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Using simulation to solve the newsvendor
problem under parameter uncertainty

David F. Mufioz and David G. Mufioz

Abstract— We discuss the formulation and solution to the
newsvendor problem under a Bayesian framework that allows us to
incorporate the uncertainty in the parameters of demand modeling
(introduced in the process of parameter estimation). We present an
example with an analytical solution and use this example to show that
a classical approach (without parameter uncertainty) tends to
overestimate the expected benefit. Furthermore, we conduct
experiments that confirm our results and illustrate the estimation of
the optimal order size using stochastic simulation, method that is
suggested when model complexity does not allow us to obtain an
analytical solution.
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I. INTRODUCTION
L ET D represent the demand (during the sales period) of
a seasonal item. If w>0 denotes the loss for every
unsold unit at the end of the period, and u>0 denotes the
profit for every unit sold during the period, the total profit for
an order size of Q units is given by

bD(Q)={JD‘VJ§§‘D>’ bso &

The most common approach (see, e.g, [1]) to find the
optimal order size QE consists in defining a density function
f(y|¢) for the demand D (the analysis is similar for the

discrete case), where @ is the parameter vector and, assuming
6 is known, we define the expected profit as
def

Bc (Q6) = Elbp(Q)O=6l=u[g y (yiO)dy (5
~w[g Q- y)f (y10)dy+uQ[Z f (vio)dy.
This function has a derivative when Q>0 so that (by
imposing first-order optimality conditions) the optimal order
size Q¢ that maximizes B¢ (Q6) satisfies

def

Fe(Qalo) = (% f(yoydy=—" .

u+w

©)

This research was supported by Asociacion Mexicana de Cultura A.C.,
and the National Council for Science and Technology (CONACYT ) of
Mexico..

David F. Mufoz is Professor of the Department of Industrial & Operations
Engineering at the Instituto Tecnolégico Auténomo de México, 01080
Ciudad de México, (phone: 52-55-56284118; e-mail: davidm@ itam.mx).

David G. Mufioz is Director of Yield Analytics at AOL Advertising, Palo
Alto, CA 94306 USA (e-mail: davidmm82@gmail. com).

ISSN: 2313-0571

Note that Fc(y|@) is the cumulative distribution function
(cdf) of the demand given [® = 6]. Furthermore, if f(x|6)>0

is continuous in a neighbourhood of QE, condition (3) is

sufficient for finding the optimal value QE . We also mention,

for the sake of clarity, that the formulation presented in [1] is
an equivalent formulation where the authors minimize the
expected value of —bp(Q)—uD, so that (3) follows from [1],

and we are using index C to remark that this is a classical
approach described in most textbooks.

In practice, the value of @ is estimated from a data set
X=(X,...,Xn) using, for example, the (maximum likelihood)
estimator that maximizes a likelihood function L(¢|x). The
most common approach for finding the optimal order size
consists in setting =0 in (3), where é:é(x) is a point
estimator. While this procedure is found extensively in
Operations Management textbooks, it has the downside of
assuming that the point estimator equals the parameter. Thus,
in this article we discuss a Bayesian approach to the
newsvendor problem (i.e., finding the optimal order size)
incorporating uncertainty (introduced by the estimation
process) in the parameter vector.

Bayesian methods to incorporate parameter uncertainty for
inventory management have been proposed since the pioneer
work of Scarf [2], where the author discusses the optimality of
a Bayesian updating rule for inventory management. Also, the
incorporation of parameter uncertainty using Bayesian
methods is proposed in [3], where the author shows how to
compute a reorder point by modeling the demand as a
multinomial distribution. Bayesian methods have been
extensively applied to inventory management in order to
propose updating rules for the optimal inventory policy based
on new information on the product’s demand, see e.g., [4]-[9],
and the references therein. However, the use of simulation
techniques to estimate performance measures for inventory
management is not considered in these articles and the related
literature.

When a random sample from demand D is available, the
solution of (3) can be approximated by the corresponding
sample quantile and (as shown in [10] and [11]) the quality of
this approximation improves as the sample size increases.
However, our methodology can be applied to a more general
situation, since a random sample from future demand D is not
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necessarily required. Our approach is similar to the one
proposed in [9], where the authors illustrate how it can be
applied using data on sales only (without information on lost
sales) or data on sales occurrences (as in the example shown
below in this article). Extensions to the newsvendor problem
have been also proposed, for example, uncertainty on price
and order size are considered in [12], and the effect of risk
aversion in the optimal order size is analyzed in [13].

