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Well-posedness of the generalized Korteweg-de
Vries-Burgers equation with nonlinear
dispersion and nonlinear dissipation

N. Bedjaoui', J. M.C. Correia? and Y. Mammeri*

Abstract—We prove the well-posedness of the generalized
Korteweg-de Vries-Burgers equation with nonlinear dispersion and
nonlinear dissipation

U+ f(u)x _é‘g(uxx)x _‘gh(ux)x =0.
Contrary the linear case, the dispersion properties of the free
evolution are useless and a vanishing parabolic regularization is then
used.

Keywords—KdV-Burgers  equation,  nonlinear
nonlinear dissipation, Cauchy problem.
F ULLY nonlinear equations

U, + f(u), — 39U, ), + ey, =0,
proposed by Brenier and Levy [6], can be viewed as a
generalization of the Korteweg-de Vries-Burgers equation.
When f(u) = u%/2, g(u) = u, £=0, the equation turns to the
classical KdV equation [16], which describes the propagation
of the one-dimensional gravity waves in shallow water. Such
nonlinear  dispersion, g(ux)x Significantly affects the
dispersive behavior of the solutions what differs completely
from the linear case. In particular, Brenier and Levy obtain
dissipative behavior as soon as g is a nonlinear even concave
function. The nonlinear dispersion has a tendency to stabilize
the solutions. It is then conjectured [6] that, for f strictly
convex and g concave functions, the solution converges, when
5 and 5™ go to zero, to the unique entropy solution of the
hyperbolic conservation law

u, + f(u), =0.

Contrary to the linear case, when the considered flux f(u) =
u¥/2 and g(uy) = Uy the solution converges under the
condition 8 = O(g) [10, 18, 17, 20, 23, 24]. The study of
nonlinear dispersion is also of physical interest. Rosenau and

dispersion,
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Hyman highlight notable dispersive effects and obtain a new
class of compactly supported solitary waves [22, 21]. Although
the literature proposed many results related with the well-
posedness [2, 3, 4, 5, 8, 7, 11, 13, 15] and the vanishing limit
with nonlinear viscosity and linear dispersion [9, 19] this paper
is one of the first theoretical proof dealing with nonlinear
dispersion [1].

In this paper, we study the initial value problem for a more
general class of dissipative-dispersive hyperbolic conservation
law defined by

ut + f(u)x _ég(uxx)x _gh(ux)x =O’
for x,t € R where h represents the dissipation satisfying

fuxh(ux)dx >0.

In this case, we cannot take the advantage of the dispersive
properties of the free evolution to obtain Strichartz type
estimates [5, 15]. A fourth order regularization is applied to
avoid the third space derivative of the nonlinearity g.
Nevertheless, to obtain the well-posedness, a condition which
links the dispersion to the dissipation is needed. For all ug
sufficiently smooth initial data, the condition can be written as
follows,

J e @) +Coln I <o, @
for a dispersion |g'(u)| <C,|u,|™. To keep a nonlinear
dispersion, a superlinear condition h'(u) > C, > 0 is imposed.
Then, as soon as |u, |,“<(C,e)/(C,5), the condition (1) is

satisfied. Notice that, when g is linear, it allows considering a
large range of dissipation, the inequality (1) being reduced to

- f U5 5’ (U, ) dx <O.

-0

With such a dissipation, the result remains true for nonlinear
dispersion of type g(uxx) and g(U)wx including the K(m,n)
equations [22]. To improve this constraint on the dissipation,
we consider in a second part nonlinear dispersion of type
g(uyx- The inequality (1) becomes

[ oo veallug i pe<o

and it allows us to consider dissipation in such a way
¢y lul™< ()| <C, luy|™.
The paper is organized as follows. Section 2 deals with the
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well-posedness of the Cauchy problem with nonlinear
dispersion of type g(ux)x. The fourth order regularization is
introduced, and then the regularization limit is obtained. In
Section 3, we present the result concerning the nonlinearity
g(u)x- Finally, we state the well-posedness regarding
nonlinearities g(Uyyy) and g(u)yu.

I1. NONLINEARITY OF TYPE g(Uyy)x

A. Regularization
Let first consider the parabolic equation
U+ u(-1)%u =0
with 1> 0 and g € N*. The semi-group is given by
1 +00 204 A
S,u(x) :=—I et u(Hde
2 ">
and satisfies the following regularization property.
Lemma 2.1 Letr,s>0andu € H(R). Thenforall t € R,

1 rig \/2
<C, 1+( j |lu
r+s 2ﬂ|t|

s I -

Proof. We have

Isult, < [ @&y e ja@F de
< sup(+ &y YUl
However,
oo 8T
e uE=tU(rlg) q 2,ut

0

To compute the well-posedness of the initial value problem,
the following parabolic regularization is used
U, + f(u)x _5g(ux><)x _‘C'h(ux)x + My = 0
u(x,0) = uy(x).

