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Abstract—The inviscid Burgers equation is one of the simplest 

nonlinear hyperbolic conservation law which provides a variety 

examples for many topics in nonlinear partial differential equations 

such as wave propagation, shocks and perturbation, and it can easily 

be derived by the Euler equations of compressible fluids by imposing 

zero pressure in the given system. In recent years, several versions of 

the relativistic Burgers equations  have been derived on different 

spacetime geometries by the help of the Lorentz invariance property 

and the Euler system of relativistic compressible fluid flows with 

zero pressure on different backgrounds. The relativistic Burgers 

equation on the Minkowski (flat),  Schwarzshild and FLRW 

spacetime geometries are obtained by LeFloch and his collaborators  

where the finite volume approximations and numerical calculations 

of the given models are presented in detail. In this paper, we consider 

a family member of the FLRW spacetime so-called the de Sitter 

background, introduce some important features of this spacetime 

geometry with its metric and derive the relativistic Burgers equation 

on it. The Euler system of equations on the de Sitter spacetime can be 

found by a known process by using the Christoffel symbols and 

tensors for perfect fluids. We applied the usual techniques used for 

the Schwarzshild and FLRW spacetimes in order to derive the 

relativistic Burgers equation from the vanishing pressure Euler 

system on the de Sitter background. We observed that the model 

admits static solutions. In the final part, we examined several 

numerical illustrations of the given model through a finite volume 

approximation on curved spacetimes based on the paper by LeFloch, 

Amorim and Okutmustur. The effect of the cosmological constant is 

also numerically analysed in this part. Furthermore, a comparison of 

the static solution with the Lax Friedrichs scheme is implemented so 

that the results demonstrate the efficiency and robustness of the finite 

volume scheme for the derived model 
 

Keywords— de Sitter background, de Sitter metric, Euler system, 

finite volume approximation, relativistic Burgers equations, 

spacetime.  

 
B. O., Middle East Technical University, Department of Mathematics, 06800 

Ankara, TURKEY. (phone: 00 90 533 361 62 08,  fax: 00 90  312 210 29 72; 

e-mail: baver@metu.edu.tr).  

 

 

T. C., Middle East Technical University, Department of Mathematics, 06800 

Ankara, TURKEY. (phone: 00 90 505 271 61 56,  fax: 00 90  312 210 29 72; 

e-mail: ceylanntuba@gmail.com).  

 

    

I. INTRODUCTION 

he classical Burgers equation (with zero viscosity) is one 

of the simplest nonlinear, hyperbolic partial differential 

equation model which is important in a variety of 

applications such as modelling fluid dynamics, turbulence and 

shocks. It is also the simplest conservation law and formulated 

by  

   

              tu +
2( / 2) 0x u  ;  u = u(t; x); t > 0. 

 
      In this paper, we derive a relativistic version of the Burgers 

equation on a de Sitter spacetime and by finite volume 

approximation, we study the discretization of this equation on 

the given background. The finite volume method is an 

important discretization technique for partial differential 

equations, especially those that arise from conservation laws. 

This method is the ideal method for computing discontinuous 

solutions arising in compressible fluid flows and because of 

the conservation law, they give physically correct weak 

solutions. In the present paper, we use a finite volume 

approximation for general balance laws of hyperbolic partial 

differential equations following the papers [1,3,16,18] and we 

apply finite volume method to the derived relativistic Burgers 

equation on a (1+1)-dimensional de Sitter spacetime. 

       We consider the following class of nonlinear hyperbolic 

balance laws 

 

                                 div(T(v))=S(v),                               (1)    

 
on an (n+1)-dimensional spacetime background denoted by M, 

where the unknown function v is a scalar field, div(.)  is the 

divergence operator, T(v) is the flux vector field and S(v) is 

the scalar field (source term) represented on M. The spacetime 

M is assumed to be foliated by hypersurfaces, that is, 

 

                                        M=

0

t

t

H


,                                   (2) 

  

where each slice tH  is an n-dimensional spacelike manifold 

with initial slice 0H . Then the class of nonlinear hyperbolic 
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equations (1)-(2) gives a scalar model on which one can 

analyze numerical methods. For further details about a 

description of the curved spacetimes, foliation by 

hypersurfaces and triangulation of spacelike-timelike elements, 

we refer the reader to the follow-up works by LeFloch and his 

collaborators [1,12,13,16]. 

