
 

 

 

Abstract—Potential flows around polygons and airfoils are 

obtained by the Schwartz-Christoffel transformation. Although the 

Schwartz-Christoffel transformation is well known, the application to 

the flow problems is limited to relatively simple flows. The present 

author extended the method to flows around regular and other simple 

polygons. This is possible by mapping a circle to a polygon. It is 

reminded that a flat plate from the Joukowsky transformation is also 

included in the Schwartz-Christoffel one. It is interesting to note that 

the Schwartz-Christoffel transformation can be applicable to a 

two-dimensional airfoil approximated as a polygon. 

 

Keywords—Aerodynamics, Airfoil, Conformal mapping, 

Potential flow,.  

I. INTRODUCTION 

chwartz-Christoffel transformation is introduced in text 

books of fluid dynamics [1]. However, its applications are 

limited to relatively simple flow fields. The 

Schwartz-Christoffel transformation was applied to a flow 

around a flat-plate rudder [2]. Present author extended the 

transformation to two-dimensional airfoils. A two-dimensional 

airfoil can be approximated as a polygon like panel methods [3].  

In this paper, first we would like to analyze a potential flow 

around regular polygons. This can be achieved by mapping a 

circle to regular polygons via the Schwartz-Christoffel 

transformation. We then analyze triangular, diamond and 

hexagonal cross sections. Finally, given airfoil cross sections 

are studied.  

 

II. SCHWARTZ-CHRISTOFFEL TRANSFORMATION FROM A UNIT 

CIRCLE TO A POLYGON  

 

The Schwartz Christoffel transformation from a circle to a 

polygon can be obtained from Eq. (1) [4].  
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(a) unit circle  (stagnation at 11 z ) 
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(b) polygon 

 

Fig. 1. Schwartz-Christoffel transformation from unit circle (a) 

to polygon (b)  

 

where A is a complex constant  iKeA  , N is the number of 

apexes, z is the complex coordinate of an original plane, 

 Nj

i

j
jez 


 ...., 21  

is the j-th point on a unit circle, 

j is the outer angular ratio to   at the j-th apex of a polygon 

and  i
 
is the transformed coordinate. A schematic 

view is shown in Fig. 1. 

The following equations must be satisfied in Eq. (1). 
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where Eq. (2) represents the fact that the sum of the angular 

rotation at each j-th apex of a polygon is equal to 2 and Eq. (3) 

is a necessary condition to avoid singularity by Eq.(1) and to 

form a closed polygon . Equation (3) becomes 
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In the transformed plane,  
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Therefore the uniform velocity V and the angle of attack  in 

the transformed plane becomes respectively as follows where 

K and  are both real constants. 

K

U
V 
   .              (7) 

  z .              (8) 

Equation (1) becomes on the unit circle iez  as follows. 
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The surface velocity on the polygon is given by 
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where the circulation becomes 

zU  sin4  .            (10)
 

and we get 
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The surface pressure coefficient is readily available from 

2

2

1

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V

d
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Lift and moment can be calculated theoretically from the 

Blasius theorems. Numerical summation is also possible. 

  

III. REGULAR POLYGONS 

A. Flat Plate  

It is not common to call a flat plate a polygon, but in the 

present context a flat plate can be regarded the first polygon 

(equilateral bi-angle). We may put 

01  .                (13)
 

     2 .                (14)
 

121   .               (15) 

Therefore Schwartz-Christoffel transformation becomes
 

 dAd sin2 .     

  20cos2  A         (16) 

Integral constant is taken to be zero in Eq. (16). We can set the 

complex constant  0  KKeA i
 and 

     KKK   cos .      (17) 

Equation (17) represents a flat plate in the -plane. 

The complex conjugate velocity is given by 
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   The Schwartz-Christoffel transformation includes the 

simplest case of the Joukowsky transformation [5]. A normal 

flat plate can be analyzed similarly. 