&)
©)

Lemma 2.2 Assume that there exists s > 3 such that the
functions f, g,h are locally Lipschitzian in the Sobolev space
H(R), H"4R) and H*'(R) respectively, with f(0) = g(0) =
h(0) = 0. Then there exists T, > 0, depending on W, such that
t
AOO =S, - 5, (), - d(u,,),
_m(ux)xxr)dr’
is a contraction mapping on the closed ball
B(T,) = {u e C(I0.T,;H (Rl u(t) - uy < 3 uy I, }
Moreover, there exists C >0 such that the solutions u and v,

with ug and vy as initial datum respectively, satisfy for t <T,,,
[u(t) =v(t) [l;< C flup —vq [l -

(4)

Proof. Let us denote C;, Cg4, C, > 0 the Lipschitz constants of
the functions f, g, h respectively. Letu, v E(Tﬂ). We have

OO - O =5 (W), - 1))

- 5(g(uxx)x - g(Vxx)x) _g(h(ux)x - h(vx)x)XT)dT'
On one hand, thanks to Lemma 2.1 with g = 2, r = 1, we write
s = (s-1) +1 to obtain
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NUORIONGIE
1

C1[1+(2ﬂ (-

] ] ), = F (V) s
7)

and
(), = FOV) o=l FQU) = FO) = Ci flu=v; .
On the other hand, it gets withq =2, r =3 and s = (s-3) +3

Is.. (00, - 0.0, )X,

1 3/2 1/2
< C3(1+{21U(t—7)] J ”g(uxx)x _g(vxx)x ”5—3

372 \1/2
1
u-Vvi,
T)J ] lu-vl.

< C3Cg[1+(2y(t—

andwithgq=2,r=2,5s=(5-2) +2,
[sc.(h(u,), —hv,), X2,

< C2(1+

< CZCh[l+

20t~ r)j Ih(u,), =h(v), Il 2

1/2
L j lu-v]|
2u(t - 1) *

We deduce

t 1 1/2 1/2
sup | 4(u)(t) — )V < | C.C L’(l*(zy(t—r)] j dr

te[0T]
3/2 1/2
t 1
oC.C 1 d
o g'["[ J{Zﬂ(t—r)j ] i

1/2
t 1
C.C 1+———| d t)—v(t
v HIO(+2MI_T)] r]tggg]nu() V(o)

<C(uT) sup fluct) —v(t) s,
te[0T]

and we choose T > 0, proportional to , such that C(y,T) is
small enough to ensure the contraction mapping of ¢ in E(Ty)-
In the same manner, it comes for u e B(T,)

Sup IO = o ll= sup. [ {(@(u)(®) = SUo) + (St = o) [

12 1/2
~ ¢ 1
<2y, Is+| CC; .[0[1+[2N(t—r)j ] i

3/2 1/2
~ t 1
el T

1 1/2
d
Zﬂ(t_r)] 7{llu Il
<C(uT) Il s

we choose T > 0 such that C(zT) < 3 to obtain #(u) e E(Ty)_

It remains to prove the continuity with respect to the initial
data. Let u and v in B(T,), with uo and vo as initial datum

respectively. From (4), it comes

~ J't
+eC,Cp ] |1+
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(0 V(0 <3, ~vo) - [ S (T @), - F),)

_5(g(uxx)x - g(Vxx)x) _g(h(ux)x - h(vx)x))j 7
thus

sup [lu(t)=v(®) [l < llug—vq |l
te[0T]

+ C(u,T)ISL[JOpT] lu® -v(O i -
And as soonas ¢ =1/(1-C(uT)) > 0, we have
sup IIU(t) V(O < cllug=voll;-

te[0T

Remark 2.3 If f, g, h are polynomial functions, the Sobolev
embedding, with s > 1/2, 3/2, 5/2 respectively, implies that f,
h, g are locally Lipschitz in H(R) respectively. Indeed,
suppose f(u)=u“"", we have [14]

Il £ () = £ (V) [l.={l(u—v) D uiv

S

o0

At
< cs[u u=v [, 2 Jluve |
A
Hlu=v |, DJluiv
i=0

i=0
"
and the Sobolev embedding with s > 1/2 gives

IIf ()= f(V) [l:=<C, ZIIUII v ]IIu V-

B. Regularization limit

We wish to determine if the limit as u goes to 0 exists. We
first show that the time T,, can be fixed independent of .

