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Abstract—We define and study Birkhoff weak integrability of present some classic integral properties. In Section 4 we
multifunctions (taking values in the family of nonempty subsets provide some continuity properties of the set-valued integral.
of a real Banach space) relative to a non-negative set function.

We obtain some classic integral properties. Results regarding the Il. PRELIMINARIES
continuity properties of the set-valued integral are also presented.

Keywords— Birkhoff weak integral, integrable multifunction, Let beT be a nonempty seR(T') the family of all subsets

monotone measure, non-negative set function. of T', A a o-algebra of subsets df, (X, || -||) a real Banach
space with the metrial induced by its norm,Py(X) the
. INTRODUCTION family of all nonempty subsets ok, P.(X) the family of

_ . all nonempty convex subsets &f andP;(X) the family of
The theory of set-valued integrals began to develop in tgﬁ nonempty closed subsets af.

decade 1956-1965 motivated by solving/modeling problems inFOr everyM, N € Po(X) and everya € R, let M + N =
mathematical economy, statistics or control theory. The fir }C+y|x c M ’y € N} andaM = {az|e ]{/[}_ We denote

definition of a set-valued integral was given by Dinghas [2 77 the closure ofd/ with respect to the topology induced
in 1956 by extending the Riemann integral to the set-valu the norm of X

case (the Riemann-Minkowski integral). After Aumann [3] o ® , , .
defined in 1965 his integral using selection method, the theo%yBy +” we mean the Minkowski addition offo(X), that
of set-valued integrals has been intensively studied due to'its .
interesting and important theoretical or practical applications M+N=M+N, VM,N € Py(X).
(e.g. [11], [12], [17], [20], [24], [33], [41], [43], [44], [46],
[53], [54)).
Af_ter Aumann, set-valued _mtegrals have bee_n defined ang (77, N) = max{e(M, N),e(N, M)}, YM,N € Py(X),
studied by many authors using different techniques: by Au-
mann selections ([9], [36], [42], [53]), by embedding theorem&heree(M, N) = sup d(z, N) andd(z, N) = ylgjf\, d(z,y).
([2], [23]), via Eettis method ([1], [14], [15], [25], [45]), by We denote|M| f%(M’ {0}) _ sup||x||, for every M €
Dunford way using defining sequences ([10], [18], [19], [48]), zeM
using finite or infinite Riemann type sums ([4], [5], [6], [7],Po(X). where0 is the origin of X..
[8], [13], [26], [28-31], [34], [37], [38], [40], [47], [49], [51], By i = 1,n we meani € {1,2,...,n}, for n € N,
[55], [56], [57], [58]), via Gelfand [35] method ([16], [43], whereN* = N\{0} andN = {0,1,2...}. In the following
[59]), by Sugeno way ([21, 22], [60]), by Choquet way ([45]Proposition we recall some properties regarding the excess and
[62]). A survey on different set-valued integrals can be fouriie Hausdorff metric [39].
for example in [17], [54]. Proposition 1:[39] Let A4, B,C, D, A;, B; € Po(X), for
In this paper we define and study a Birkhoff type (calle8Very: =1,n andn € N*. Then:
Birkhoff weak) integral of multifunctions” (taking values in () h(4, B) = h(4A, B). o
the family of nonempty subsets of a real Banach space) relativdii) (4, B) = 0 if and only if A C B.
to a non-negative set function. Unlike other definitions (i) 2(A, B) =0 if and only if A = B.
that assume: to be a measure or finitely additive, in our (iv) h(aA,aB) = |alh(A, B), Va € R.
definition and in some properties of the set-valued integral, (V) h(3r, A;, S0 By) < S0 h(Ai, By).
1 is an arbitrary non-negative set function and this is a great(vi) h(aA, SA) < |a — 8| - |A]|, Vo, 5 € R.
advantage. (vii) h(0A+ BB,yA+0B) < |a—~| 4|+ |8 —4| - |B|,
The paper is organized as follows: Section 1 is for intrd¢e, 3,7,6 € R.
duction. The second section contains some basic concepts an@iii) h(A + C,B + C) = h(A, B), for every A,B €
results. In Section 3 we define the Birkhoff weak integrdP,s.(X) andC € P,(X).
of multifunctions relative to a non-negative set function and (ix) a(A + B) = aA + aB, Va € R.

