s consider the G group
of point transformations in the space of independent variables
(x, y, y′)

x̃ = φ(x, y, y′, a), ỹ = ψ(x, y, y′, a), ỹ′ = χ(x, y, y′, a),
(1)

where

φ
∣∣∣
a=0

= x, ψ
∣∣∣
a=0

= y, χ
∣∣∣
a=0

= y′. (2)

Transformations (1) are called contact, if the G group pre-
serves the following equation ω = dy−p dx, i. e. the equation
dy− p dx = ρ(dỹ− p̃ dx̃) completes. This equation expresses
the tangency condition of the first order.

Similarly it’s possible to try to enter the tangential trans-
formation of the highest order, but, apparently S. Lie already
knew that there could not exist any tangential transforma-
tion of the highest order because transformations correspond-
ing to them in form and properties turn out in prolongation
of point transformations or contact transformations. Moreover,
for functions which depend on more than one variable such
contact transformations are indeed prolongation of point trans-
formation.

Theorem 1 [5]. Operator

X = ξ(x, y, y′)
∂

∂x
+ η(x, y, y′)

∂

∂y
+ ζ(x, y, y′)

∂

∂y′
(3)

is an infinitesimal operator of the group of contact transfor-
mations if and only if

ξ = −∂W
∂y′

, η =W − y′
∂W

∂y′
, ζ =

∂W

∂x
+ y′

∂W

∂y
(4)

with several function W =W (x, y, y′).
From the form (3) it is obvious that for equations of

the second order the regular algorithm of search for contact
transformations there do not exist, as the defining equation
(invariance condition) does not split on the system due to the
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lack of an independent variable – all the required functions
depend on all variables included. But even in the case when
it is possible to find an assumed operator which coincides in
its shape with the from (3) it is not guaranteed that it could
be contact. For example, in article [6] there is an example of
equation

y′′ +
1

3
xy−5/3 = 0, (5)

which permits the existence of the second operator (along with
point X1 = 8x ∂x + 9y ∂y)

X2 =
[
(y′)2 − ty−2/3

]
∂x − 3

2
y1/3 ∂y +

1

2
y−2/3y′ ∂y′ (6)

(this operator was found using a discrete group of transfor-
mations for the equation of Emden–Fowler [7]). However, it’s
impossible to find the function W – the system of equations
(4) for coordinates (6) is incompatible. Therefore the operator
(6) is tangent only on the manifold of solutions for equation
(5), i. e. essentially it’s Lie–Bäcklund’s operator.

For equations of the third and higher order contact transfor-
mations could be received using the algorithm of Lie. How-
ever, despite of the significant increase of possible dimension
of permissible operators algebra (from 7 to 10 for equations
of the third order), the class of equations which admit local
transformations is indeed rather narrow. Let’s illustrate this
statement considering an inverse problem for class of contact
transformations allowed by such equation:

y′′′ = F (x, y, y′). (7)

This problem means the solving of system

Wy′y′y′ = 0,

Wyy′y′y′ +Wxy′y′ +Wyy′ = 0,

Wyyy′(y′)2 + 2Wxyy′y′ +Wxxy′ +Wyyy
′+

+Wxy +Wy′y′F = 0,

Wy′Fx + (y′Wy′ −W )Fy − (y′Wy −Wx)Fy′+
+(3y′Wyy′ +Wy + 3Wxy′)F+

+Wxxx + 3Wxxyy
′ + 3Wxyy(y

′)2 +Wyyy(y
′)3 = 0.

(8)
The solution of first three equations (8) gives two solutions:
1) if Wy′y′ = 0, so F is arbitrary and operator converts to
point operator. This problem is already solved (see, f. ex. [4])
and therefore is not interesting for us; 2) Wy′y′ ̸= 0, and then

W =
1

2
f(x)(y′)2 − f ′(x)yy′ + g(x)y′ +H(x, y),

F =
1

f(x)

[(
2f ′′(x)−Hyy

)
y′ + f ′′′(x)y − g′′(x)−Hxy

]
.

(9)
The substitution of expressions (9) in the last equation of
system (8) gives (after splitting on exponents y′) a new
system, from the first two equations of which follows

H(x, y) =
[f ′(x)]2 + C

2f(x)
y2 + a1(x)y + a0(x),

i. e. the equation (7) is linear.

