
 

 

  
Abstract— We discuss the formulation and solution to the 

newsvendor problem under a Bayesian framework that allows us to 
incorporate the uncertainty in the parameters of demand modeling 
(introduced in the process of parameter estimation). We present an 
example with an analytical solution and use this example to show that 
a classical approach (without parameter uncertainty) tends to 
overestimate the expected benefit. Furthermore, we conduct 
experiments that confirm our results and illustrate the estimation of 
the optimal order size using stochastic simulation, method that is 
suggested when model complexity does not allow us to obtain an 
analytical solution. 
 

Keywords— Bayesian forecasting, inventory management, 
newsvendor problem, parameter uncertainty, stochastic simulation.  

I. INTRODUCTION 
ET D  represent the demand (during the sales period) of 

a seasonal item. If 0≥w  denotes the loss for every 
unsold unit at the end of the period, and 0≥u  denotes the 
profit for every unit sold during the period, the total profit for 
an order size of Q  units is given by   
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The most common approach (see, e.g, [1]) to find the 

optimal order size *
CQ   consists in defining a density function 

)( θyf  for the demand D  (the analysis is similar for the 
discrete case), where θ  is the parameter vector and, assuming 
θ  is known, we define the expected profit as 
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This function has a derivative when 0>Q  so that (by 
imposing first-order optimality conditions) the optimal order 
size *

CQ  that maximizes )( θQBC  satisfies 
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Note that ( )θyFC  is the cumulative distribution function 

(cdf) of the demand given [ ]θ=Θ . Furthermore, if 0)( >θxf  

is continuous in a neighbourhood of *
CQ , condition (3) is 

sufficient for finding the optimal value *
CQ . We also mention, 

for the sake of clarity, that the formulation presented in [1] is 
an equivalent formulation where the authors minimize the 
expected value of  ( ) uDQbD −− , so that (3) follows from [1], 
and we are using index C to remark that this is a classical 
approach described in most textbooks. 

In practice, the value of θ  is estimated from a data set  
( )nxxx ,,1 =  using, for example, the (maximum likelihood) 

estimator that maximizes a likelihood function ( )xL θ . The 
most common approach for finding the optimal order size 
consists in setting θθ ˆ=  in (3), where ( )xθθ ˆˆ =  is a point 
estimator. While this procedure is found extensively in 
Operations Management textbooks, it has the downside of 
assuming that the point estimator equals the parameter. Thus, 
in this article we discuss a Bayesian approach to the 
newsvendor problem (i.e., finding the optimal order size) 
incorporating uncertainty (introduced by the estimation 
process) in the parameter vector.  

Bayesian methods to incorporate parameter uncertainty for 
inventory management have been proposed since the pioneer 
work of Scarf [2], where the author discusses the optimality of 
a Bayesian updating rule for inventory management. Also, the 
incorporation of parameter uncertainty using Bayesian 
methods is proposed in [3], where the author shows how to 
compute a reorder point by modeling the demand as a 
multinomial distribution. Bayesian methods have been 
extensively applied to inventory management in order to 
propose updating rules for the optimal inventory policy based 
on new information on the product’s demand, see e.g., [4]-[9],  
and the references therein. However, the use of simulation 
techniques to estimate performance measures for inventory 
management is not considered in these articles and the related 
literature. 

When a random sample from demand D is available, the 
solution of (3) can be approximated by the corresponding 
sample quantile and (as shown in [10] and [11]) the quality of 
this approximation improves as the sample size increases. 
However, our methodology can be applied to a more general 
situation, since a random sample from future demand D is not 
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necessarily required. Our approach is similar to the one 
proposed in [9], where the authors illustrate how it can be 
applied using data on sales only (without information on lost 
sales) or data on sales occurrences (as in the example shown 
below in this article). Extensions to the newsvendor problem 
have been also proposed, for example, uncertainty on price 
and order size are considered in [12], and the effect of risk 
aversion in the optimal order size is analyzed in [13]. 

The following section describes the theory behind the 
proposed Bayesian approach, which allows the incorporation 
of parametric uncertainty in the newsvendor problem. 
Afterwards, in the subsequent section, we illustrate how to 
estimate the optimal order size using simulation by means of a 
simple example. This example showcases how to estimate the 
optimal order size in more complicated problems. In the same 
section, we present a comparison of the results obtained from 
applying a classical approach versus the results obtained using 
the Bayesian approach. Finally, in the last section, we present 
our conclusions and recommendations. 