Let 4 be the Hausdorff metric given by
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() (a+pB)A = aA+ A, for everya, 3 € R, with a3 > 0 (iii) an h-multimeasuréf lim h(o(A), Z ©(Ar)) = 0,
and every conved € Py(X).

(xi) A C BA, for everya, 8 € Ry, with o < 8 and every
convexA € Py(X), with 0 € A. with A = U A, €A

Definition 2: (i) A finite (countable, respectively) partition
of T is a finite (countable, respectively) family of nonempt
sets P = {4;}

for every sequence of mutual disjoint se(ta Jnen C A,

(iv) mcreasmg convergenif hm h(p(An),¢(A)) = 0,

({A,) e respectively)C A such ¥or every increasing sequence of s€td, )nen C A, with

i=1,n

u A =Ae A
that 4; N 4; = 0,3 # j and U a=1 (nLeJNA 2 (V) decreasing convergerif lim h(pu(Ap), u(A)) = 0,
respectively) for every decreasing sequence - of sets, )neny C A, with

(i) If P and P’ are two finite (or countable) partitions of
T, thenP’ is said to befiner thanP, denoted byP < P’ (or, n—O ) _ )
P’ > P), if every set of P’ is included in some set aP. .(VI) order-continuous  (shortly, o-c_ontmuou}; if
(i) The common refinemenof two finite or countable 1 l¥(Ax)l = 0, for every decreasing sequence of
partitions P = {A;} and P’ = {B;} is the partition Sets(An)nen C A, with A4, N\, 0.
PAP' = {A;NB;}. We denote byP the class of all partitions (Vi) exhaustivéf lim [p(A,)| = 0, for every sequence of
of T and if A € A is fixed, byPx we denote the class of all pairwise disjoint set$A Jnen C A.

NnA,=AcA.

partitions of A. Definition 5:1. [27] Let 1 : A — [0, +00) be a non-negative
All over the papery : A — [0, +00) will be a non-negative set function.
function, with u(0) = 0. () The variationfi of : is the set functiorfz : P(T) —

Definition 3:[27, 46] n is said to be:
(i) monotoneaf u(A) < u(B), VA, B € A, with A C B.
(i) subadditiveif (A U B) < u(A) + u(B), for every P(T'), where the supremum is extended over all finite families
A,B e A, with An B = {. of pairwise disjoint set§A;}? ; C A, with A; C E, for every
(iii) a submeasurd . is monotone and subadditive. 1= 1,n.
(i) 1 is said to beof finite variation onA if @(T) < occ.
(i) & : P(T) — [0,+00] is defined for everyd C T', by

[0, 4+00] defined byn(E) = bup{z w(A;)}, for everyE €

(iv) o-subadditivaf p(A) < ioj u(A,), for every sequence
n=0

of (pairwise disjoint) set$A,,),en C A, with A = nL:J A, € fi(A) = int{7i(B); A C B, B € A}
A.

(v) a (o-additive) measurdf p( Ej Ap) = Z w(Ay), f

every sequence of pairwise dISjOII’It selés,l)neN C A
(vi) finitely additiveif ©(AU B) = u(A) + u(B) for every _ M
disjoint A, B € A. [0, +00] defined byp(E) = Sup{z lo(A;)|}, for everyE €
(vii) increasing convergentf lim p(A,) = p(A), for P(T), where the supremum is extended over all finite families
every increasing sequence of Séﬁ;n)neN C A (i.e. A, c of pairwise disjoint set§ A;}!" ; C A, with A; C E, for every

Any1, for everyn e N), with U ,An = A € A (denoted by i=1n.
A, 7 A). (i) ¢ is said to beof finite variation onA if B(T") < oco.

[0, +o0] is defined for everyd C T', by

II. [32] Let ¢ : A — Py(X) be a set-valued set function.
(i) The variationy of ¢ is the set functiong : P(T) —

(viii) decreasing convergerif lim p(A,) = u(A), for () @:P(T) —
n—r oo

every decreasing sequence c()xlzs(eﬁta)neN CA(.e. A, C P(A) = inf{p(B); AC B,B € A}.
A, for everyn € N), with N A, = A € A (denoted by
An N\ A). n=0 Remark 61. In vector or set-valued measure/integral theory,
(x)  order-continuous (shortly, o-continuouy if the real functionsp, 1,3, play an important role since
lim u(A,) = 0, for every decreasing sequence of sefrious problems in vector or set-valued frame can be thus
—00 reduced to the real case.