 

B. Regular Triangle 

 Regular triangle case 1.  A unit circle is transformed to a 

regular triangle by 

    2321   .             (19) 

    
0coscoscos 332211   .      (20)

 

    
0sinsinsin 332211   .      (21) 
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We may choose the next three points on the unit circle.
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With Eq.(19), we get 
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The Schwartz-Christoffel transformation on the unit circle is 
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 To form a regular triangle, one may put one of the three apexes 

at  

 0,11  .              (25) 

In this particular example, Eq.(25) represents the rear stagnation 
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The side length of the regular triangle becomes 3l . 

Equation (24) is integrated numerically from 
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In this integration, 0
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sin   and  must be on a straight line 

with inclination angle 6/5 relative to the axis. From these 

conditions, we have  
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In the integration from 2 to 3  3/223/2   , 

Eq.(24) must be  
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Also for 3 to 1   23/22  , 
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   The complex conjugate velocity along the side of the regular 

triangle in the transformed plane is  zz    (Fig. 2) 
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In Eq.(33),  
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Regular triangle case 2.   We may select in Eqs. (19)~(21) 
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We may choose three apexes in the transformed plane for 

3l as follows. 
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We integrate from 1 to 2  and the argument must equal 

to 2/ . This means  

22
3

2

12
2

3
cos2

2

1

3
2









ii

i eleedK 

























  .  (37) 

We get therefore 

    0 .                 (38) 

    







d

l
K

3

2

2

3
cos2

2

1

3
2













 .         (39) 

The complex conjugate velocity is given by (see Fig. 2, 

lateral coordinate inverted.) 
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The denominator must be interpreted as follows. 
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Fig. 2. Regular triangle pC  

(case 1/case 2, uniform flow either from left or right) 

C. Square 

 

Square case 1.   We can imagine from preceding examples 

that 
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We have therefore on the unit circle 
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We choose for a square with the side length 2l as follows. 
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Integration from 1 to 2  is on the straight line and 
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   The complex conjugate velocity along the square surface is 

obtained as follows (see Fig. 3). 
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Fig.3. Square (case 1) pC   
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Fig. 4. Square (case 2) pC  

(uniform flow either from left or right in Figs. 3 and 4) 

 

The denominator is treated in the same manner as that of the 

regular triangle. 

Square case 2.   We can imagine from preceding examples 

that 

   411
24

 iii


 .      (50)

 

 41
2

1
 ii .           (51) 

We have therefore on the unit circle 

 



ie

A
dz

d 2

1
2

1

2cos2
 .               (52) 

  


deAd
i

2

1
22

1

2cos2 .        (53) 

We may choose for 2l  as follows. 







































2

1
,

2

1
,

2

1
,

2

1

,
2

1
,

2

1
,

2

1
,

2

1

43

21





.

 

Integrate from 1 to 2  and the path is vertical. 

  222

1
2

1

12 2cos2
1

1









ii

i eleedK 













  .   (54)

 

Then we have  

    

  





d

l
K

2

1
2

1

2cos2
1

1




.         (55)

 

0 .                 (56) 

 

   The complex conjugate velocity becomes (see Fig. 4) 

    

 

 

2

2

1
2

1

2cos

sinsin
2





 i

e
V

d

dw
















.     (57) 

 

D. General Regular Polygons  

 

From above calculations, we found for regular polygons as 

follows (see also Ref. [5] and [6]). 

For case 1  01            

Flat plate    



ie

i
A

dz

d sin2
 .         

Regular triangle 






ie

i

A
dz

d

3

2

3

2

3

2

2

3
sin2 










.   

Square     
 




ie

i
A

dz

d 2

1
2

1

2

1

2sin2
 .    

For case 2  n/1     

Flat plate    



ie

A
dz

d cos2
 .         

Regular triangle 
3

2
3

2

2

3
cos

2








 


ie

A
dz

d
. 

Square     
 




ie

A
dz

d 2

1
2

1

2cos2
 .  