     The inspiration of the relativistic Burgers equation on the 

de Sitter spacetime is based on the papers [5,13]. We take into 

account the relativistic Euler equations on a given curved 

background M by the following general formulation 

                                  T


 =0,                             (3) 

where T


 is the energy-momentum tensor of perfect fluids. 

The relativistic Burgers equations are derived from (3) by 

imposing pressure to be zero in this system. The derived 

equations satisfy the Lorentz invariance property and in the 

limit case, one obtains the classical (non--relativistic) Burgers 

equation. In [13], M is firstly taken to be (1+1)-dimensional 

Minkowski (flat) spacetime and afterwards, it is chosen to be 

(1+1)-dimensional Schwarzshild spacetime; whereas in [5], the 

curved spacetime is considered to be the Friedmann-Lemaitre-

Robertson-Walker (FLRW) spacetime of (1+1)-dimension. In 

both of these articles [5,13], the equation (3) is used for 

deriving the concerning relativistic models for which the 

numerical tests are taken into account. 
      In this work, we consider our background to be the de 

Sitter spacetime which belongs to the family of the FLRW 

geometry. The metric of both the FLRW and de Sitter 

backgrounds are solutions of the Einsteins field equations. Our 

objective is to derive the relativistic Burgers equation on the 

de Sitter background and examine the numerical results by 

finite volume approximations for the derived model. 

     An outline of the article is as follows. We introduce basic 

features of the de Sitter geometry and its metric in the first 

part. The derivation of the Euler equations via the Christoffel 

symbol is in the second part. The next issue will be deriving 

the particular cases of the relativistic Burgers equations 

depending on a cosmological constant parameter  . Then we 

present the finite volume approximations, and compare the 

classical and the relativistic Burgers equations depending on 

different values of cosmological constant  . The effects of 

the cosmological constant to the numerical scheme is also 

studied in this part. Finally, we terminate the article with 

numerical experiments by investigating the behaviour of the 

static solutions and the constructed scheme with different   

values. The results demonstrate that the numerical scheme 

preserves the static solutions and the scheme is efficient and 

robust.  

    

 

II. DE SITTER BACKGROUND AND ITS LINE ELEMENT 

       

     The de Sitter background is a Lorentzian manifold which is 

a cosmological solution to the Einsteins field equations and it 

plays an important role in physical cosmology. It shares crucial 

features with the Minkowski spacetime whereas its physical 

interpretation is quite complicated. The de Sitter spacetime has 

a constant curvature and its metric contains a cosmological 

constant  . The particular case   =0 in the de Sitter metric 

gives the Minkowski metric. 

        The corresponding metric for a (3+1)-dimensional de 

Sitter spacetime in terms of the proper time t, the 

corresponding radial r and angular ( and  ) coordinates is 

formulated by 

 

2 2 2 2 2 2 2

2

1
(1 ) ( sin ),

1
g r dt dr r d d

r
 


     


                                                                                                                            

(4) 

 
which can also be expressed in matrix form as 

 

             ( )
ij

i j

dt

dr
g g dx dx dtdrd d D

d

d

 




 
 
  
 
 
 

 

 
where the diagonal matrix D is given by 

 

 

     D= 

2

2

2

2 2

(1 ) 0 0 0

1
0 0 0

.1

0 0 0

0 0 0 sin

r

r

r

r 

  
 
 
 
 
 
 
 

 

 
The non-zero covariant components and the corresponding 

contravariant components of the diagonal matrix  D are 

formulated respectively by 

 

            
2

00 (1 )g r   ,       
11

g =
2

1

1 r
, 

 

           
2

22g r ,                       
2 2

33 sing r  , 

 

and 

 

          
00

2

1
,

1
g

r



            

211 1 ,g r   

          
22

2

1
g

r
 ,                    

33

2 2

1

sin
g

r 
 , 

 

with 

 

                                  
ij i

kj jg g  , 
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where 
i

j is the Kronecker's delta function. 

 

A. Calculation of the Christoffel symbols for a de Sitter 

background 

 

    In order to obtain the Euler equations on a de Sitter 

background, we start by calculating the Christoffel symbols. 