II. PROBLEM FORMULATION 

Under a Bayesian framework, the parameter vector is a 
random variable   that has a prior density function  , thus the 
posterior density function (given a data set  ) is given by 

( ) ( ) ( )
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where dx ℜ∈ , 0S∈θ  and ( )θxL  is the likelihood function. 
From (4) and following the same notation as in (3), the cdf of 
the demand (given [ ]xX = ) is given by 
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for 0≥y , where ( )θyFC  and ( )xp θ  are defined in (3) and 
(4), respectively. Similarly, from (1) we obtain the expected 
profit (given [ ]xX = ) as 
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where ( )xyFB is the cdf defined in (5). This shows that 
)( xQBB  has a similar form to )( xQBC  defined in (2). 

Consequently, the optimal order size *
BQ  considering 

parametric uncertainty satisfies 

( ) ,*
wu

uxQF BB +
=          (7) 

where ( )xyFB  is defined in (5). It is worth mentioning that 
our problem formulation is different from the one proposed in 
[9], where the authors propose a dynamic program to solve the 
newsvendor problem in a multi-period setting in order to show 
the advantages of using a more efficient updating rule. The 
main difference is that we consider a single-period expected 
profit that is explicitly dependent on the available data set x. 

This formulation allowed us to obtain a simple solution in the 
form of (7). 
It is important to point out that for the case where demand is 
discrete, taking values << 21 dd , the function ( )xyFB  is 
not continuous, and equation (7) might not have a solution, in 
which case we must find the value of kd  that satisfies: 

[ ] [ ],1 xXdDP
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+

≤=≤ +    (8) 

in order to evaluate )( xdB kB  and )( 1 xdB kB + , where: 
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If ( ) ( )xdBxdB kBkB 1+≥ , the optimal order size will be 

given by kB dQ =* , otherwise it will be given by 1
*

+= kB dQ . 
Note that in the discrete case (8) is equivalent to (7), in the 
sense that neither equation considers fixed ordering costs. If 
there is an initial inventory of 0Q , we should not order when 

*
0 BQQ ≥ , otherwise we should order 0

* QQB −  units only if 

( ) ( ) 00
* CxQBxQB BBB >− , where 0C  is the fixed ordering 

cost. 

III. AN ILLUSTRATIVE EXAMPLE 
In this section we illustrate the application of the proposed 

methodology through a similar model to the one presented in 
[14] for the forecast of an item of intermittent demand. We 
know that the demand for service parts follows a Poisson 
process, though there exists uncertainty in the arrival rate 0Θ . 
Thus, given [ ]00 θ=Θ , the times between customers’ arrivals 
are i.i.d. according to the exponential density function:  

( )
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−
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,0,000
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yθθθ  

where ( )∞∈ ,00θ . Every client can order j  units of an item 
with probability jΡ , qj ,,1= , .2≥q Let ( )111 ,, −ΡΡ=Θ q  

and 11 =Ρ∑ =
q
j j , then ( )10,ΘΘ=Θ  denotes the vector of 

parameters and the parameter space is given by 
( ) 010 ,0 SS ⊗∞= , where  
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The total demand for a period of length T  is given by 
( )
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where ( )sN  is the number of clients that arrived in the interval 
[ ]s,0 , 0≥s , and 21,UU  are the individual item demands 
(we assume they are conditionally independent with respect to 
Θ ). The information on Θ  consists of (i.i.d.) observations 

( )nvvv ,,1 = , ( )nuuu ,,1 =  of past clients, where iv  is the 
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time between the arrival of client i and previous client ( 1−i ), 
and iu  is the number of items ordered by client i . The 
likelihood functions for v and u  are given by 
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respectively, where ( )111 ,, −= qρρθ 

, and [ ]∑ = == n
i ij juIc 1  

is the number of clients that ordered j  items. 
From an objective point of view, we can assume a non-

informative prior density function for Θ , using Jeffrey’s prior 
density. In the case of the exponential model, Jeffrey’s prior 
density (see, for instance, [15]), is given by ( ) 1

00
−= θθp , 

00 >θ . By taking 0θθ =  and vx =  in (4), from (11) we have 
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which corresponds to a ( )∑ =
n
i ivn 1,Gamma  distribution, where 