III. NONLOCAL OPERATORS

Let’s find out which structure should be for infinitesimal
operator to describe all ODE of the second order, allowing
reduction of the number of order by moving to new variables
– invariants for admitted operator. Let the operator be written
in canonical form, then a universal invariant I0 = x, and let
the first differential equations be I1 = H(x, y, y′). Then the
function H satisfies the equation

Φ
∂H

∂y
+DxΦ

∂H

∂y′
= 0, (10)

where Φ – is a coordinate of formal canonical operator. The
equation (10) is an equation of the total derivatives of the first
order regarding unknown coordinate for Φ, and it could be
considered as an equation with ramifying variables. Its solution
has the following form:

Φ = exp

(
−
∫

∂H/∂y

∂H/∂y′
dx

)
. (11)

It’s obvious that the formal operator defined by this coordinate
is an exponential nonlocal operator (ENO). Thus, to describe
all equations of the second order, which allow a reduction
to the equation of the first order by submitting invariants of
possible operator, an exponential nonlocal operator is enough.
For equations of higher order this is not true, but it’s possible
to prove more general statements playing an important role in
the general theory of nonlocal operators.

Theorem 2 (first factorization theorem) [9,
10]. Any differential equation of the n–th order
y(n) = F (x, y, y′, . . . , y(n−1)), factorized up to a special
system: {

z(n−1) = G(x, z, z′, . . . , z(n−2)),
z = H(x, y, y′),

(12)

If and only if it admits the ENO

X = exp

(
−
∫

Hy

Hy′
dx

)
∂y. (13)

Remark 1. Any differential equation admitting an operator
can be written in invariants of this operator. A priori we
suppose that admissible operator has differential invariant of
the first order.

Remark 2. The Theorem 2 in a slightly different form is
given in the book of P. Olver [11].

Theorem 3 [9]. The equation

y′′ = f(x)y + g′(x)y−1 − [g(x)]2y−3, (14)

where f(x), and g(x) are arbitrary functions is a unique
(up to the equivalence transformations of Kummer–Liouville)
equation of the form y′′ = F (x, y) admitting ENO

X = exp

(∫
ζ(x, y)dx

)
η(x, y)∂y.

In this case it is factorized up to the system{
z′ + z2 = f(x),
y′ = z(x,C)y + g(x)y−1.
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Thus the first equation of the system is a Riccati equation,
and it can be solved independently of the second equation.
The last equation is a Bernoulli equation, which is integrated
in quadratures for arbitrary coefficient z(x,C) , i. e. for a
general solution of the first equation.

Corollary. The equation (14) is a direct generalization of
the Ermakov equation

y′′ = f(x)y +Ay−3

transforms to it for g = const and has all its properties except
for an admissible 3-dimensional Lie algebra. For arbitrary f
and g the equation (14) does not admit a point group at all
with the exception of the trivial one. Its general solution

y = u

[
C1 + 2

∫
g(x) dx

u2

]1/2
,

where u is a general solution of the “shortened”, linear
equation u′′ = f(x)u. Naturally, one of three arbitrary
constants contained in the solution is not independent. The
equation (14) admits one-dimensional (!) point algebra only
(!) if

f =
1

2

g′′′

g′
+
3

4

(
g′′

g′

)2

− 1

2

g′′

g
+
k

4

(
g′

g

)2

,

k is an arbitrary constant; 3-dimensional algebra is admitted
only by the classical Ermakov equation (i. e. for g = const).

The mechanism indicated above allows to solve problem
arisen more than 100 years ago nomely the problem of
construction of Ermakov equation’s analog of any order.

Theorem 4 (second factorization theorem)
[9,10]. Random differential equation of n–th order
y(n) = F

(
x, y, y′, . . . , y(n−1)

)
, could be factorized till

the system of special form:
z(n−k) = G

(
x, z, z′, . . . , z(n−k−1)

)
,

z = H
(
x, y, y′, . . . , y(k)

)
,

∂z

∂y(k)
̸= 0,

(15)

if it admits some formal operator for which H
(
x, y, y′, . . . ,

y(k)
)

is the youngest differential invariant on the manifold
given by the equation. If the equation is factorized into the
system (15), then it admits some formal operator for which
H
(
x, y, y′, . . . , y(k)

)
is a differential invariant of k –order

on the manifold.
Remark. If k = n − 1 and the first equation (15) has the

form z′ = 0, so the function H is the first integral of the
original equation.