The Christoffel symbols are denoted by  


  and are given 

by the formula 

 

00

0 00

0 00 0 00 0 00

1
( ) 0,

2
g g g g                      (5) 

where the terms , , , {0,1,2,3}     . Each term of the 

Christoffel symbols can easily be calculated by (5). As an 

example 

 

00

0 00

0 00 0 00 0 00

1
( ) 0,

2
g g g g       

01

0 00

0 01 1 00 0 10

1
( )

2
g g g g      

00 2

1 00 12

1 1 1
( ) ( ( (1 )))

2 2 1
g g r

r
     





 

2 2

1 1
( ( 2 ))

2 1 1

r
r

r r
   



  
 . 

 

Repeating this process, the non-zero terms of the Christoffel 

symbols are obtained as 

        
01 10

0 0

2 1

r

r






 


,  

11

1

21

r

r





 , 

        
00 22

1 2 1 2( 1), ( 1)r r r r       , 

        
33

1 2 2( 1)sin ,r r    

        
12 21 13 31

2 2 3 3 1
,

r
         

        
2

33 sin cos ,     
23 32

3 3 cot    . 

 

All remaining terms are zero. 

 

B. Derivation of the relativistic Burgers equation on a de 

Sitter spacetime 

    The purpose of this part is to calculate the tensors for 

perfect fluids on the de Sitter background in order to obtain the 

Euler equations. We consider our spacetime to be (1+1)-

dimensional, that is, the solutions to the Euler equations 

depend only on the time variable t and radial variable r so that 

the angular components vanish. Thus we have 

 

                 
0 1( ) ( ( , ), ( , ),0,0),u u t r u t r                         (6) 

 

with 

 

                                              1,u u     

by which we obtain 

 

               
0 1

0 1,u u u u u u

    

                         

0 0 1 1

00 11( )( ) ( )( )g u u g u u 
 

                         
0 2 1 2

00 11( ) ( )g u g u   

                         1   

 

It follows by substituting the covariant terms into this relation 

that 

2 0 2 1 2

2

1
1 (1 )( ) ( ) .

1
r u u

r
    





                         (7) 

We consider our (3+1)-dimensional coordinates as 

             

                  
0 1 2 3( , , , ) ( , ,0,0),x x x x ct r  

 

where c is the light speed. Next, we define the velocity 

component v by 

                          

1

2 0
: .

1

c u
v

r u



                                      (8) 

 

Then, by combining the relations (7) and (8), we obtain  

                 

2
0 2

2 2 2
( ) ,

(1 )( )

c
u

r c v


 
      

                                                                                              (9) 

                    

2 2
1 2

2 2

(1 )
( ) .

( )

v r
u

c v




                                

In order to find the tensors, we need the formula of the energy 

momentum tensor for perfect fluids which is given by 

 

              
2( ) ,T c p u u pg                            (10) 

where c is the light speed and u
 is a unit vector described  

by (7). Then by the help of (9) and (10), the tensors can easily 

be derived. As an example, the first term can be calculated by 

 

      
00 2 0 0 00( )T c p u u pg    

            

2 2

2 2 2 2

( )

(1 )( ) 1

c c p p

r c v r



 


 

    

            

4 2

2 2 2( )(1 )

c pv

c v r

 


 
. 

 

Analogously the remaining terms are obtained as follows 
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2
01 10

2 2

( )
,

( )

cv c p
T T

c v

 
 


 

          

2 2 2
11

2 2

(1 )( )
,

( )

c r v p
T

c v

 






 

         

22

2
,

p
T

r


 

        
33

2 2
,

sin

p
T

r 
  

 

 

       
02 03 12 13 20 21T T T T T T     23T  

   

               
30 31 32 0T T T    . 