(A men C A, with A, \, 0.

(x) exhaustiveif lim u(A,) = 0, for every sequence of II. If E € A, then in the definition ofi we may consider
n—oo

the supremum over all finite partitioqs4;}? , C A, of E.

pairwise _disti_nt setgAn)nen C A ll. 7 is monotone and super-additive dA(T), that is
Definition 4:[32] Let ¢ : A — Po(X) be a set-valued sety(| j 4,) > S 7(A,,), for every finite or countable partition
function. ¢ is called: i€l i€l

(i) monotondf ¢(A) C ¢(B), VA, B € A, with AC B.  {Aitier of T. N N _
(i) finitely additiveif p(AU B) = ¢(A) + ¢(B) for every IV. If p is subadditive §—subadditive, respectively), then

disjoint 4, B € A. 7 is finitely additive ¢g-additive, respectively).
(If ¢ is P(X)-valued, then in the right side we will have V. If 1 is a finitely additive set function, thep is o-
the Minkowski addition). continuous if and only ifz is o-continuous onA.
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Definition 7: A property (P) about the points of" holds
almost everywherédenotedu-a.e) if there existsA € P(T)
so thatzi(A) = 0 and (P) holds onT\ A.

Definition 8: A multifunction F : T — Py(X) is called
boundedif there exists Me [0, +00) such that|F(¢)|< M,
for everyt € T.

IIl. BIRKHOFF WEAK INTEGRABILITY OF

MULTIFUNCTIONS

In this section, we define and study Birkhoff weak inte-
grability of multifunctions and establish some classic integrgl

properties.

In the sequel, supposgX, || - ||) is a Banach spacd is
infinite, A is ac-algebra of subsets @f andu : A — [0, +00)
is a non-negative set function such thdf) = 0.

Definition 9: Let be() # £ C Py(X). A multifunction F :
T — Po(X) is said to beBirkhoff weaku-integrable in&(on
T) (shortly p-integrable) if there exist® € Py(X) with E €
£ having the property that for every > 0, there exist a
countable partitionP. of 7' andn. € N such that for every
other countable partitiol® = {4, },en Of T, with P > P,

and everyt,, € A,,n € N, we haveh( > F(tr)p(Ar), E) <
k=0

e, for everyn > n..

The setFE is calledthe Birkhoff weaku-integral of ' on
T and is denoted byBw) [,. Fdu or simply [, Fdp. If £ =
Po(X), thenF is called simplyu-integrable.

Remark 10:f it exists, the integral is unique.

Example 11:. If F(t) = {0}, for everyt € T, thenF' is
p-integrable and[,, Fdu = {0}.

Il. SupposeT’ = {t,|n € N} is countable{t,} € A and

let F: T — Py(X) be such that the seriey F(t,)u({tn})
n=0
is unconditionally convergent. TheR' is p-integrable and

fT Fdﬂ = ZOF(tn)M({tn})'

M. Supp%seF : T — Po(R) is the multifunction defined by
F(t) = 1[0, f(t)], for everyt € T, wheref : T — [0, +00) IS
a non-negative function. If f ig-integrable in€ = {{a};a €
[0,400)} and [ fdu = {a}, with a € [0,+00), then F' is
p-integrable and /. F'du =[0,a].

Proposition 12: Supposé&' : T' — Py(X) is boundedIf F
= {0} p-ae, thenF is p-integrable and[. Fdu = {0}.

Proof. SinceF' is bounded, there exisf& € [0, c0) so that
|F(t)| < M, for everyt € T.

If M =0, then the conclusion is obvious.

SupposeM > 0. DenotingA = {t € T; F(t) # {0}} and
since F' = 0 p-ae, we havegi(A) = 0. Then, for every > 0,
there existsB. € A so thatd C B, andn(B;) < ¢/M. Let us
take the partitionP. = {C; };en of T', such thatCy = T'\ B,
U C; = B-..