The search of the formal operator having a predetermined
invariant in general consists in the solution of differential
equation with full derivatives

Φ
∂H

∂y
+Dx[Φ]

∂H

∂y′
+ . . . +Dk

x[Φ]
∂H

∂y(k)
= 0.

A perspective approach of this problem solution (alternative
generalized symmetries) is proposed by one of the authors of
the present article [8,9], but here we will consider only one

special case leading to a closed form of nonlocal operator
different from ENO.

IV. NONEXPONENTIAL NONLOCAL OPERATORS

Let’s consider the task of searching the classes of the third
order equations admitting nonlocal nonexponential operator
(NNO) of such form

X = η(x, y, y′)

(∫
ζ(x, y, y′) dx

)
∂y. (16)

Theorem 5. Any equation allowing the operator (16) admits
also the local operator X̄ = η(x, y, y′) ∂y .

Consequence. To solve this problem we could consider the
class of autonomous equations, i. e. put η ≡ y′ and look for
the operator as

X = y′
(∫

ζ(x, y, y′) dx

)
∂y, (17)

and then find all classes of equations using the principle of
similarity of oneparametric point groups on the plane.

The following statement is fair.
Theorem 6 [14]. There is no nontrivial equation of the form

y′′′ = F (y), admitting the NNO of the form (16).

Therefore, let’s consider an autonomous equation of the
third order without an “elder” derivative admitting nonlocal
nonexponential operator (17).

Theorem 7 [14]. The equation (7) with Fx = 0 admits
NNO (17) if and only if the right part has the form

F (y, y′) = y′
(
C
(
y′
)2

+G(y)
)
H(y)− 1

2C
G′′(y)y′, (18)

wherein

ζ(x, y, y′) = C +
G(y)(
y′
)2 , (19)

where G(y) and H(y) – are an arbitrary functions, C ̸= 0
– is an arbitrary constant.

Remark. The value C = 0 is possible only if G′′(y) ≡ 0.
But in this case the original equation is trivial and can be
easily integrated.

It’s easy to prove [8] that the operator (17) does not have
the first differential invariant (more precisely – an invariant,
depending only on the first derivative). To calculate the second
differential invariant of found operator it’s useful to solve the
equation

η̃
∂Φ

∂y
+ η̃1

∂Φ

∂y′
+ η̃2

∂Φ

∂y′′
= 0.

Substituting the received coordinates of the operator and
splitting the equation by the nonlocal invariable I , we obtain

INTERNATIONAL JOURNAL of PURE MATHEMATICS Volume 1, 2014

ISSN: 2313-0571 74



a system of two equations

y′

[
C +

G(y)(
y′
)2
]
∂Φ

∂y′
+
(
2Cy′′ +G′(y)

) ∂Φ
∂y′′

= 0,

y′
∂Φ

∂y
+ y′′

∂Φ

∂y′
+

+
[
y′
(
C
(
y′
)2

+G(y)
)
H(y)− 1

2CG
′′(y)y′

]
∂Φ
∂y′′ = 0.

(20)
It’s necessary to note that in the second equation instead of
y′′′ is used the right part of the equation (18), i. e. an invariant
is placed on the manifold of solutions of the original equation.
The solution of the first equation of the system (20) is a
function

Ω

(
y,

2Cy′′ +G′(y)

C
(
y′
)2

+G(y)

)
, (21)

the substitution of (21) in the second equation of the system
leads to a linear equation of the first order with partial
derivatives regarding the function Ω

∂Ω

∂y
+
[
H(y)− 2Cω2

] ∂Ω
∂ω

= 0, (22)

where ω – is the second argument of the function Ω. The
equation in characteristics of (22) is a Ricatti’s equation in
its canonical form, consequences, it is always could be solved
as an linear equation of the second order. In a big amount
of cases the solution of equation (22) could be expressed in
a closed form – through an elementary or special functions.
The type of submission subsequently depends on the function
H(y). For example, if H(y) = yk or H(y) = ey , the
second differential invariant is expressed through the Bessel
functions, while in the case of degree function we obtain a
special Ricatti’s equation – if the expression k+3

k+2 is a half–
integer, then the second differential invariant is an elementary
function. For example, when k = 0

Ω =
√
2Cy − arth

 2Cy′′ +G′(y)
√
2C
(
C
(
y′
)2

+G(y)
)
 .