Proposition 2.4 Assume that there exists Co, Cy, Cg, Cp > 0

such that
| fOu)| <C,ul“™", for0<i<2
19| <C,lul®™, for0<j<7
Ih®u)| <C, [u|*** for0<k<6,
with h'(u) > C, > 0.
Define
. min(af’awah)' if ||U||4<l
a= max(a,a,,a,), if ull,>1

with o > 1. Then there exists a constant K > 0 such that for ug
e H*(R) satisfying

u K < K el

o<k,

®)

the time T of well-posedness in the preceding lemma can be
chosen independent of y. Moreover, for all t € [-T,T], we have

lFu(®) flo< 2" flug [l - (6)

Proof. Multiplying the equation (2) by z“ (-1)'du and
i=0 x

integrating over space give
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)IE +qu “(@uyd

> @ 1,0

=—lut
2d'[||

+24: jj:5(—l)i(3fiu)g(uxx)x +6(-1)' (G u)h(u,), dx

i=0

= 1+1l

Lemma 2.5 There exist C;, C, > 0 such that
< Cy(lull +ufl?)

7 (o u) + Collu ix
Proof. On the one hand,
| “un(u),dx == ] “uh(u,)dx <0

[ uahtu), = | i, )dx

[ U ax= [y

4

2 hr(u) + 2 h(u)dx

XXX

[ uphtu),ax= | w ) -

+ih(5)(ux)dx

”(u ) XXX X)(h (u )

XXX

J‘j:usxh(ux)xdx - I u5xh (U )+8u4xuxxxh“(u )+8u4x xth(u )
-5u? h""(u,) —20u3 ®(u)-100

8

+%h(7)(ux)dx.
And on the other hand
[ ug(u,), 00 == "ugu,)dx

J.j:uxxg(uxx)xdx = J.j:uxxxg(uxx)dx = [G(uxx)I: =0

J.j:uztxg(uxx)x dx = .[j:_

®(u,)

XXX XX XXX XX

u3
—2%ag"(u,, )dx
20" (U,

5

= 5 UXXX

[ g, 00= [ 200,070, 200, )x
o 7 " 1

= J:w_iugxuxxxg (uxx)+uixuxxxg (uxx)

7
uxxx

g°(u
6 XX
Let us remind the Gagliardo-Nirenberg inequality [12]. Let 1 <

D, q <o, 0 <j < m, then there exists C = C(p,q,j,m) > 0 such
that

J‘j:usxg(uxx)x dx

+1OU4XUXXXg 4)(uXX) +

)dx.

Iav Il <CHGV ISV I

where

;=i+a[£—mj 173 ond 1 <a<l.

r p q m
In particular, we have withp=2,g=o,r=3,j=2,m=3,a
=23

IV IE<CIGVIEIVIL - ()

We deduce
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j+00 2 " " I+w 2
_wu5xuxxxg (uxx)dXS” uxxxg (uxx) ”oo _xUSXdX
<Cllule [ 7uzdx
+00
[0 0000 U)X < U0 0, 1L 0 I,

<Cluly [z

Other terms can be bounded by the Sobolev norm H*(R)
thanks to the Sobolev embedding.
L]

Lemma 2.6 Let s > 3/2. There exists C; > 0, depending only
on s, such that

(U f(U),), <Cyllulr™, ®)
where the scalar product is defined as
- ["a+ &rugi@s

Proof. We define
JS(V) = 21 .[+oceix§(1+ §Z)SIZO(§)d§'
Jp -

We remind that Kato and Ponce [14] show that there exists C,
> 0, depending only on s, such that

| ] <CQuam @) I + 19U l:IvEL) ©)
where [J°, u](v) = J*(uv) - uJ*(v).
We deduce, since u is real valued,

L e i
- e ey eun e

and the change of variables £ — -&implies J°(u) = J°(u).
Then
(u ), = | I @I(F )i = [ 7T W,
However, f(u), = udf'(u) and J*(f(u),) = I*(u,f'(u)) = f'(u)I(u,)
+ [3°,f(u)](uy), thus
(uf(),),

= [ 7RI

7 )P =T+,

On one hand, we obtaln from the Sobolev embedding and
using J(uy) = J(u),

i =|[ f()[”“)

]de =%Uf:ux f "(u)JS(u)zdx‘

*Ilu () LI 3 IE.< C flu ™
On the other hand, the Cauchy-Schwarz inequality provides
I = ‘ [P f'(u)](ux);ls(u)dx‘
<[ I 1@ 1,
and the Kato-Ponce inequality (9) and the Sobolev embedding
yield
]

< qul ) LI W) e + 135 ) el ILC)II P Il

<Cofull .