Then we can assume for n-th regular polygon for 01   

 

    
n

i

nn n

e

i
A

dz

d
222

2
sin

2








 




.         (58)   

 

n

nn

n

i
V

d

dw

2

2
1

2
1

2
sin

sinsin
2






























.    (59) 

For a n-th regular polygon for n/1    






i

n
n

e

n

A
dz

d

2
2

2
cos2 









 .          (60) 
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Fig. 5. Regular polygons with even sides  ,....3,2,12  mmN   

(cf. Eq. (2.6) of Ref. [6]) 

 

 

n

n

n

i
V

d

dw

2

2
1

2
cos

sinsin
2






























.     (61)

 

 

In the present setting, KA  and 0 .  

   It is very interesting to note that the maximum velocity 

(maximum for a circular cylinder only) at the shoulder side 

surface parallel to the uniform flow is given by equation below 

for regular polygons for ,...2,...8,6,4,2 mn  , where m is an 

integer (cf. Eq. (2.6) of Ref. [6]). 

n

V

d

dw
2

1

2














 .              (62)

 

The specific value becomes  

1

0

2   for a flat plate  2n , 

2

1

2
  for a square  4n ,  

3

2

2
  for a hexagon  6n ,  

4

3

2
  for an octagon  8n , 

… 

m

m 1

2


  for an general regular polygon  

with even sides  mn 2 . 

 

Note that the power is rather striking, and 2  for a 

circle  n . 

IV. POLYGON AIRFOIL SECTIONS 

A. Triangular Airfoil Section  

 

For a triangular airfoil, we get 

    2321   .             (63) 

    
0coscoscos 332211   .      (64)

 

    
0sinsinsin 332211   .      (65) 

For a triangle in Fig.6, we get 

    







 


 11 .           (66) 

    




 12

.               (67)
 

    
 213 21 








 


 .     (68) 

 
We can choose 1 arbitrary and 01   and 2 and 3 can be 

determined numerically.    

It can be shown that for 20  
 

 



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

deKd
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



3

1

2

1

2

3

2

2
sin2

1

3

1 . (69) 

and from the inclination of the first side 














 



3

12

1

2

3

j

jj  .         (70) 

We get 

 














1

1

2

1

1

3

1

2
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2

sin2


























 

i

i

j

j
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edK

j

.   (71) 

 

For 32    
 

 

 












21
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3

2

2

3

1

2

23
2

sin2


























 

i

i

j

j

el

edK
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.  (72)

 

For  23 
 

 
3

3

1

2

2

31

321

3

2
sin2

le

dK

i

j

j

j





































.     (73) 

 The constant K can be determined either of the above three 

equations. 

The complex conjugate velocity is given as follows and a 

result for a triangular airfoil by Yonezawa et al. [7] is shown in 

Fig.7. 
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


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

( 32   ). (75) 
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 (  23  ).   (76) 
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Fig. 6. Triangle generation 
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Fig. 7. Triangular airfoil pC at 
8  

 ]7[3.0/at05.0/max  cct    

   Equations (63), (64) and (65) could be equivalent to the 

geometrical conditions below. 

     2 .             (77) 

    
321 coscos lll   .           (78)

 

     sinsin 21 ll  .             (79) 

 

B. Diamond Airfoil Section  

 

A diamond airfoil section is a very popular academic subject 

in high-speed aerodynamics. It may be worthwhile to 

investigate the low-speed characteristics of the airfoil. A 

symmetric diamond airfoil is analyzed as follows. 

 

   24321   .            (80) 

   0coscoscoscos 4433221   １ .  (81) 

   0sinsinsinsin 4433221   １ .   (82) 

   

2
3,

2
2,

2
1,0 4321








  .    (83) 

 The half apex angle is given by and  

 

    





 




2
21 .          (84)

  

 





 


 1

2
42 .       (85). 