The following section describes the theory behind the
proposed Bayesian approach, which allows the incorporation
of parametric uncertainty in the newsvendor problem.
Afterwards, in the subsequent section, we illustrate how to
estimate the optimal order size using simulation by means of a
simple example. This example showcases how to estimate the
optimal order size in more complicated problems. In the same
section, we present a comparison of the results obtained from
applying a classical approach versus the results obtained using
the Bayesian approach. Finally, in the last section, we present
our conclusions and recommendations.

Il. PROBLEM FORMULATION

Under a Bayesian framework, the parameter vector is a
random variable that has a prior density function , thus the
posterior density function (given a data set ) is given by

_ pOLG0)
PO= [ BN oye’ “

where xeRY, @Sy and L(x @) is the likelihood function.
From (4) and following the same notation as in (3), the cdf of
the demand (given [X = x]) is given by
Fa (y/x) = E[E[Fc (Y©)]X =]
= [Fc(y0)p(dx)do, (5)
So
for y>0, where Fc(y|@) and p(6x) are defined in (3) and
(4), respectively. Similarly, from (1) we obtain the expected
profit (given [X = x]) as
def 0
Bg(Qx) = ufy ydFg(y[x) (6)
—~w[g Q- y)dFg (yX) +uQ[GdFa (y[x),
where Fg(y|x)is the cdf defined in (5). This shows that
Bg(Q|x) has a similar form to B¢ (Q|x) defined in (2).

Consequently, the optimal order size QE considering
parametric uncertainty satisfies

* u

Fa(Qal)=—, (7)
u+w

where Fg(y|x) is defined in (5). It is worth mentioning that

our problem formulation is different from the one proposed in
[9], where the authors propose a dynamic program to solve the
newsvendor problem in a multi-period setting in order to show
the advantages of using a more efficient updating rule. The
main difference is that we consider a single-period expected
profit that is explicitly dependent on the available data set x.
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This formulation allowed us to obtain a simple solution in the
form of (7).

It is important to point out that for the case where demand is
discrete, taking values dy <d; <..., the function Fg(y|x) is
not continuous, and equation (7) might not have a solution, in
which case we must find the value of dy that satisfies:

u

u+w
in order to evaluate Bg(d|x) and Bg(d.1/x), where:

Be(QX)=u X jP[D = j|X =x]
wEQ- P = jix =xl+ugpD>Qx =x} O
i<
If Bg(dk|x)=Bg(dk.1/x), the optimal order size will be

P[D <dy|X =x]< <P[D<dgg|X=x], (8)

given by Qg =d , otherwise it will be given by Qg =y,
Note that in the discrete case (8) is equivalent to (7), in the
sense that neither equation considers fixed ordering costs. If
there is an initial inventory of Qg , we should not order when

Qo = Qp, otherwise we should order Qg —Qg units only if

BB(QE\X)— Bg(Qo|x) > Cp, where Cq is the fixed ordering
cost.

I1l. AN ILLUSTRATIVE EXAMPLE

In this section we illustrate the application of the proposed
methodology through a similar model to the one presented in
[14] for the forecast of an item of intermittent demand. We
know that the demand for service parts follows a Poisson
process, though there exists uncertainty in the arrival rate ®¢ .

Thus, given [@q = 6], the times between customers’ arrivals
are i.i.d. according to the exponential density function;

o~ %Y >0
f — 0 3 y ]
(vo) { 0, otherwise,

where @y €(0,). Every client can order j units of an item
with probability Pj, j=1,...,q, q>2. Let G)1=(P1,...,Pq_1)
and Z‘}:lPJ- =1, then ®=(0(,®;) denotes the vector of

parameters and the
Sp =(0,0)® Sqz , where

parameter space is given by

g-1
8012{(,01,...,,0(11)2 pj<Lpj=0,] :1,...,q—1}
j=1

The total demand for a period of length T is given by
N(T)
D= _Zlui, N(T)>0,
I_0, otherwise,
where N(s) is the number of clients that arrived in the interval
[0,s], s>0, and Uy,U,... are the individual item demands

(we assume they are conditionally independent with respect to
®). The information on ©® consists of (i.i.d.) observations
v=(V,...,Vn), U=(ug,...,un) of past clients, where v; is the

(10)
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time between the arrival of client i and previous client (i—1),
and uj is the number of items ordered by client i. The
likelihood functions for vand u are given by

n

-6 Vi
L(Vi6p)=65e = (11)
and
g-1 \Cag-1
L(uel){l— jzlp,} jnlp?, (12)

respectively, where 6 = (py,...,pq-1), @nd cj =2 1[uj = j]
is the number of clients that ordered j items.