 

 

 

C. Zero pressure Euler system on a de Sitter background 

 

    In the previous section, we derived both the Christoffel 

symbols and the tensors for the current background. We are 

now ready to combine these results in order to obtain the Euler 

system and to impose the pressure to be zero in the concerning 

equations. To this aim, we use the equation (3), that can be 

rewritten by 

 

           0.T T T
 

    

                               (11) 

 

To begin with  =0 in (11), we have 

 

           
0 0 0 0.T T T

 

   

     

After substituting , {0,1,2,3}   in this relation, it follows 

that 

 

  
00 00 01 01

00 0 00 0 00 0 10 0 10

0T T T T T      

    
02 02 03 03

0 20 0 02 0 30 0 03 10

1T T T T T      

    
10 10 11 11 12

1 00 0 10 1 10 0 11 1 20T T T T T      

    
12 13 13 20

0 12 1 30 0 13 20 2 00

2T T T T T      

    
20 21 21 22 22

0 20 2 10 0 21 2 20 0 22T T T T T      

    
23 23 30 30

2 30 0 23 30 3 00 0 30

3T T T T T      

    
31 31 32 32 33

3 10 0 31 3 20 0 32 3 30T T T T T      

    
0 33

33 0.T   

 

We continue by letting  =1 in (11), that is, 

 

             
1 1 1 0,T T T

 

   

     

 

and putting  , {0,1,2,3}    we obtain the following 

equation 

 

  
00 00 01 01

01 0 01 1 00 0 11 1 01

0T T T T T      

    
02 02 03 03

0 21 1 02 0 31 1 03 11

1T T T T T      

    
10 10 11 11 12

1 01 1 10 1 11 1 11 1 21T T T T T      

    
12 13 13 20

1 12 1 31 1 13 21 2 01

2T T T T T      

    
20 21 21 22

1 20 2 11 1 21 2 21 1 22

22T T T T T      

    
23 23 30 30

2 31 1 23 31 3 01 1 30

3T T T T T      

    
31 31 32 32 33

3 11 1 31 3 21 1 32 3 31T T T T T      

    
1 33

33 0.T   

 

Finally, by substituting the Christoffel symbols and the 

calculated values of tensors for perfect fluids into the Euler 

system on (1+1) dimensional de Sitter background, we get a 

simplified form of the equations as 

 

   

4 2 2

0 2 2 2 2 2 2

2 ( )

(1 )( ) 1 ( )

c v p r cv c p

r c v r c v

     
    

     



 
 

     

2 2

1 2 2 2 2 2

( ) ( )

( ) 1 ( )

cv c p r cv c p

c v r c v

     
    

   



 
 

     

2 2

2 2 2 2 2

( ) 1 ( )

1 ( ) ( )

r cv c p cv c p

r c v r c v

     
    

  



   
 

     

2

2 2

1 ( )
0,

( )

cv c p

r c v

 
  

 
 

  

 

2 4 2
2

0 2 2 2 2 2

( )
( 1)

( ) (1 )( )

cv c p c v p
r r

c v r c v

     
     

 


  
  

   

2 2 2

2 2 2

(1 )( )

1 ( )

r c r v p

r c v

  
  

 



 


 

   

2 2 2

1 2 2

(1 )( )

( )

c r v p

c v

  





  
 

 

   

2 2 2

2 2 2

2 (1 )( )

1 ( )

r c r v p

r c v

  
  

 



 


 

   

2 2 2

2 2

1 (1 )( )

( )

c r v p

r c v

  
 






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2 2 2
2

2 2 2

1 (1 )( )
( 1)

( )

p c r v p
r r

r r c v

  
   







 

  
2 2

2 2
( 1)sin 0.

sin

p
r r

r



                              (12) 

 

 

Finally we impose p=0 in the above relation (12) in order to 

get the following two equations so called the zero pressure 

Euler system on (1+1)-dimensional de Sitter background, that 

is, 

 

      0 12 2 2 2 2(1 )( )

c v

r c v c v

   
  


  

    
 

        
2 2 2 2 2

2 2
0,

( ) ( 1)( )

v rv

r c v r c v


 

  
  

                                                                                           (13) 

     

2 2

0 12 2 2 2

(1 )cv v r

c v c v

  
    






   
 

      

2 2 2 2

2 2 2 2 2 2

2(1 )
0.