    For the first panel   21 0   from the trailing edge with 

an inclination   , we get 

 























































i
i

j

j

ele

dK

jj

j

j

1

4

1

2

1

2

1

2

3

4

1

2

12
2

sin2
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where 

    
cos

1

2


c
l

.              (87)

 

Therefore we get 
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.      (88)
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.   (89) 

 The complex conjugate velocity is given by 
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Fig. 8. Diamond airfoil section pC  at 10 , 10  
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More specifically 
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d
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2
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    
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   

 2
2
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 
 

   Figure 8 shows a diamond airfoil with the half apex angle 

10  and an angle of attack 10 . 

C. Rudder 

 

A rudder problem was solved by Fukatsu [2] many decades 

ago and we repeat the solution here because it is one of the most 

beautiful solutions of the Schwartz-Christoffel transformation 

to the present author’s knowledge. 

   The conditions are given as follows. 

   24321   .            (92) 

   
0coscoscoscos 44332211   .   (93)

 

   
0sinsinsinsin 44332211   .   (94) 

where 
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We can choose 1 arbitrary and we put as follows. 

31   .                (96)
 

From this we get 

    
24   .               (97)

 

    
23 sinsin   .             (98) 

 

The Schwartz-Christoffel transformation becomes 
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 It was shown elegantly by Fukatsu that 
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We therefore get a closed analytical solution in this case. 
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We may choose the root of the rudder locates at the origin  
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31 zeez
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.  (102)
  

and therefore 0B . Equation (101) can be simplified as 

follows. 
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The leading edge locates at 24   and  
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So we can determine and l as follows. 
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.                (105)
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   The trailing edge locates at 2   and
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The circulation is determined by the fact the trailing edge is 

the rear stagnation point and we have
 

   244
2

    zz UU .  (109) 

The final form of the complex conjugate velocity is given by  
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We repeat  
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.

  The chord length may be defined as follows. 
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.   (111) 

The lift coefficient is given by 
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Fig. 9. Rudder analytical solution pC  at 5 , 10  
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.  (112) 

A good approximation is  

   332 sin2sin2  lC .  (113) 

 

The rudder length to chord ratio is given by 
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.    (114) 

 

We can determine 2  and 3 numerically for a given cl /  

together with the relationship 23 sinsin   . From these 

angles, we can finally obtain 1 and 4 , then the problem is 

solved. A rudder with 
10 at 

10a is shown in Fig. 9. 

 

D. Hexagonal Airfoil Section  

A symmetric hexagonal airfoil is used as a stabilizer and the 

general relationship becomes as follows. 

2654321   .        (115) 
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Fig.10. Hexagonal airfoil pC at 5 , 15  
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We may put 


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A half apex angle is and we get 






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2
41 
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 .       (119)
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lllll  6431 .           (121)

 

    
cos252  lcll .         (122)

 
For the first panel 
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We can show that 
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    0 .                (125) 

where we use 
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   The complex conjugate velocity is given by (see Fig.10 

for 15 at 5 ) 
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V. GIVEN AIRFOIL SECTIONS  

 

A given airfoil was analyzed by the Schwartz-Cristoeffel 

transformation and it may be called the Schwartz-Christoffel 

panel method [2]. The method is repeated here in a more 

simpler procedure than that of the original one. 

An airfoil is approximated by N panels and along the panel 

surface 
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We can imagine that for ij    1 ii   
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From these equations, for the panel i  
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where 
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and 
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The panel length is il  and the panel inclination is i  of the i -th 
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panel, respectively. 

We have to find proper angle  Njj 1  on the unit 

circle so that the panel length il becomes exactly the same value 

as that of the given airfoil. Therefore for a given airfoil, the 

governing equation of the Schwartz-Christoffel panel method 

becomes 
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The initial angle 1  on the unit circle can be chosen arbitrary 

and we can set 01  . We have 1N unknown angles 

 Njj 2 . Also we have to determine extra two unknowns, 

i.e., the real constant K and  . Therefore we have 

121  NN  unknowns altogether, although we have 

only N equations. The final equation is a requirement that a 

polygon must be closed one and given by 
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In the original version, we used this equation [2]. But during the 

course of the development, it was found that this equation could 

be replaced by  

    

Pli
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
1

.              (135) 

where P is the perimeter of the given airfoil approximated 

by N panels and it is a constant. 