Direct verification shows that because of the original equation
is Ω′ = 0, i. e. there exists a factorization

Ω′ = 0,

Ω =
√
2Cy − arth

 2Cy′′ +G′(y)
√
2C
(
C
(
y′
)2

+G(y)
)
 .

Thus, the function Ω is an autonomous first integral of the
original equation and the found symmetry is an analogue of
the variation symmetry.

V. AN ANALOGUE OF VARIATION SYMMETRY

It is known that among symmetries of ordinary differential
equations (ODE) the special place is taken by variation or
noether symmetries in the case when the Lagrangian is in-
variant towards the group of symmetries of the corresponding

Euler equations. Terms that define this type of symmetries are
inherent to mechanics and variation calculus but not to the
theory of ODE. But if we are interested in the method of
integration of equations and not the search of extremes there
is no need to use the Hamiltonian formalism. Moreover, its
necessary to abstract from traditional ideas about the properties
of variation symmetries could be inherent only to symmetries
of equations of even order. Obviously it is not so. For example,
the simple equation of the 3rd order

y′′′ = 2yy′.

Is autonomous and has an autonomous first integral

y′′ = y2 + C,

i. e. the symmetry of this equation is absolutely similar to
variation symmetry in sense that its first integral “inherits”
allowing to reduce the order of original equation immediately
in two units. Nontrivial examples of such equations were found
by P. P. Avrashkov [8].

Recently developed algorithms allow to find classes of
such equations and prove their maximum with an additional
conditions for the form of original equation and its first
integral. By the virtue of the principal of similarity of one-
parameter groups on the plane its enough to consider the
autonomous equations and to look for an autonomous first
integrals and than to multiply an obtained results by reversible
point transformations which are the elements of equivalency
group. Let’s consider the following equation:

y′′′ = F (y). (23)

Theorem 8 [12, 13]. There is no nontrivial equation (23)
(i. e. F (y) ̸= 0), having linear by y′′ an autonomous first
integral and the equation (23) having quadratic autonomous
first integral and it could unique be:

y′′′ =
(
ay2 + by + c

)−5/4
, (24)

where a, b, c – are random constants. The first integral has
the form of

P = R
(
y′′
)2 − 1

2
R′(y′)2y′′ + 1

8
R′′(y′)4 − 2R−1/4y′.

The requirement of the existence of a cubic autonomous first
integral for equation (23) leads to condition for coefficients a,
b and c in formula 24, should be the ratio b2 = 4ac, and the
formula in brackets should be the full quadrate, i. e. it could
be written as

y′′′ = ay−5/2.

In this case the equation has two functionally independent
cubic first integrals which allows to integrate it fully, the elim-
ination of second derivative leads to an autonomous equation
of the first order. Its important to mention that to reach this
form of equation its possible using a model equations of a
border layer in sedative liquids. For class

y′′′ = F (y, y′), (25)
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a linear autonomous first integral exists for equations with

F =
R′′(y′)3 − 2S′y′

2R
,

where R and S – are arbitrary functions of variable y, and
quadratic – for a whole range of equations

F = R−3/2y′Φ(u) +
2RR′′ −

(
R′)2

8R2

(
y′
)3 − 2RT ′ −R′T

4R2
y′,

where
u = R−1/2

(
y′
)2

+

∫
TR−3/2 dy,

R and T – are arbitrary functions of the variable y, Φ – is
a random function of a variable u.

Finally for the class

y′′′ = F (y)
(
y′′
)2

+G(y)y′′ +H(y) (26)

the following assertion is certain.
Theorem 9. There exists a unique equation of the class (26)

with F ≡ 0, H ̸≡ 0, namely

y′′′ =
cy′′

ay + b
+

k

(ay + b)5/2
.

and the unique equation of the class (26) F,H ̸≡ 0, namely

y′′′ = α
(
y′′
)2 − ay′′

α(ay + b)
+

c

(ay + b)4
,

having quadratic autonomous first integral , respectively

P =

[
(ay + b)y′′ +

1

2
a
(
y′
)2 − cy′

]2
− 2k

a

ay′ + 2c

(ay + b)1/2

and

P =

{[
α(ay + b)y′′ + ay′

]2
+

αc

(ay + b)2

}
e−2αy′

.
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