(2

=1
Let us consider an arbitrary partitighof 7" so thatP > P..
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Let bet; € D;, s; € E;, for everyi € N.
Now, we have for every, € N:

1> Fltu(Dy)

1=0
<Y P (t)|u(E:) < M -Ti(B:) < e.
=0

Hence,F is p-integrable and[ . Fdu = {0}. O
Theorem 13: LetF : T — Po(X) be a p-integrable
ultifunction. Then?' is u-integrable onA € A if and only
It F'x4 is p-integrable onT, wherey 4 is the characteristic
function of A. In this case,, Fdu = [ Fxadp.

Proof. I. Let us suppose that' is u-integrable onA € A.
Then for everye > 0 there exist a partitio’§ = {D,, }nen €
P4 andn. € N so that for every partitiorPs = { B, }men
of A with P4 > P§ and for everys,, € B,,,m € N, we have

h(i F(sJ,u(Bz),/ Fdu) < e,Ym > ne.. 1)
=0 A

Let us consideP. = P5 U{T\ A}, which is a partition off".
If P is a partition ofT" with P > P., then without any loss of
generality we can suppose that= {C;, D; };en With pairwise
disjoint C;, D; such thatA = U2,C; and U2 D; = T\ A.
Now, for everyt, € C;, s; € D;,i € N we get by (1):

WS F(xa)t)u(C) + 3 Flxa)(sou(Dy), / Fdp) =
i=0 i=0 A

= M Fn(C) /A Fdp) < e,

for everyn > n., which says thaty 4 is p-integrable onl’
and [, Fxadp = [, Fdpu.

Il. Suppose that'y 4 is p-integrable onl’. Then for every
e > 0 there existP. = {B,,}nen € P andn. € N so that for
every P = {E, },en partition of T with P > P. and every
sn € E,,n € N, we have
MO (Fxa)Eu(ED, [ (Fxadn <> n. @)

k=0 T
Let us conside§ = {B,NA},en, Which is a partition ofA.
Let us takePs = {D,}nen an arbitrary partition ofd with
Py > P andP =P,U{T\ A}. ThenP € P andP > P..
Let us taket,, € D,,n € Nands € T'\ A. By (2) we obtain
M- F(tu(Dy). | Fradn) =

T

k=0
n

= B (Fxa) ()l D) + (Fxa) (T \ A), | Fradn) < e
k=0 T
Vn > n., which assures thak' is p-integrable onA. O
Theorem 14: LetF,G : T — Po(X) be p-integrable

Lett; € D;,i € N be arbitrarily chosen. Without any loss ofmultifunctions. Therf” + G is p-integrable and

generality, we suppose th#& = {D,, F;};cn, With pairwise
disjoint D;, E; such that|J D; = Cy and |J E; = B..
€N €N
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Proof. Let £ > 0 be arbitrary. SinceF is u-integrable, then Letbe P, AP, € P, P ={Ch}neny € P, With P > P, A P,
there existP; € P andn! € N so that for everyP € P, P = andt, € C,,n € N arbitrarily. Consider a fixedh € N, n >
{A, }nen, With P > Py and everyt,, € A,,n € N, we have max{nl, n?}. Then from (6) and (7) it results

Fd,/Gd <h/Fd, Ftp)u(Cy)
(ZFtk /qu><§,\mzn;. 4) / p 1 MZ 1)(Cr)
k=0

+(Z u(Cy) ZGtk

Analogously, becausé&' is u-integrable, there exisP, € P 5—0 =0
andn? € N so that for everyP € P, P = {B,}nen, With n
P > P, and everyt,, € B,,n € N, we have + h(z G(tk)u(c*k),/ Gdp) <