   The governing equations are non-linear and the iteration is 

necessary to determine  Nii 2 , K and  . 

   A possible solution procedure is as follows. A given airfoil 

chord locates on the  -axis  1/0  c . The initial guess for 

 Nii 2  may be given on the unit circle as follows. 
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   The first panel  1i inclination measured counterclockwise 

from the  axis is 1   and the geometrical condition 

becomes 
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where the right-hand side is caluculated from the given airfoil 

panel coordinate and 
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From Eq. (132) for the panel i , 1 satisfies 
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 From Eqs, (138) and (139), we can determine  as follows. 
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 Once  is determined, each panel inclination  Nii 2 is 

also obtained. 

   We can evaluate each tentative panel length il relative to K  

from Eq. (133) although we do not know the specific value of 

the real constant K at this stage. 

       

    NiI

d
K

l

ii

j
N

j

i

ji

i
















1,

2
sin2

1

1

2
1








 .    (141) 

 

The right-hand side of the above equation is a constant 

expressed by  1, iiI  .  

For the given airfoil, the exact total panel length, i.e. the 

perimeter is given by 
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On the other hand, the perimeter during the iteration is given by 
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The geometric requirement is PP  and therefore K is 

determined as follows. 
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The above procedure is the first iteration (see Fig.11). 

   We then update the angles  Nii 2 . A simple update 

method can be as follows. 
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where k is a positive constant and may be determined 

empirically. The above equation means that when the sum of the 

panel length up to i -th panel during the iteration 

 ij

i

j

sl 




1

1

exceeds that of the panel length  ij

i

j

sl 




1

1

, the 

corresponding i is reduced and vice versa. Convergence is 

reached when 
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airfoil [8] analyzed by the present method (N=80) is shown 

in Fig.12. 
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[3] K determined from integral I  from airfoil perimeter P
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[4] update  Nii 2 from excess panel length  iss / and 

obtain new  

[5] repeat [3] and [4] to achieve 
i

ss /  and restore original 

airfoil 

 

Fig. 11. Schwartz-Christoffel panel method iteration procedure 
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Fig.12. S1223 airfoil surface V  at 95.1lC  (cf. [8]) 
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where  is a small positive constant  1  and we finally 

determine  Nii 2 , K and . 

   The panel surface velocity is given by 
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where 
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    The average velocity along the i -th panel can be calculated as 

follows. 
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 When we integrate counterclockwise along the panel surface, 

we get 
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Therefore the average velocity along the each panel i becomes 
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The moment around the leading edge can be derived as 

follows. 
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When the panel average velocity is used, the moment becomes 

(excluding -1 term) 
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So the panel moment contribution can be approximated as 

follows. 
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   Note that the present method can analyze airfoils with very 

sharp leading and/or trailing edges, e.g. Joukowski airfoil [9] 

and Gurney flap [10]. The conventional panel methods 

generally suffer to solve these problems [11],[12]. 

 

VI. CONCLUDING REMARKS  

 

We apply the Schwartz-Christoffel transformation to 

regular polygons and airfoils. 

For the regular polygons, the Schwartz-Christoffel 

transformation is expressed in a concise simple form and the 

aerodynamic characteristics are obtained semi-analytically. For 

a regular polygon with even sides  ,...3,2,12  mmn , the 

maximum velocity at its own shoulder surface is expressed as 

 mm /)1(^2   relative to the incoming uniform flow. 

Triangular, diamond and hexagonal airfoils are also 

analyzed. A rudder analytical solution is repeated here to show 

the usefulness of the transformation. 

A given airfoil section is also calculated. An improved 

numerical solution procedure is shown. 

In spite of the numerical nature of the present method, lift is 

expressed in a closed analytical form. Moment is also obtained 

numerically (and semi-analytically) based on the analytical 

average of the velocity on the each panel. 
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