[
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We deduce from the preceding lemmata that

Za IO +ﬂZI (@uroesC ul T aC e e

4 ) + Ul

<Cllull? + ] 7ul (e (u) + Collu )k
where C = 3max(C,,Cs) and
min(a,,a,,a,), if Jull,<1
" |max(ay,ap @), if Jull,21
We notice that, since h’(u) > Cy>0,
[ U e () + C g 1)

Co “
<J e um[ 1€||u0||49]dx
0

From (5), it gets for K < Cy/Cy,
<]

(10)

Co
Cee

CK
=l <——

thus
702 (0, + C T Uy 1) <O
Then we can choose K>0and T >0such forall t<T
[ 7w () +Collulyax <o,
Indeed, from (10), we deduce that [Ju(t)]|s < m(1)"* where m is
solution of

uo

X

m'(t) = 2Cm(t)“ "

m(0) =/l uy Il -
The solution of this ordinary differential equation is explicitly
given by

m(t)afz :%
1-aCllu, [ t
and
1
u(t) [l£< m()M2 <29 [|u, ¢ ift<T =—o—.
‘ o 20C |y |l
Then, it is enough to choose K < C,/(2%'“C,) to obtain
Co CO vt 2%""CK
o fluls 220 0”4g$71£1'
Ce Ce C,

]
Theorem 2.7 Let uy € H*(R) with

u o<k,
llu Il 5

There exists T > 0, inversely proportional to ||uo||4, Such that
there exists a unique solution u e C([-T,T]; H*R)) of the
initial value problem
U+ F(u), — (U,
u(x,0) = uy(x).

_‘c'h(ux)x =0

Proof. We show that the solution (u"(t)), is a Cauchy sequence
for t € [0,T]. Let g, v> 0, and u*, v be the respective
solution of (2)-(3). We have, for t e [0,T],
alu =v" P=2(u-v,u, -v,)
=-2(u-v, f(u), - f(v),)+28(u—v,g(uy),
+2&(u-v,h(u,),

- g(vxx)x>
- h(vx)x> —<U =V, il — Wxxxx>'
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We notice that
<U — Vs MUy — Wxxxx> = ,U<U Vi Uy _Vxxxx>+ (,U - V)<U _v1vxxxx>
<U—V u _Vxxxx>:<(u_v)xx1(u_v)xx>207

1 HXXXX

and

(u=v,f(u), - f(v),)= If:—(u —v), (f (u) - f(v))dx
-] AU, —V)(I;f'(zi)d/l)jx

= I*:{(U —ZV)zj (jl:f'(zl)d/l)ix
|- (w_z\/)z](f;f'(zi)d/l)dx,

where z 3:=(1-4)u + Av. In the same way, we find
5<U -V, h(ux)x - h(vx)x> +5<U _V’g(uxx)x - g(vxx)x>

- f j:((u —V)X)Z[ J':_,gh'(ziyx)+gzlyxxxg"(ziyxx)d/1)dx
<0,

because h'(zy) > C, > 0 implies

1, ) "
Io—é‘h (Zi,x) +Ezl,xxxg (Zi,xx)di

L. 4 "
<Ji-d, [—1+ sy 128 @) ||wjda
and, from (6), as soon as K < C, /(2°*'“C)),
1) Co
— |z, "(z Sil 7 g
2C0€ ” A‘xxxg ( Lxx) ||3c Coé' ” A ”4

C§ 2ag+ag/aCK
<=(ully +v ) s ——=<1.
S+ vy <=

Finally, it comes
+o0 1
Al v iF== v (. @0

-2 J-j:((u _V)X)z(‘[:_ghl(zﬂ.x) +§Zi,xxxg“(zz,xx)dljdx
] (U= Y e () [ (=)0

[ o (e

Denoting M =sup, _ ;o7 M(t), We have from the preceding

< +Hlu—v|

XX XX

J‘j:(u -V), VvV dx‘.

proposition |[u*®)[ls < M*? and ||v"®)]|. < M*?. We deduce
that there exists a constant Cy, > 0, depending only on M, such
that
A llu" =" P<Cyy [lu” =" [P +C,y | =V ].