k=0
n

<ZG tr) /Gdu> < %,vnzng. (5) <z +h ZF t)(Cr), Y Gt)(Cr)) <
k=0

k=0 k=0
9 h 9
Let be Py = Py A P, andng = max{n!,n?}. Then, for every 5 +Z t))u(Cy) < 9
partition P = {C,, },en € P, with P > Py andt,, € C,,,n € k=0 _
N, by (4) and (5), we get + fggh(F(t), G(t)) - (1),
n for every ¢ > 0. This implies ([, Fdu, [, Gdu) <
B P+ G ewn(Co). [ Fau [ Gan) sup h(F (1), G(t)) - (T). 0
k=0 S
- As a consequence of the previous theorem we obtain:
:h(z F(te)u(Cr) ++2Gtk (Ck), /Fd“ Corollary 16: If FF : T — Po(X) is a u-integrable
k=0 k=0 multifunction, then
Gdu) < h(y F(ty)u(C Fd _
/T 1) 3 Pt / Wt | [ Faul <sup |P(0)7(T).
k=0 T teT
£ _ The next result easily follows by the definition.
kZOGt’“ #(C) /GdM <3 + - Theorem 17: LetF : T — Po(X) be a p-integrable
multifunction anda € R. Then:
HenceF + G is p-integrable and (3) is satisfied. O 1) aFis pintegrable and
Theorem 15: IfF,G : T — Po(X) are p-integrable /aqu:a/ Fdy.
multifunctions, then T T
I) Fis au-integrable (fora € [0, +00)) and
n([ P [ caw) < swpnr, ao)acn) ) 718 cintegrable (fore < [0, o)
T T et /Fd(oz,u):a/ Fdpu.
) ) T T
Proof. If sup h(F(t),G(t)) = +oo, then the conclusion is The next two results show that the set-valued integral is
obvious. rer monotone with respect to the multifunction and to the set
function.

Supposesup A(F(t),G(t)) < . Lete > 0 be arbitrary. .
PP tél? (F(0), G() < oo y y Theorem 18: IfF,G : T — Py(X) are p-integrable

Since F is p-integrable, then there exigt € P andn! € N multifunctions so thatF'(t) C G(t), for every ¢ € T, then
so that for everyP = {A,}neny € P, with P > P1 and Jp Fdp € [ Gdp.
tn € An,n € N, we have Proof. Let € > 0 be arbitrary. Sincé" is pu-integrable, there
exist P, € P andn! € N so that for everyP = {4, },en €
P> P, and everyt,, € A,, N
h(/qu,ZFtk Ak))<§,vnzn;. © P=h Yo € A, €
T
F=0 h(/ qu,ZF te)(Ag)) < ,Vnzn;.
T k=0 3
Analogously, sinc&r is u-integrable, there exisk; € P and
n? € N such that for every? = {B,, },,en € P, P > P, and
everyt, € B,,n € N

h(/T Gdu, Y G(tr)u(Br)) < i,\m >n2 (7 h(/ Gdp, " Gte)u(By)) < %,\m > nZ,

k=0 T k=0

Analogously, becaus€' is u-integrable, there exist, € P
andn? € N such that for everyP = {B,},en € P, with
P > P, andt,, € B,,n € N, we have
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ConsiderPy = P, A P,. Let P € P be arbitrarily chosen,

with P = {C,, }nen > Py. Let bet,, € Cn, n € Nandn >
max{n!,n?}. We get thath( [, Fdpu, Z F(t)u(Cr)) < 3

and ([, Gdp, Z G(tr)u(Cr)) < 5, which imply

(/ de/Gdu <h(/Tqu,ZF tr)p(Cr))+

k=0
e(z F(tx) u(Ch), Z G(tr)u(Cr))

+h(> Gtx)u(Cr) / Gdp))
k=0

< g + e(z F(t)u(Cr), Y Gtr)u(Ch))

k=0
From the hypotheS|s it results

(Z F(tr)u(Cr), ZG(tk) (C

fT Fdu, [ Gd,u <
f Fdu C fT Gdp.

We analogously obtain the following theorem.

Theorem 19: Let by, ps : A — [0,+00) set func-
tions such thatu;(A) < po(A), for every A € A and
F : T — P.(X) a simultaneouslyu,-integrable and -
integrable multifunction such that € F'(¢), for everyt € T.
Then fT Fdu, C fT Fdus.

Theorem 20: Let beuy, 2 : A — [0, +00), with 11(0) =
u2(0) = 0 and supposé’ : T — P.(X) is bothyu,-integrable
and po-integrable. Ifx : A — [0,+00) is the set function
defined byu(A) = p1(A) + p2(A), for everyA € A, thenF
is p-integrable and . Fd(uy + p2) = [, Fdpy + [ Fdps.
Proof. Let ¢ > 0 be arbitrary. SinceF' is u-integrable,
then there exist?, € P andn! € N so that for every
P ={A}nen € P, P > P, andt, € A,,n € N we have

(/ qul,ZF tr ul(Ak)> < -,¥n>nl (8)

k=0

k)

, for everye > 0, which implies
O

0. Consequently,

Since F is uq-integrable, there exisP, € P andn? € N so
that for everyP = {B,}nen € P, P > P, andt,, € B,,,n €
N we have