( )

rc rv r v

c v c v r c v


   

  

  
           

 

III. THE RELATIVISTIC BURGERS EQUATION ON A DE SITTER 

BACKGROUND 

     The objective of this section is to deduce our main equation 

through the zero pressure Euler equations (13) obtained in the 

previous section and investigate the static and spatially 

homogeneous solutions if exist. We combine the first and 

second equations of (13), with the notation 0 t   , 1 r    

and derive the following single equation 

 

     

2
2 2 2(1 ) ( ) 0,

2
t r

v
v r r v c

 
       







            (14) 

which is the desired relativistic Burgers equation on a de 

Sitter background. We recall that   is the cosmological 

constant and c is the speed of light which is a positive 

parameter. 

       Depending on various values of  , not only the equation 

(14), but also the de Sitter metric (4) take different forms. We 

already stated that, the particular case of the de Sitter metric 

for  =0 gives the Minkowski metric. In addition, by plugging 

 =0 in the relativistic Burgers equation (14), one can recover 

the classical Burgers equation 

 

                                

2

0.
2

t r

v
v

 
    

 
 

The latter observation is a common property shared by the 

relativistic equations. The limit cases of the relativistic Euler 

and Burgers equations on the Schwarzschild and FLRW 

spacetimes have the same feature. For more detail, we refer the 

reader to the following papers [5,13]. 

 

A. Static and spatially homogeneous solutions 

 

    The equation (14) can be written as 

 

      

2
2 2 2(1 ) ( 2 ),

2
t r

v
v r r c v

 
      





               (15)   

where the left hand side of the equation is of the conservative 

form. We firstly investigate the t-independent solutions to the 

equation (15). To this aim, since the first term of the left hand 

side tv  vanishes, we consider the following 

 

              

2
2 2 2(1 ) ( 2 )

2
r

v
r r c v

 
    
 

 .                (16) 

 

In order to solve this equation with respect to r, we use the 

following change of variable 

 

                                  
2: 1 ,X r   

                                   
2 2: .Y c v                                   (17) 

It follows that 

                                   ,Y KX  

where (0, )K c is a constant parameter. Combining this 

result with (17), we get 

                                   
2 2 2(1 ),c v K r    

by which, we arrive at a description of the static solutions 

given by the following formula 

 

                          
2 2(1 ).staticv c K r   

                  (18) 

On the other hand, it can be observed as a remark that, there is 

no need for searching spatially homogeneous (r independent) 

solutions since the equation 

 

                           
2 2( 2 )t r c vv     

 

has always r dependency. Therefore, we conclude that our 

model admits only static solutions. 

 

IV. FORMULATION OF FINITE VOLUME APPROXIMATION 

 

     We consider the hyperbolic balance law (1) in (1+1)-

dimensional spacetime M. Thus, the equation (1) turns to be 
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0 1( , ) ( , ) ( , ) ,t rT t r T t r S t r                         (19) 

 

where 
0 1,T T are flux fields, S is the source term. Following 

the article by Amorim, LeFloch and Okutmustur [1], we 

formulate the finite volume approximation by averaging this 

balance law on the given background. 

    We intend to write a finite volume scheme on local 

coordinates for our (1+1)-dimensional background. Supposing 

that the spacetime is prescribed in coordinates (t,r), we 

consider the finite volume method over each grid cells 

 

                          1 1/2 1/2[ , ] [ , ]n n j jt t r r    

 

with the constant time length t and the equally spaced 

cells centered at jr which are defined by 

                          nt n t  , 

                          1/2 1/2 ,j jr r r    

                          1/2 ,jr j r    

                         ( 1/ 2) .jr j r    

In order to obtain the finite volume scheme, we integrate the 

equation (19) over each grid cell 1 1/2 1/2[ , ] [ , ]n n j jt t r r     

which yields 

  

1/2

1/2

0 0

1( ( , ) ( , )
j

j

r

n n
r

T t r T t r dr



   

                       +
1 1 1

1/2 1/2( ( , ) ( , ))
n

n

t

j j
t

T t r T t r dt


   

                       
1 1/2 1/2[ , ] [ , ]

( , ) .
n n j jt t r r

S t r dtdr
  

   

 

After rearranging the terms it follows that 

1/2 1/2

1/2 1/2

0 0

1( , ) ( , )
j j

j j

r r

n n
r r

T t r dr T t r dr
 

 
    

                       
1 1 1

1/2 1/2( ( , ) ( , ))
n

n

t

j j
t

T t r T t r dt


    