( )21,Gamma ββ  denotes a gamma distribution with 

expectation 1
21
−ββ . Similarly, Jeffrey’s prior density for the 

multinomial model (see, for instance, [16]) corresponds to a 
Dirichlet distribution with density function: 
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thus, it follows from (4) and (12) that 
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which corresponds to a Dirichlet distribution with parameter 
( )2/1,,2/11 ++ qcc 

. Let ( )iii uvx ,= , ni ,,1= , ( )nxxx ,,1 = , 

( )10,θθθ = , and assuming independence, the posterior density 
is given by ( ) ( ) ( )upvpxp 10 θθθ = , where ( )vp 0θ  and 

( )up 1θ  are defined in (13) and (14), respectively.  
Note that, in this example, we can obtain a closed-form 

expression for the point estimate of the demand 
[ ]xXDE ==µ , since, from (13) and (14) we have  
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The above expression allows us to calculate a forecast for 
demand D  based on a data set x . In this case, however, it is 
not easy to obtain a closed-form expression for the cdf and the 
optimal order size. Thus, we can apply the posterior sampling 
(PS) algorithm described in section 3.1 of [17] in order to 
calculate, via simulation, the corresponding optimal order size, 
given a service level ( )wuu += /α . It is worth mentioning 
that the main idea behind the PS algorithm is to generate 
simulated observations for the demand by first sampling a 
parameter value θ  from the posterior distribution density 

( )xp θ , and the sampling a demand observation from the 
forecasting model for the demand D  (conditional on θ=Θ ). 

For the case when 1=q  (i.e., every client orders just one 
unit), the model is simpler and it is not necessary to turn to 
simulation in order to find the optimal order size. In this case, 
we can ignore 1θ  and the values iu  (since they are always 
equal to 1). Let vx = , 0θθ = , we have that 

[ ] ( )[ ] ( ) ,!jTejTNPjDP jT θθθ θ−==Θ===Θ=  
and considering (13), it can be proven that 
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for ,1,0=j , which corresponds to a negative binomial 
distribution. Using (8), (9) and (15), we can determine the 
optimal order size *

BQ  for this particular case, without 
resorting to the PS algorithm or simulation. 

IV. EXPERIMENTAL RESULTS 
In order to illustrate the validity of the PS algorithm and, in 

particular, how it can be applied in order to determine the 
optimal order size, we will use the example from the previous 
section that has a closed-form expression (15) for the posterior 
distribution of the demand. First of all, we should point out 
that we considered the values of 15=T , 20=n , 

101 =∑ =
n
i ix , 9=u , 1=w . With this data, the optimal service 

level is ( ) 9.0/ =+= wuuα . After applying the Bayesian 
approach described in equations (8) and (9), and the posterior 
distribution defined in (14), we obtained an optimal order size 
of 41* =BQ , then, by following (6), we have an expected 
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profit of 38.253)( * =xQB BB , and a service level of 

901.0)( * =xQF BB  (slightly higher than 0.9). 
With the objective of comparing the results obtained 

through the classical approach, notice that, from (10), we can 
find that the cdf ( )θyFC  defined in (3) corresponds to a 
Poisson distribution with mean Tθ . On the other hand, the 

maximum likelihood estimator of θ  is 2ˆ =θ , thus, when 
applying the classical approach with conditions similar to (8) 
and (9), we obtained 37* =CQ , reporting an expected profit of 

)(05.260)( ** xQBxQB BBCC >=  from (2), and a service level, 
from the posterior distribution in (15), of 

( ) ( )xQFxQF BBCB
** 803.0 <=  

These results suggest that under the classical approach, 
expected profit is overestimated, and results in a more 
conservative service level when compared to the Bayesian 
approach, confirming the intuition that parametric uncertainty 
proposes a posterior distribution for the demand ( )xyFB  with 
greater dispersion than the classical approach distribution 

( ).xyFC In the following section, we present empirical results 
that confirm these observations. Subsequently, we will also 
illustrate how we can estimate the optimal order size when it is 
not possible (or is extremely complicated) to find a closed-
form solution. 