" g
h(/ Fdps, » | F(tr)pa(Br)) < 5 ¥n > n?.
T k=0

Let ben > max{nl,n?}, P ={Chlhen € P, P> P A P,
andt, € Cp,n € N. Then, by (8) and (9), we get

3 Flbn(C) | Flm+ [ P <

n

9)

Pt () /T Fuy)

/qug) <e
T

k=

+h(Y_ F(tr)uz(Cr),

k=0

3
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which concludes the proof. O

Theorem 21Suppose. : A — [0, +00) is finitely additive.
Let F,G T — Py(X) be multifunctions with
sup h(F(t),G(t)) < +oo such thatF is p-integrable and
teT

F = G p-ae. ThenG is p-integrable and[,. Fdu = [ Gdp.
Proof. Let be M = sup h(F(t),G(t)). If M =0, thenF =G

and the conclu5|on |s evident.

SupposeM > 0 and lete > 0 be arbitrary.

Since F' is p-integrable, there exisP. = {4,},., € P and
n. € N so that for everyP = {B, }nen, With P > P. and

everyt, € B,,n e N
/ Fdp) <
T

R F(tn(Br)
k=0

Let £ C T be such thatt' = G on T\E and i(E) = 0.

By the definition ofy, there isA € A so thatE C A and
a(A) < 157

ConsiderPy = {AN A,, A,\A},en € P. Let also be the
arbitrary partitionP = {B,,},en € P, with P > Py andt,, €
B,,n € N. Then, without any loss of generality we suppose
that B, = B, UB, with |J B, =Aand |J B, =T\ A.

neN neN
Consider a fixedr > nf Since i is finitgly additive, by
(10) we get

h(/T Fdp, Y G(ty)u(B

k=0

g,Vn >n.. (10)

SELY Fan, S Flu(Bo)+

k=0

NIE
NE

+h()_ Fltr)u(Br), p_ Gtr)u(Br)) <

2

>
Il
=)
el
Il
=)

+h()_ F(tr)u(Br), p  Gtr)u(Br)) <

W) > G(tr)u(By)

k=0

G(tr)u(By)) <

Zh p(By) +Zh

Since for everyk = 0, n, Bk CT\ACT\FandF =G
onT\E, then

W[ P,y Glen(Bo) <
T k=0

’

+ > h(F(t), G(tr)) - 1(By)
k=0

M=
NE

>
Il

0

W F(tu(B

k=0

F(ty)u(By),

el
Il
=)

IN

NG}
+

i
e
-

b
Il
b
Il

0

+

t1))(By. ).

wlm
o

N ™

13 n ’
5+2J\4-]€Z_OM(B,€)§—

IN

3 _ " ’
§+2M-M(H3k)g

This concludes the proof.
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IV. PROPERTIES OF THE SET VALUED INTEGRAL Theorem 23: Suppose: A — [0, +00) is a finitely additive
function of finite variation. Lef’ : T' — Py(X) be a
ounded multifunction such thdt is - integrable on every
setA € Aandy: A — Pp(X) defined byp(A) = [, fdu,
VA € A. Then the following properties hold:
I. If 1 is o-continuous (increasing convergent respectively),
then the same ig.
II. If u is o-additive, theny is an h-multimeasure.
Proof. I. The o-continuity follows from Remark 2.6-IV and
Theorem 4.1-V. Now, supposeis increasing convergent. Let
e > 0 be arbitrary and lefA4,,),.en+ C A be so that4,, *
Aec A LetM = bup|F( )|. If M =0, thenF(t) = 0, for

In this section we get some results concerning the propert
of the set multifunctionp : A — P;(X) defined byp(A) =
S, Fdp, for every A € A, whereF : T — Py(X) is p-
integrable on every set € A.