From an objective point of view, we can assume a non-
informative prior density function for ®, using Jeffrey’s prior
density. In the case of the exponential model, Jeffrey’s prior

density (see, for instance, [15]), is given by p(dp)=6;",
6y >0.Bytaking =6y and x=v in (4), from (11) we have

n \N —eozn:vi
95“1(_Zvi] e i1
Bolv) = =1 , 13
p(6olv) (1) (13)
which corresponds to a Gamma(n,zi”:lvi) distribution, where
Gamma(p;, o) denotes a gamma distribution with

expectation ﬂlﬁz‘l. Similarly, Jeffrey’s prior density for the

multinomial model (see, for instance, [16]) corresponds to a
Dirichlet distribution with density function:

-1 71/2q_1
[1_ _le,-J ™
p(6)= B1/2,...1/2) '

where B(al,...,aq)zH‘}:ll“(aj)lr(zji:laj), for a,...,aq >0,
thus, it follows from (4) and (12) that

q-1 Cq *1/2q71 1/
(1— _Z_}lij _1:[1p?J
p(Gfu) == 1= : (14)

B(cy +1/2,...,cq +1/2)

which corresponds to a Dirichlet distribution with parameter
(c1+1/2,...,Cq +1/2). Let x; =(vi,ui), i=1....,n» X=(Xp,....Xn)

0 =(6y,6), and assuming independence, the posterior density
is given by p(dx)=p(6v)p(6iju), where p(6lv) and
p(@)u) are defined in (13) and (14), respectively.

Note that, in this example, we can obtain a closed-form
expression for the point estimate of the demand
u=E[DX =x], since, from (13) and (14) we have

~1
E[@gV =V]= n(zinzlvi) , and
E[©1jU =u]=c"Y(c; +1/2),
where C=er‘=l(cj +1/2)=n+q/2), so that following (10)
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we have
A EEN MG D61 —x
q

=TE|:®0 z j@lj‘x = X:|
j=1

q
=TE[@oV =V]3. JE[O4jU =u]
j=1

N |
:Tn( Zvi] (n+q/2)*t % i(cj+1/2)
j=1 j=1

The above expression allows us to calculate a forecast for
demand D based on a data set x. In this case, however, it is
not easy to obtain a closed-form expression for the cdf and the
optimal order size. Thus, we can apply the posterior sampling
(PS) algorithm described in section 3.1 of [17] in order to
calculate, via simulation, the corresponding optimal order size,
given a service level o =u/(u+w). It is worth mentioning
that the main idea behind the PS algorithm is to generate
simulated observations for the demand by first sampling a
parameter value @ from the posterior distribution density
p(@x), and the sampling a demand observation from the

forecasting model for the demand D (conditional on ® =8).
For the case when g=1 (i.e., every client orders just one

unit), the model is simpler and it is not necessary to turn to
simulation in order to find the optimal order size. In this case,
we can ignore & and the values u; (since they are always

equal to 1). Let x=v, 8 =60, we have that

P[D = jl© =0]=PIN(T)= jlo=6]=¢~" (7)) /.,
and considering (13), it can be proven that
n n i

X
n+j-1 2 T

n n
T+ X T+ XX
i=1 i=1

for j=01..., which corresponds to a negative binomial
distribution. Using (8), (9) and (15), we can determine the
optimal order size Qg for this particular case, without
resorting to the PS algorithm or simulation.

(15)

P[D=j\X=x]=(

IV. EXPERIMENTAL RESULTS

In order to illustrate the validity of the PS algorithm and, in
particular, how it can be applied in order to determine the
optimal order size, we will use the example from the previous
section that has a closed-form expression (15) for the posterior
distribution of the demand. First of all, we should point out
that we considered the values of T=15, n=20,

Zin=1xi =10, u=9, w=1. With this data, the optimal service

level is a=u/(u+w)=0.9. After applying the Bayesian

approach described in equations (8) and (9), and the posterior
distribution defined in (14), we obtained an optimal order size

of Qg =41, then, by following (6), we have an expected
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profit of BB(QE\X)=253.38, and a service level of

Fg(Qg|x) =0.901 (slightly higher than 0.9).