A. Empirical Comparison between the Classical and Baye-
sian Approaches  
In our first experiment, we assumed an arrival rate for 

clients of 2=θ  and generated 1000=m  samples of arrival 
times, each of size 20=n . For every sample, we calculated 

∑ =
n
i ix1  and the optimal order size (under both the classical 

and Bayesian approaches) with the data from the previous 
section ( 15=T , 20=n , 9=u , 1=w ). For every sample, we 
calculated the difference in expected profit between both 
approaches, )()( ** xQBxQB BBCC − , and the service level for 

the (classical) optimal order size: ( )xQF CB
* . 
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Fig. 1: Histogram of the difference )()( ** xQBxQB BBCC −  
based on 1000 replications of the estimation experiments 
under the classical and Bayesian approaches. 
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Fig. 2: Histogram of the actual service level ( )xQF CB
*  for the 

optimal order size under the classical approach based on 1000 
replications of the estimation experiments under the classical 
and Bayesian approaches with n = 50. 
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Fig. 3: Histogram of the actual service level ( )xQF CB
*  for the 

optimal order size under the classical approach based on 1000 
replications of the estimation experiments under the classical 
and Bayesian approaches with n = 300. 
 
Table I: Excess of benefits and service levels for the classical 
order size under different sample sizes. 

n 
Excess of Benefit Service Level 

Mean St. Dev. Mean St. Dev. 

5 25.95 18.02 0.732 0.032 

10 13.61 6.13 0.770 0.025 

20 7.23 2.16 0.813 0.018 

50 3.10 0.59 0.861 0.011 

100 1.61 0.22 0.885 0.009 

150 1.08 0.12 0.894 0.008 

200 0.82 0.08 0.899 0.008 

250 0.66 0.06 0.901 0.008 

300 0.55 0.05 0.903 0.008 
 

Based on Fig. 1, notice that the classical approach has 
overestimated the expected profit in all replications of the 
experiment. Similarly, based on Fig. 2, notice that the classical 
approach has provided a more conservative service level in 
every replication of the experiment. Despite the results of 
Fig.2, there should be a positive probability (very small in this 

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 3, 2016

ISSN: 2313-0571 9



 

 

case) of having *
CQ  large enough to provide a service level 

larger than 0.9.  In Fig. 3 we report the results of the same 
experiments of Fig. 2 with a sample size of n = 300, and we 
illustrate that a service level larger than 0.9 can actually be 
obtained.  

In order to remark that the results provided by the proposed 
Bayesian approach are consistent with the results of a classical 
approach, we replicated our previous experiments under 
different values for the sample size n (of times between 
arrivals), and the main results are provided in Table I and, as 
can be seen from this table, the excess of benefit tends to zero 
as the sample size increases, and the service level tend to the 
optimal 0.9, illustrating that both methods tend to provide a 
similar result as the sample size increases (and parameter 
uncertainty disappears). 

B. Analysis of Some Empirical Results 
In this Section we study the possibility that the results of 

Fig. 1 can be generalized for different parameter values. 
 Let us suppose that x  is fixed (after simulating a random 

sample of size n from an exponential distribution with mean 
θ/1 ), and let Y and Z be random variables distributed as 

Poisson with expectation xT /=λ , and negative binomial 
with parameters n and ( )xTxp += / , respectively. Under 
these definitions, we can easily verify that the classical 
solution *

CQ  to the newsvendor problem maximizes 

( )[ ]QbE Y , and the Bayesian solution *
BQ  maximizes 

( )[ ]QbE Z , where ( )QbD  is defined in (1). 
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Fig. 4: Graph of ( ) ( )kpkp 12 −  for k = 0, 1,…. 
 

In Fig. 4 we show a graph of ( ) ( )kpkp 12 −  under the same 

parameters of Fig. 1 and 5.0=x , where ( ) [ ]kYPkp ==1  and 

( ) [ ]kZPkp ==2 , k = 0, 1,…. In this figure we illustrate that 
this function satisfies the following property. 
Property 1. For ,1≥n  0>x  and 0>T  given, and ( )yg  as 

in (16), there exist ∞<<≤ 210 kk  such that ( ) 0>yg  for 

10 ky ≤≤ , 2ky ≥ ; and ( ) 0≤yg  for 21 kyk << . 
We will show that Property 1 is satisfied for Y and Z, for 

which we define  

( ) ( ) ( )[ ] ( )[ ]
( )[ ] ( ) ( ) ( ),ln1lnlnln

ln/ln 12
λλ ypypnn

ynypypyg
def

−+−++Γ−
+Γ==    (16) 

where xT /=λ  and ( )xTxp += / . Note that, from 

xTe xT /1/ +>  we easily obtain ( ) 00 >g , so that there exists 

01 =k  such that ( ) 0>yg  for .0 1ky ≤≤  On the other 

hand, ( ) ∞=
∞→

yg
y
lim , so that there exists 2k  such that 

( ) 0>yg  and 2ky ≥ . Finally, ( ) ( ) ( )aynyg ln' −+Ψ= , where 

pna /=  and ( )yΨ  is the well-known digamma function, 

which shows that ( )yg  decreases for 0yy <  and increases for 

0yy > , where 0y  is the only solution of ( ) ( ) 0ln =−+Ψ ayn . 
Property 1 then follows from the Intermediate Value Theorem 

by using ( ) ( ) 1
0

2
0

1 == ∑∑
∞

=

∞

= kk
kpkp . 