                        
1 1/2 1/2[ , ] [ , ]

( , ) .
n n j jt t r r

S t r dtdr
  

  

 

Next we introduce the approximations of the numerical flux 

functions by 

       

n

jT
1/2

1/2

01
( , )

j

j

r

n
r

T t r dr
r






  ,

1

1 1/2 1/2

1

1/2 1/2

[ , ] [ , ]

1
( , ) ,

1
( , ) .

n

n

n n j j

t
n

j j
t

n

j
t t r r

Q T t r dt
t

S S t r dtdr
r t



  

 







 



  

Thus the finite volume scheme reads as 

 

        
1

1/2 1/2 ,( )n n n n n

j j j j j

t
T T Q Q tS

r



 


   


           (20) 

where ( )n n

j jT T v and 1/2

n

jQ   are the approximations of the 

flux functions and 
n

jS  is the approximation of the source term 

defined as above. Since the function T  is known to be convex 

(see [13]), by taking the inverse of the above relation, the 

scheme (20) is rewritten by 

 

       
1 1

1/2 1/2( )( ( ) ).n n n n n

j j j j j

t
v T T v Q Q tS

r

 

 


   


 

      For further details of triangulations and discretization of a 

geometric and local coordinates formulations of finite volume 

approximations on a given curved spacetime, we address the 

reader to the papers [1,13,16] by LeFloch et al. 

 

V. NUMERICAL EXPERIMENTS 

A. Lax Friedrichs scheme for the Burgers equation on a de 

Sitter background 

    In this part numerical experiments are illustrated for the 

model derived on a de Sitter background. The behaviours of 

initial single shocks and rarefactions are examined in the 

applications. We use the Lax Friedrichs scheme for finite 

volume approximations of the derived equation on a de Sitter 

spacetime by taking [0,1]r  with various data of 

cosmological constant  . A standard CFL condition is 

assumed to be satisfied for the stability of the method. 

     After normalization (using c=1), the main equation (14) 

reads as 

    
2

2 2(1 ) ( ) ( 1) 0,
2

t r

v
v r r v                     (21) 

then rewriting the source term on the right hand side of the 

equation (21), we get 

               

2
2 2(1 ) ( ) ( 1).

2
t r

v
v r r v                (22) 

The corresponding finite volume scheme for this model is 

 

1

1 1 1 1 1 1

1
( ) ( ) ,

2 2

n n n n n n n n

j j j j j j j j

t
v v v b g b g tS

r



     


    


 

                                                                                             (23) 

where 

 

                       
2(( ) 1),n n n

j j jS r v    

                      
2 2(1 ( ) ), ( ) / 2,n n

j jb r f v v    

                     1 1 1 1( ), ( ).n n n n

j j j jg f v g f v      
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B. Effects of cosmological constant  to the numerical 

scheme 

    We examine the effects of the cosmological constant  to 

the behaviour of our scheme (23) which is obtained in the 

previous subsection. To this aim, a comparison of the classical 

(non-relativistic) Burgers equation and the relativistic Burgers 

equation derived on a de Sitter background is taken into 

account. Notice that the classical Burgers equation is a 

particular case of our model where   =0. We investigate the 

attitudes of an imposing shock and rarefaction depending on 

diverse values of   on the scheme. 

   The results are illustrated in the Figure 1,2,3 and 4. For each 

graph, there are two solution curves; the red one represents 

 =0 (the classical case) and the green one represents  =+1, 

-1 (the relativistic cases). The rarefactions are examined in 

Figure 1 and 3; whereas, shocks are examined in Figure 2 and 

4. In these experiments we observe that the solution curves 

related  =+1,-1 move away from the curves corresponding to 

 = 0 by the time increases.  

     More precisely, we can realize from the given tests that, for 

0  , the graph of the model extends in upward direction 

and it is always above the red curve (Figure 1 and Figure 2). 

On the other hand, for 0   the green curve extend always 

in downward direction and it is below the red curve (Figure 3 

and 4).  

    In addition, we observe also that there is an effect of the 

cosmological constant  on the speed of the movement of the 

solution curves. As long as the absolute value of  becomes 

larger, the green curve (corresponding to the relativistic one) 

goes further away from the red one (corresponding to the 

classical one) in a faster manner.  