With the objective of comparing the results obtained
through the classical approach, notice that, from (10), we can
find that the cdf Fc(y|@) defined in (3) corresponds to a

Poisson distribution with mean 4T . On the other hand, the

maximum likelihood estimator of & is é=2, thus, when
applying the classical approach with conditions similar to (8)

and (9), we obtained QE =37, reporting an expected profit of

Bc (Qc|x) = 260.05 > Bg (Qg|x) from (2), and a service level,
from the posterior distribution in (15), of
Fs (2 |x)=0.803 < Fy (Q3]x)

These results suggest that under the classical approach,
expected profit is overestimated, and results in a more
conservative service level when compared to the Bayesian
approach, confirming the intuition that parametric uncertainty
proposes a posterior distribution for the demand Fg(y|x) with
greater dispersion than the classical approach distribution
Fc (y|x). In the following section, we present empirical results
that confirm these observations. Subsequently, we will also
illustrate how we can estimate the optimal order size when it is
not possible (or is extremely complicated) to find a closed-
form solution.

A. Empirical Comparison between the Classical and Baye-
sian Approaches

In our first experiment, we assumed an arrival rate for
clients of #=2 and generated m=1000 samples of arrival
times, each of size n=20. For every sample, we calculated

>.% and the optimal order size (under both the classical

and Bayesian approaches) with the data from the previous
section (T =15, n=20, u=9, w=1). For every sample, we
calculated the difference in expected profit between both

approaches, Bc(Qc|x)—Bg(Qg|x), and the service level for

the (classical) optimal order size: Fg (an).
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Fig. 1: Histogram of the difference Bc (Qc|x) - Bg(Qg|X)

based on 1000 replications of the estimation experiments
under the classical and Bayesian approaches.
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Fig. 2: Histogram of the actual service level Fg (an) for the
optimal order size under the classical approach based on 1000
replications of the estimation experiments under the classical
and Bayesian approaches with n = 50.

0.18
0.16

.. 014

5]

& 0.12

=}

3 0.10

w

© 0.08

=

® 0.06

[7)

© 0.04
0.02
0.00

0.890 0.894  0.898 0.905 0.909 0.913 0.917

0.902
Service Level

Fig. 3: Histogram of the actual service level Fg (Qé\x) for the

optimal order size under the classical approach based on 1000
replications of the estimation experiments under the classical
and Bayesian approaches with n = 300.

Table I: Excess of benefits and service levels for the classical
order size under different sample sizes.

Excess of Benefit Service Level

" Mean St. Dev. Mean St. Dev.

5 25.95 18.02 0.732 0.032
10 13.61 6.13 0.770 0.025
20 7.23 2.16 0.813 0.018
50 3.10 0.59 0.861 0.011
100 1.61 0.22 0.885 0.009
150 1.08 0.12 0.894 0.008
200 0.82 0.08 0.899 0.008
250 0.66 0.06 0.901 0.008
300 0.55 0.05 0.903 0.008

Based on Fig. 1, notice that the classical approach has
overestimated the expected profit in all replications of the
experiment. Similarly, based on Fig. 2, notice that the classical
approach has provided a more conservative service level in
every replication of the experiment. Despite the results of
Fig.2, there should be a positive probability (very small in this
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case) of having QE large enough to provide a service level

larger than 0.9. In Fig. 3 we report the results of the same
experiments of Fig. 2 with a sample size of n = 300, and we
illustrate that a service level larger than 0.9 can actually be
obtained.

In order to remark that the results provided by the proposed
Bayesian approach are consistent with the results of a classical
approach, we replicated our previous experiments under
different values for the sample size n (of times between
arrivals), and the main results are provided in Table | and, as
can be seen from this table, the excess of benefit tends to zero
as the sample size increases, and the service level tend to the
optimal 0.9, illustrating that both methods tend to provide a
similar result as the sample size increases (and parameter
uncertainty disappears).

B. Analysis of Some Empirical Results

In this Section we study the possibility that the results of
Fig. 1 can be generalized for different parameter values.

Let us suppose that x is fixed (after simulating a random
sample of size n from an exponential distribution with mean
1/0), and let Y and Z be random variables distributed as
Poisson with expectation A=T/x, and negative binomial
with parameters n and p=X/(T +X), respectively. Under

these definitions, we can easily verify that the classical
Qc
E[by (Q)], and the Bayesian solution QE
E[bz (Q)], where bp(Q) is defined in (1).

solution to the newsvendor problem maximizes

maximizes

[ ]
o .|I|| | || ”|||II||....
1

024638 1012141618202224:5::3332341533404244464850
-0.005 i

= p2(k)-p1(k)

Fig. 4: Graph of py(k)— py(k) fork=0,1,....

In Fig. 4 we show a graph of py(k)— pi(k) under the same
parameters of Fig. 1 and X =0.5, where py(k)="P[Y =k] and
p2(k)=P[Z=K], k = 0, 1,.... In this figure we illustrate that
this function satisfies the following property.
Property 1. For n>1, X>0 and T >0 given, and g(Y) as
in (16), there exist 0<ky <k <o such that g(y)>0 for
0<y<ky, y>ky;and g(y)<0 for ky <y<ky.