We include the next definition for completeness, although it 
is well-known. The next Proposition follows from Property 1, 
Theorem 2 of [18] and [ ] [ ] xTZEYE /== . 
Definition 1. We say that a random variable Y has second-
order stochastic dominance on a random variable Z if and only 
if ( )[ ] ( )[ ]ZUEYUE ≥  for any concave function U. 

Proposition 1. Let ,1≥n  0>x  and 0>T  be given. If Y, Z 
are random variables distributed as Poisson with expectation 

xT /=λ  and negative binomial with parameters n and 
( )xTxp += / , respectively, then Y  has second-order 

stochastic dominance on Z. 
Note that the function ( )QbD  is concave, so that 

( )[ ] ( )[ ]**
BZCY QbEQbE ≥  follows from Proposition 1, and from 

[ ] 10 =>XP , where X  is the mean of a random sample of size 
n from an exponential distribution with expectation θ/1 , we 
have the following Corollary. 
Corollary 1. Let ,1≥n  0>x  and 0>T  be given, then 

[ ] 10)()( ** =≥− xQBxQBP BBCC , where )( * xQB CC  and 

)( * xQB BB  correspond to the example defined in (15). 

C. Estimation of the Optimal Order Size using Simulation 
With the objective of illustrating how to calculate the 

optimal order size when the complexity of the model does not 
allow the calculation of a closed form expression for the 
solution, in this section we show the use of the PS algorithm to 
find the optimal order size using simulation. 

In order to apply the PS algorithm in our example, we once 
again use the data with  15=T , 20=n , 101 =∑ =

n
i ix , 9=u , 

1=w . Using these settings, we know that the optimal order 

size is 41* =BQ , with an expected profit of 

38.253)( * =xQB BB . Based on the algorithm described in 
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Figure 2 of [17] the PS algorithm consists in simulating m 
observations mww ,,1   of the demand. Each observation iw  
is obtained by first simulating the value of the parameter via 
the posterior distribution ( )xp θ , and then simulating iw  
using the forecast model (given the parameter value), which in 
our case corresponds to model (10).   

 
Table II: Results after applying the PS algorithm for m = 100 
and m = 1000. 

m Optimal  
Order Size 

Estimation of the  
Expected Profit 

Point Lower  
Bound 

Upper  
Bound 

100 dk 42 256.00 240.65 271.35 

dk+1 44 256.20 240.14 272.26 

1000 dk 40 252.37 247.89 256.85 

dk+1 41 252.49 247.90 257.08 

 
A In the case where the demand allows for a density 

function, the optimal order size is obtained by setting the 
service level to ( )wuu += /α  and applying a valid method for 
quantile estimation. Nonetheless, for the discrete case, it is 
convenient to apply the method described by equations (8) and 
(9), replacing the cdf )( xyFB  for the empirical distribution of 
the observations mww ,,1  . 

From Table II, notice that for m = 1000 observations, the PS 
algorithm provides an optimal order size of 41, and estimates 
an expected profit between 247.9 and 257.08, which covers 
the actual value (253.38). For m = 100, the number of 
observations is insufficient for obtaining an optimal order size 
(surprisingly, we saw no observation with a value of 43). For 
values of m > 1000, the PS algorithm should still provide an 
optimal order size of 41, with a better estimate of the expected 
profit. 

V. CONCLUSION 
The results obtained by experimenting with the proposed 

approach show that the classical approach tends to 
overestimate the expected profit when compared to the 
Bayesian approach. On the other hand, as the number of real 
data observations increases, the results with both methods tend 
to coincide. 

Based on the obtained results, we recommend applying the 
proposed Bayesian approach when the number of observations 
is small since in this case, the uncertainty in the parameters is 
significant. On the other hand, if we use stochastic simulation 
in order to estimate the optimal order size, we have to consider 
a large enough number of simulated observations in order to 
obtain an adequate precision.  
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