Theorem 22: Letr" : T — Py(X) be a multifunction such
that F' is pu-integrable on every sefl € A. Then:

I. o < p (i.e., for everye > 0, there isé > 0 such that for
every A € A with (A) < 4, it results|p(A)| < ).

II. If p is finitely additive, thernp is finitely additive too.

Ill. SupposeF is P.(X)-valued. Ifu is monotone, then the

same isp.
IV. SupposeF is boundedlf 1 is of finite variation, then everyt € T" and the conclusion is evident, Suppage > 0.
@ is of finite variation. From Theorem 4.1 - 1l and Corollary 3.8, we have:
V. If Iz is o-continuous (exhaustive respectively), theris
o . . el ) (13)
also o-continuous (exhaustive respectively).
Proof. I. It results from Corollary 3.8. = h(/ qu,/ qu+/ Fdp) <
Il. Evidently, p(0) = {0}. Let be A,B € A,ANB =10 An A\A,
ande > 0. _ _ _
< Fdp| < Mu(A\A,) = M((A) — i(A,)).
Since F' is p-integrable onA4, there exist a partitiolP; = <l A\A, Hl < MA(A\A) (R(4) = E(An))

{Ch}nen € P4 andn! € N so that for every? = {E,, },en €

Pa, P > P5 andt, € En,n € N, we have Now, let {B;},_i7; C A be an arbitrary partition of4.

ThenB; N A,, C B;N A,41, for everyn € N*, i =1, m, and

/ FdMZF L (Er)) <: £ Vi > n (11) nL:Jl(Bi NA,) =B;NA= B, for everyi = T,m. Sincey is

k=0 increasing convergent, for eveiry= 1, m, there existsi} () €

Analogously, sinceF is - mtegrable onB, we find a N so that, for everys > nf(e), u(B;i) — u(BiN An) < 55
partition P5 = {D,,}nen € Pp andn? € N so that for every ~ Consequently,

P ={E,}nen € Pg, With P > P§, andt,, € E,,n € N, we m m

have Z w(Bi) < Z w(Bi N Ay) +

=1 i=1 i=1

f(An) +

£
M’

€ ,
h(/B qu,ZF (tr)u(Ey)) < §,Vn > nZ. (12)  for everyn > ng = max {nf(e)}.
k=0 i=1,m
- Then7i(A) < 7i(A,) + 57 and by (13) it results ¢ is
and n. = max{nl,n2}. If we considerP = {E,}nen €

Paus such thatP > P55, then from (11) and (12) we have |l Let (én)neN* C A be a sequence of pairwise disjoint
n sets, with | J A, = A € A. Sinceu is o-additive, then it is o-
Z F(t / Fdu +/ Fdu) continuodlsz,lso, by I, the same is true for the set multifunction
=0 ¢. BecauseB, = fj AND and (By)nen- C A, there
<h X%F tr)u(Ex N A) / Fdp)+ existsng(e) € N* sg:t?i;hgp(Bnﬂ < g, for everyn > ng(e).

= Sincey is finitely additive, we have

S

—i—h(ZF(tk),u(EkﬂB),/ Fdu) < e,Yn > n.. n n
paars B h(p(A), Y (A Z@ (Ak) +¢(Bn), Y o(Ar))
k=1 k=1
So, [,z Fdu = [, Fdu+ [, Fdu and thusy is finitely < |p(Bn)| < e,
additive. _ _ _
ll. The proof is similar to that of Theorem 3.10. for everyn > no, that is, » is an h-multimeasure. O
IV. Let {A;},_17; C P(T) be pairwise disjoint sets and V. CONCLUSIONS

M= 3161$|F( )|- By Corollary 3.8 it fOIIOWSZ; [p(A) <M \we have defined and studied Birkhoff weak integrability

L _ S _ of multifunctions (taking values in the family of nonempty
El“(Ai) < M (T). This implies(T) < M 7(T), for g psets of a real Banach space) relative to a non-negative
every A € A, which assures thap is of finite variation. set function. Some properties of the set-valued integral are
V. It results from Corollary 3.8. 0 obtained such as linearity, monotonicity, continuity.
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Since the definition of Birkhoff weak integral is similar to[23]
the definitions of Birkhoff and Gould integrals, one has tg
compare these three types of set-valued integrals and this vt
be the subject of our future works.

As open problems: [25]
1. Integrability is usually related to measurability. So, it has
to see if there exists a relationship between Birkhoff wedks)
integrability and some measurability type of multifunctions.[27]

2. As it is known in functions case, Birkhoff integrability
lies strictly between Bochner and Pettis integrability. Thus, it
has to compare this Birkhoff weak set-valued integral witi#8l
other types of set-valued integrals: Pettis, Dunford, Aumann,
McShane, Henstock-Kurzweil etc. [29]
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