We will show that Property 1 is satisfied for Y and Z, for
which we define

ISSN: 2313-0571
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def

AP0 s

A=TIx and p=x/(T +X). Note that, from

(16)

where
e X S14T /X we easily obtain g(0) >0, so that there exists
ky=0 such that g(y)>0 for 0<y<k. On the other

hand, lim g(y)=o, so that there exists k, such that
y—w©

g(y)>0 and y>ks. Finally, g'(y)=¥(n+y)-In(a), where
a=n/p and ¥(y) is the well-known digamma function,
which shows that g(y) decreases for Y < Yq and increases for

y > Yo, where Y is the only solution of ¥(n+y)-In(a)=0.
Property 1 then follows from the Intermediate VValue Theorem

= Y pa(k)=1.
k=0

by using 2 P1(k)
k=0

We include the next definition for completeness, although it
is well-known. The next Proposition follows from Property 1,
Theorem 2 of [18] and E[Y]=E[Z]=T/X .
Definition 1. We say that a random variable Y has second-
order stochastic dominance on a random variable Z if and only
if E[U(Y)]>E[U(Z)] for any concave function U.
Proposition 1. Let n>1 x>0 and T>0 be given. If Y, Z

are random variables distributed as Poisson with expectation
A=T/x and negative binomial with parameters n and
p:Y/('ITJrX), respectively, then Y  has second-order
stochastic dominance on Z.

Note that the function bp(Q)
E[bY(Q(*;)]z E[bZ(QE)] follows from Proposition 1, and from

P[X >0]=1, where X is the mean of a random sample of size

n from an exponential distribution with expectation 1/, we
have the following Corollary.

Corollary 1. Let n>1, x>0 and T>0 be given, then
PBc (QC0 - Ba(Qax)20]=1, where  Bc(Qt))
Bg (QE\X) correspond to the example defined in (15).

is concave, so that

and

C. Estimation of the Optimal Order Size using Simulation

With the objective of illustrating how to calculate the
optimal order size when the complexity of the model does not
allow the calculation of a closed form expression for the
solution, in this section we show the use of the PS algorithm to
find the optimal order size using simulation.

In order to apply the PS algorithm in our example, we once

again use the data with T =15, n=20, ;% =10, u=9,
w=1. Using these settings, we know that the optimal order
Qg =41, of
Bg (QE\X)=253.38. Based on the algorithm described in

size s with  an expected profit
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Figure 2 of [17] the PS algorithm consists in simulating m
observations wy,...,wy, of the demand. Each observation w;
is obtained by first simulating the value of the parameter via
the posterior distribution p(6|x), and then simulating w;

using the forecast model (given the parameter value), which in
our case corresponds to model (10).

Table Il: Results after applying the PS algorithm for m = 100
and m = 1000.

m Optimal Estimation of the
Order Size Expected Profit
Point Lower Upper
Bound Bound
100 dy 42 256.00 240.65 271.35
O+t 44 256.20 240.14 272.26
1000 dy 40 252.37 247.89 256.85
O+t 41 252.49 247.90 257.08

A In the case where the demand allows for a density
function, the optimal order size is obtained by setting the
service level to a =u/(u+w) and applying a valid method for
quantile estimation. Nonetheless, for the discrete case, it is
convenient to apply the method described by equations (8) and
(9), replacing the cdf Fg(y|x) for the empirical distribution of

the observations wy,..., Wy, .

From Table Il, notice that for m = 1000 observations, the PS
algorithm provides an optimal order size of 41, and estimates
an expected profit between 247.9 and 257.08, which covers
the actual value (253.38). For m = 100, the number of
observations is insufficient for obtaining an optimal order size
(surprisingly, we saw no observation with a value of 43). For
values of m > 1000, the PS algorithm should still provide an
optimal order size of 41, with a better estimate of the expected
profit.

V. CONCLUSION

The results obtained by experimenting with the proposed
approach show that the classical approach tends to
overestimate the expected profit when compared to the
Bayesian approach. On the other hand, as the number of real
data observations increases, the results with both methods tend
to coincide.

Based on the obtained results, we recommend applying the
proposed Bayesian approach when the number of observations
is small since in this case, the uncertainty in the parameters is
significant. On the other hand, if we use stochastic simulation
in order to estimate the optimal order size, we have to consider
a large enough number of simulated observations in order to
obtain an adequate precision.
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