The Gronwall lemma implies that (u"(t)), is a Cauchy
sequence in the complete space L%(R) and then it converges to
a limit u(t). Moreover, since ut(t) is continuous with respect to
time and uniformly bounded by M*?, the sequence (u(®)y is
also weakly convergent in H*(R) to the limit u(t). ~

Remark 2.8 We can easily improve the assumptions by setting
only

ISSN: 2313-0571
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|f@W)-fP0)] <C;Ju|""
OB AT
[h®u)-h®©)| <C, |u|™®.
The inequality (10) becoming
LGl +ug ] @urocscaeul
+ [0 (e () + G Ul
the rest of the proof is dealt with similarly.

Remark 2.9 The time T, proportional to 1/||ug||4, is also the
time well-posedness of the purely hyperbolic initial value
problem.

Remark 2.10 Concerning the fully nonlinear dispersive
equation (i.e. ¢ = u = 0), one cannot control the sign of
Zwx 0" (2xx)- Nevertheless, the regularized problem

u, + f(u), —a(u,), + 4, =0
remains well-posed on a time-scale inversely proportional to
[[uo]|4 if the initial datum satisfies ||ug||s < Ku/é.

Remark 2.11 Concerning the case of linear dispersion, same
ideas provide the well-posedness of the initial value problem
in H3(R) for a large range of dissipation.

1. NONLINEARITY OF TYPE g(Uy)xx
To improve the assumptions concerning the dissipation, we

now focus on nonlinear dispersion of type g(uy)«. It allows us
to regard more generalized dissipation.
As for the preceding section, we consider the regularized
Cauchy problem

u; + f(u)x _5g(ux)x>< _gh(ux)x + MUy = 0 (11)

u(x,0) = uy(x). 12)

Proposition 3.1 Assume that
| fOW)| <C, Ju|“™, for0<i<2

lgP)| <C,lul®™, for0<j<8

[h®u)| <C, [u]“™¥ for0<k<7,
and
[h'(u) | zc, [ul™.
Suppose that oy > a, +1. Then there exists K > 0 such that for
Up € H*(R) with

_ &
U <K=,
Il uo Il 5

there exists T > 0, depending only on ||uol||4, and independent

on |, such that there exists a unique solution u e C([-T,T];

H*(R)) of the initial value problem (11)-(12).

Moreover, there exists C >0 such that the solutions u and v,

with ug and vq as initial datum respectively, satisfy for |t| < T,
[u(t) =v(t) < C llup Vo ll, -

Proof. In the exact same way that we prove Lemma 2.2, we
first show there exists a unique solution u e C([-T,T]; HYR))
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of the initial value problem (11)-(12) where T, depends on p
using Duhamel's formula. It remains to prove that this time can
be chosen independently on .

The equation (11) is multiplied by z 1)'#%u and the result

is mtegrated over space to supply

I wZI JEORS

> Iy @ (), o

i=0

+ZI

= I+|I.

D' (0)g(u, ) + 6D (FWh(u,), Ox

Lemma 3.2 There exist C,, C, > 0 such that
N<Cy(ull* +lull?)

)40 S g

Proof. We note, on the one hand,
| “un(u),dx == ] “uh(,)dx <0

[ uahtu), = | i, dx
4

J ), o= [ u ) + S (o

[ uphtu, = 7w i) -2 untw) -

+ Yo ey Yalx
5 (u,)

XXX X)(h (u )

X)(Xh (u )+8u4>( XXh (u)
20u® w2 h™(u)-10uZ,u’h®(u )

XXX XX XXX XX

If:usxh(ux)xdx = J.m—uéxh'(u )+8uZ.u
5uXXXh ( )

8

+%h(”(ux)dx
and on the other hand
[ w0k = - U0 )dx = [6(u)]” =
oy,

g (u)dx

J‘_:ouxxg(ux)xx dx =
5

20,00 + g

)
5 (u,)ox

.[j:u4xg(ux)xxdx = J_w

[ )= [T u ugnw) 72,0, (u,)

2

7

702 udg®(u, )+ U 9 (u,)dx

.[ uexg(u (X = J. o

+ 40u4xuxxxuxxgm(u )+15u4xuxxg 4)(ux)

145

Tuxxxuxxg ( ) 45u>?xxu>?xg(5)(ux)

9
2 USXUXXg (u )+u5XU4XuXXXg (u )

9

27 2 5 ~(6) uxxx (
-—Uu,\u u)+——
2 XXX X)(g ( X) 8 g

Finally, according to the Sobolev embedding,

?(u,)dx

ISSN: 2313-0571
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< Cy(lull +ull?)