 

                  
Figure 1: The numerical solutions given by the Lax-Friedrichs scheme 

with a rarefaction for  =1. 

                 

                 

                 
 

               
Figure 2: The numerical solutions given by the Lax-Friedrichs scheme 

with a shock for  =1. 

                 

                    

                   
 

 

            

Figure 3: The numerical solutions given by the Lax-Friedrichs scheme 

with a rarefaction for  = -1. 
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Figure 4: The numerical solutions given by the Lax-Friedrichs scheme 

with a shock for  = -1. 

           

          

          
 

                

  

C. Static solutions for the Burgers equation on a de Sitter 

background 

 

        We showed previously that our model has static solutions 

which are described by 

                            
2 2(1 )staticv c K r    . 

 

In this part we deal with the numerical tests concerning our 

scheme and the static solutions. The results of this part are 

illustrated in Figure 5, 6 and 7. We perform the numerical 

experiments in the domain [0,1]r  and a usual CFL 

condition is imposed to be satisfied. A comparison of the static 

solution curve and the curve resulting from the Lax Friedrichs 

scheme is under consideration. For each graph, there are two 

curves; the blue one represents the static solution and the green 

one represents the constructed scheme.  

       In Figure 5, we start by taking a negative cosmological 

constant ( 1)   . The initial function is chosen to be the 

static solution (18) and the constant [0,1]K is chosen as 

K=0.5. We observe that the constructed scheme preserves the 

static solution.  

     Moreover in Figure 6, we take a positive cosmological 

constant ( 1)  . Analogously, by choosing the static 

solution as our initial function, we observe that the steady state 

solution is preserved by the numerical scheme. 

     Finally in Figure 7, we take 0  . It follows that, the 

relation (18) yields 

 

                           
2 ,staticv c K    

 

which is a constant. For instance, letting (the normalized light 

speed) c=1 and K=0.9, the positive branch of the static 

solution approximately reads as 0.3162staticv  . By 

considering this constant as an initial function, the numerical 

scheme results the same constant curve by which we infer that 

the constructed scheme again preserves the static solution.  

       To conclude, after taking into account of positive, 

negative and zero value cases of cosmological constant, we 

deduce that the proposed scheme appears to be efficient and 

robust in the sense that it preserves the static solutions. 

                 
Figure 5: : Comparison of the static solutions and the constructed schemes 

with  = - 1 
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Figure 6: Comparison of the static solutions and the constructed schemes 

with  = 1 

              

              

               
  

                   

Figure 7: Comparison of the static solutions and the constructed schemes 

with  = 0. 

               

               
 

 

VI. CONCLUSION 

 

    In this article we derived a new model on a de Sitter 

background spacetime. We used the technique applied for the 

Schwarzshild and FLRW spacetimes in order to obtain the 

relativistic Burgers equation on the de Sitter background. We 

first used the Cristoffel symbols and tensors for perfect fluids 

to deduce the concerning Euler system. Then by imposing the 

pressure to be vanished for this system, we derived the desired 

relativistic Burgers equation on the de Sitter background.  

    We observed that the proposed model shares several 

important features with the relativistic Euler system. Indeed, 

the unknown v is limited by the light speed parameter and the 

classical (non-relativistic) model can be derived from the 

relativistic one similarly as in the Euler system.  

    Moreover we analysed that for the relativistic Burgers 

equation on a de Sitter background, the main dependence is in 

space; in other words, we have static solutions. This led us to 

examine numerically the behaviour of the constructed scheme 

in relation with the static solution. 

    We observed several numerical experiments under two 

different aspects: the effects of different values of the 

cosmological constant on the behaviour of the scheme and the 

relation of the constructed scheme with the static solutions.      

The first aspect is analyzed by taking into account diverse 

values of the cosmological constant. We observed that the sign 

and the magnitude of make sense and change not only the 

direction of the solution curves, but also the speed of these 

curves. Through the latter aspect, we tested the behaviour of 

the constructed Lax Friedrichs scheme with respect to the 

steady state solutions. We demonstrated numerically that 
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the proposed scheme preserves the static solution which 

guarantees the efficiency and robustness of the constructed 

finite volume method.  
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