+ J:w—U;(Sh'(UX) - ?5 uéxuxxg“(ux) + meuMuxxxg“(ux)dx'

We have, since a4 > o, +1,

+0 " u
.[ﬂougxuxxg (UX)dXS Tux) -

<Clufl J7uh(u,)dx
and from the Young inequality 2ab < a® + b?
J‘j:u5xu4xuxxxgll(ux)dx < .[_Jr:ugx | UxXxg“(Ux) |dX

2 h'(u,)dx

+a0
] U9 () lox

< UXXXg“(uX)
h'(u,) |,

<Clufe [ WU+ C flu

e o ] u,07w) ox

Lemma 2.6 provides the following inequality.
Lemma 3.3 There exists a constant C, > 0 such that
I<C, lully"™*.

We deduce from Lemmata 3.2 and 3.3
I +uZI “@wrdxscul

# ] o)+ COu o
Then we can choose T =1/(2aC || u, ||") >0 such that for all t
<T

[ “éah'(ux)[—ucf u ||fg““jdx <0

as soon as
R R R et
L]
Theorem 3.4 Let u, € H*(R) with
U [l <K S
1o Ily 5

There exists T > 0, inversely proportional to ||uo||4, Such that
there exists a unique solution u e C([-T,T]; H*R)) of the
initial value problem

u,+ f(u), —a(u,), —&(u,), =0

u(x,0) = u,(x).

Proof. Once again, we show that the solution (u“(t)), is a
Cauchy sequence for t € [0,T]. Let &, v>0, and u”, v” be the
respective solution of (11)-(12). We have, for t € [0,T].

allu =v" ||2=2<U—V,U‘ _Vt>

= —2<U -V, f (u)x - f(v)x> +25<U _Vlg(ux)xx - g(vx)xx>
+ 28<U —V,h(UX)X - h(Vx)x> —<U =V, iy — Wxxxx>'
We see that
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u-v,u

» ook

<U =V, il — Wxxxx> = /,l< Vxxx><> + (/,l - V)<U _Vvvxxxx>
<U Vi U _Vxx><><> = <(U _V)xw(u _V)xx> 20,
and, setting z;=(1-A)u + Av,
U=V, F (W), — TW),) = | "=u=v),(F(0) - T @)
_ f:@(j;zl f "(zi)di)ix.
In the same way, we find
€<U _Vvh(ux)x - h(vx)x> +5<U _va(ux)xx - g(vx)xx>
- J‘::((U - V)x)z( J.:‘Shl(zl,x) + g Zi,xxg'l(zl,x)dj’jdx

<0,
because

9 128" @]

h@,) || e

25

S2(019ﬂnzh)Jr({zgfath)/{zClK Sl
Finally, we obtain

Al v F==J v (2, e )a
-2 J.::((U _V)x)z(.[:‘gh'(zx,x) +§Z;,,xxg”(2/1,x)d/1)dx
vy =) ] v v
Z(J‘;ZMf”(zl)dxl)ix J.j:(u —v)xxvxxdx‘

We have [|ub()]]s < M*2 and |[v"(O)]]s < M2 Then we deduce
that there exists Cy > 0, depending only on M, such that
A llu" =" P<Cyy [lu” =" [P +C,y | =V ].

implies that (u"(t)), is a Cauchy sequence in the complete
space L%(R) and then it converges to a limit u(t). Moreover,
since uf(t) is continuous with respect to time and uniformly
bounded by MY, the sequence (u"(t)), is also weakly
convergent in H*(R) to the limit u(t). —~

Remark 3.5 When h'(u) > C, > 0, the H3-regularity is enough
to obtain the well-posedness with the nonlinear dispersion

(U

+lu-v|

IV. NONLINEARITIES OF TYPE g(Uyxyxx) AND Q(U)xxx

In a similar manner, we can study nonlinear dispersions
g(Ux) and g(u)x The proofs are sketched.

Theorem 4.1 Assume that there exists Co, Cy;, Cq, Cy > 0 such
that

| £OW)| <C, Ju|“™, for0<i<2
19| <C,lul®™, for0<j<6
[h®u)| <C, [u|“*™¥ for0<k<86,

with h'(u) > Co>0and oy > 1.
Then there exists a constant K > 0 such that for u, € H'(R)
satisfying
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u “9<K7
gl <K %,

There exists T > 0, inversely proportional to ||uo||7, such that
there exists a unique solution u e C([-T,T]; H'(R)) of the
initial value problem

u, + f(u), —@(u,,)—h(u), =0

u(x,0) = u,(x).

Proof. Let n e N*. Multiplying the equation
ut +f (u)x _5g(uxxx) _‘gh(ux)x +/uuxxx>< =0
by Z” (_1)i§2iu and integrating over space give

n+2

LSRN MENEE
ZI D) (W), dx

+Zn: j S (F0)9(U,) + (D (F'uh(y,), dx.
The Leibniz rIL]Ie points to

[y @ gua=-] @ g
@ U9 (U)X

=—I @ +1U)Z[ J(ﬁ“ 10,,)(3!9 (U, )

N ( XXX)dX

[

-0

n_
)Z[ J J(a“ 0)(2) (U )
j=0
We focus on the high order space derivatives. The other
derivatives can be included in the Sobolev norm H"(R) using
the Gagliardo-Nirenberg inequality and the Sobolev
embedding. Then, we obtain from j=0, 1, 2
+1, 12

[CENCRTOB T e
[ @ @ W@ ) == (@ 0u,0" (U)X
o ‘ Ju
@@y n=- G

2
- J‘j:(ﬁx U) (u6xg“(uxxx)) + 3u5xu4xgm(uxxx) + ujxg(A)(uxxx))jX'

We notice that, if n > 7,
(@ u,0 ) <lu,g 1. [ @ e

<clul [ 7@y

u4xg”(uxxx)dx

(9 (U)X

XXX

()’
- 9

(uexg”(uxxx)) + 3u5xu4xg”'(uxxx) + uzxg(A)(uxxx))jX

<Clluf.
Same equalities hold for j = n-1, n-2, n-3 and for h. Finally,
the inequality (10) is now written as
S MO BSC I +] 6 () +Callul oy

and the rest of the proof is dealt with similarly as the previous
theorems.
L]
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Theorem 4.2 Assume that there exists Co, Cy;, Cq, Cy > 0 such
that

| fOu)| <C, Jul“™", for0<i<2
19| <C,lul®™, for0<j<3
[h®u)| <C, [u]“™™¥ for0<k<86,
with h'(u) > Co>0and oy > 1.
Then there exists a constant K > 0 such that for u, e H*R)
satisfying
u %< Kf
I o<K,
There exists T > 0, inversely proportional to ||uo||7, such that

there exists a unique solution u e C([-T,T]; H*R)) of the
initial value problem

U + f(u)x _5g(u)xxx _‘C'h(ux)x =0
u(x,0) = uy(x).
Proof. Let n e N*. The equation
u; + f(u)x _5g(u)xxx _‘gh(ux)x + MWy = 0

is multiplied by Z” (-1)'&¥u and by integrating over space,
i=0 X

we obtain

n+2

2it MO L[ awoc-
ZIfj(—l)“(@”u)f(u)xdx

+Z | s
The Leibniz ruIe implies
[y @), a= - (@ W (), )dx

" ﬁ“u)Z[ ]ﬁ“ U, (39 (W)

+30 7 (W, u)(@g" (W) + 7 (U)( g (u))dx.
As before, to control the norm of the derivatives with the
Sobolev norm H"(R), we need n > 4, the greatest orders being
such that

[@iug @ du,g I, [ @i

<Cllulle |7 muydx

S(-1)/(FU)g(U) o + 6D (W) (,), .

XXX

[@uwru,g e <cue.
Finally, it comes
IO E<Chule ] e i) +C ol
]

Remark 4.3 Regarding the nonlinear dispersions g(uy,) and
g(u)xx, it could be possible to reduce the regularity of the
initial datum by writing more precisely the derivatives
appearing the integrations by parts. For example, to apply the
Leibniz rule with the nonlinear dispersion g(uy)x gives n = 6
whereas n = 4 is enough.

ISSN: 2313-0571

45

Volume 2, 2015

REFERENCES

N. Bedjaoui, J. M. C. Correia, and Y. Mammeri, “On vanishing
dissipative-dispersive pertur- bations of hyperbolic conservation laws,”
in 5th International Conference on Fluid Mechanics and Heat & Mass
Transfer (FLUIDSHEAT ’14) Lisbon, Portugal, 2014.

A. Biswas, “Solitary wave solution for KdV equation with power-law
nonlinearity and time- dependent coefficients,” Nonlinear Dynamics,
vol. 58, no. 5, pp. 345-348, 2009.

A. Biswas, A. H. Kara, A. H. Bokhari, and F. D. Zaman, “Solitons and
conservation laws of Klein- Gordon equation with power law and log
law nonlinearities,” Nonlinear Dynamics, vol. 73, no. 4, pp. 2191-
2196, 2013.

J. L. Bona and R. Smith, “The initial-value problem for the Korteweg-de
Vries equation,” Philosophical transactions of the Royal Society of
London Series A, vol. 278, no. 1287, pp. 555-601, 1975.

J. Bourgain, “Fourier transform restriction phenomena for certain lattice
subsets and applications to nonlinear evolution equations. ii. the kdv-
equation,” Geometric and Functional Analysis, vol. 3, no. 3, pp. 209—
262, 1993.

Y. Brenier and D. Levy, “Dissipative behavior of some fully non-linear
kdv-type equations,” Physica D, vol. 3, pp. 277-294, 2000.

M. S. Bruzon and M. L. Gandarias, “Travelling wave solutions for a
generalized benjamin-bona-mahony-burgers equation,” International
Journal of Mathematical Models and Methods in Applied Sciences, vol.
2, no. 1, pp. 103-108, 2008.

M. S. Bruzon and M. L. Gandarias, “Classical potential symmetries of
the k(m,n) equation with generalized evolution term,” WSEAS
Transactions on Mathematics, vol. 9, no. 4, pp. 275-284, 2010.

J. M. C. Correia and P. G. LeFloch, “Nonlinear diffusive-dispersive
limits for multidimensional conservation laws,” Advances in Partial
Differential Equations and Related Areas (Beijing, 1997), World Sci.
Publ., River Edge, NJ, pp. 103-123, 1998.

R. J. DiPerna, “Measure-valued solutions to conservation laws,” Archive
for Rational Mechanics and Analysis, vol. 88, no. 3, pp. 223-270,
1985.

Q. Feng and B. Zheng, “Traveling wave solutions for the fifth-order kdv
equation and the bbm equation by (g’/g)-expansion method,” WSEAS
Transactions on Mathematics, vol. 9, no. 3, pp. 201-210, 2010.

[12] A. Friedman, Partial Differential Equations. Holt, Rinehart and
Winston, New York, 1969.

R. J. lorio, “KdV, BO and friends in weighted sobolev spaces,” in
Functional-analytic methods for partial differential equations, Lecture
Notes in Mathematics, vol. 1450, pp. 104-121, 1990.

T. Kato and G. Ponce, “Commutator estimates and the Euler and
Navier-Stokes equations,” Communications on Pure and Applied
Mathematics, vol. 41, no. 7, pp. 891-907, 1988.

C. E. Kenig, G. Ponce, and L. Vega, “Well-posedness and scattering
results for the generalized korteweg-de vries equation via the
contraction principle,” Communications on Pure and Applied
Mathematics, vol. 46, no. 4, pp. 527-620, 1993.

D. J. Korteweg and G. de Vries, “On the change of form of long waves
advancing in a rectangular canal and on a new type of long stationary
waves,” Philosophical Magazine, vol. 39, pp. 422-443, 1895.

S. N. Kruvzkov, “First order quasilinear equations in several
independent variables,” Matematicheskie Shornik, vol. 81, 1970, p. 285.
P. D. Lax and C. D. Levermore, “The small dispersion limit of the
korteweg-de vries equation,” Communications on Pure and Applied
Mathematics, vol. 36, no. 3, I, p.253, Il, p.571, 111, p.809, 1983.

P. G. LeFloch and R. Natalini, “Fourier transform restriction phenomena
for certain lattice subsets and applications to nonlinear evolution
equations. ii. the kdv-equation,” Nonlinear Analysis, vol. 36, pp. 213-
230, 1999.

B. Perthame and L. Ryzhik, “Moderate dispersion in conservation laws
with convex fluxes,” Communications in Mathematical Sciences, vol. 5,
no. 2, pp. 473- 484, 2007.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21] P. Rosenau, “Nonlinear dispersion and compact structures,” Physical
Review Letters, vol. 73, no. 13, pp. 1737-1741, 1994.
[22] P. Rosenau and J. M. Hyman, “Compactons: solitons with finite

wavelengths,” Physical Review Letters, vol. 70, no. 5, pp. 564-567,
1993.



INTERNATIONAL JOURNAL of PURE MATHEMATICS

[23] M. Schonbek, “Convergence of solutions to nonlinear dispersive
equations,” Communications in Partial Differential Equations, vol. 7,
no. 8, pp. 959-1000, 1982.

[24] G. B. Whitham, Linear and Nonlinear Waves, Pure & Applied
Mathematics. Wiley-Interscience Publ., New York, 1974,

ISSN: 2313-0571

46

Volume 2, 2015





